共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Gaudichel M. De Angelis S. Joussaume J. R. Petit Y. S. Korotkevitch V. N. Petrov 《Journal of Atmospheric Chemistry》1992,14(1-4):129-142
We have studied the distribution of 327 clay mineral particles retrieved from four Antaretic ice smaples corresponding to present and Last Glacial Maximum (LGM) climate conditions. Illite, chlorite, smectite and kaolinite were identified in all samples. Focusing on kaolinite, because of its use as a possible tracer of low latitude soils, we find a significantly smaller amount for LGM samples while the dust concentration in snow during the LGM was about 30 times higher than for present climate conditions. This can be interpreted as change in the contribution of the Australian source with climate.A second approach was based on the modeling of the desert dust cycle using an Atmospheric General Circulation Model (AGCM) under both present-day and ice age conditions. Unlike mineralogical results, the model suggests the prevalence of the Australian dust source in the deposits over East Antarctica under both present-day and LGM climate conditions. However the model fails to reproduce the strong increase in dust deposits during the LGM. This discrepancy could be partly due to the lack of a higher latitude dust source in the model.The stronger dust input recorded in ice cores for the LGM could be related to an additional active high latitude source (possibly close to South America) overlapping the atmospheric background coming from low latitude areas. 相似文献
2.
Geological evidence and oxygen-isotope variations in deep-sea cores provide valuable information about the sea-level variations of the past. Ice-volume equivalent is usually computed by using a constant oceanic area. In this paper a relationship is developed between the continental ice-volume variation and the sea-level drop by taking into account the sea-floor topography and, therefore, the variation of the oceanic area. It appears from such calculations that the last glacial maximum ice volume is 7% less than previously estimated, and that the minimal reconstruction of the ice sheets from Hughes et al. (1981) seems the most likely. 相似文献
3.
J. Servant 《Atmospheric Research》1993,30(4)
Data concerning carbon cycle variations on the earth's surface during the past 200,000 years are reviewed.The variations of the surface temperature (T) and concentration of carbon dioxide (CO2) in the atmosphere of Antarctica are compared to those of the isotopic ratios of oxygen 18O/16O (δ18O) and of carbon 13C/12C (°13C) of waters in the deep oceans for the two last glacial cycles. This comparison shows that the decrease of the atmospheric CO2 concentration is accompanied by a carbon transferase from the continental biosphere to the oceanic deep waters. At the glacial maximum this transfer is estimated to be about 500 GtC (1 GtC = 1015g of carbon) equivalent to 25% of the carbon storage of the biosphere. It occurs mainly in the high latitudes of the Southern Hemisphere by incorporation of CO2 into particulate matter during photosynthesis. It is shown that the mean oceanic productivity does not increase with a supplementary supply of ions such as phosphate (PO43−) or nitrate (NO3−) but that the intensity of the thermohaline circulation is certainly reduced. As the warming up of the oceans and the melting of the ice-sheet begin carbon transfer takes place to restore the continental biosphere.Another carbon transfer of a much more important intensity is also at work in the sea shore environment. Its intensity could be sufficient to renew the entire carbon of the continental biospheric, atmospheric and oceanic reservoirs in a length of time comparable to a glacial cycle. This fact shows the importance of studying the deposition of carbon in oceanic zones which are uncovered with drops in sea level. At the present time data on the coastal environment in relation to the global carbon cycle are very scarce and warrants more research in this area. 相似文献
4.
5.
基于1960—2013年湖南88个台站逐日降水数据,采取线性趋势分析等方法分析了近54 a湖南区域暴雨的时空分布特征。从时间变化上看,近54 a湖南区域暴雨日以6月208 d为最多,1月0 d为最少;夏季、春季、秋季及冬季区域暴雨日数占总日数的百分比依次为60%、29%、10%及1%。暴雨日数、暴雨强度均值突变点分别为1994年、1995年,暴雨初日的均值突变点为1983、1994年,暴雨终日无均值突变;暴雨日数与暴雨强度(暴雨发生终日)总体上呈上升(后延)趋势。基于突变点分段线性趋势分析表明,仅暴雨日数在1994—2013年及暴雨强度在1960—1994年期间呈显著下降趋势。从空间分布上看,区域暴雨强度及其与非区域暴雨强度的差值、区域暴雨持续2日或以上的暴雨强度及其与单日暴雨强度的差值的大值区主要位于湘西北及湘东南,小值区主要位于湘西南-湘东北的带状区域;全部站点的区域暴雨强度均大于非区域暴雨强度,89%的台站持续2日或以上的区域暴雨强度大于单日区域暴雨强度。区域暴雨、总体暴雨的台站暴雨最长持续日数分别为1~4 d、2~4 d,均集中在2~3 d且其站数占总站数的百分比分别为97.7%、96.6%。 相似文献
6.
2006年春季沙尘天气异常的气候背景分析及趋势预测检验 总被引:1,自引:0,他引:1
作者概述了2006年春季我国北方地区沙尘天气异常的观测特征.与2000~2005年同期相比,2006年春季,我国北方地区沙尘天气过程相对频繁,强度偏强.首先,利用NCEP再分析资料及台站观测资料,对可能影响2006年春季我国沙尘天气异常的气候背景进行了分析,结果表明:2006年春季北方地区冷空气势力较常年强,冷空气活动较频繁,这是造成2006年春季我国沙尘天气多于前几年的动力原因.此外,春季我国西北及内蒙古的沙源地区降水偏少,干旱少雨,加之春季气温偏高,在一定程度上也有利于沙尘天气的形成.利用IAP 年度数值气候预测系统对2006、2007年春季我国沙尘天气趋势的气候背景进行了预测,检验了系统对2006年沙尘趋势的预测能力,并对2007年春季沙尘天气趋势进行了展望.结果表明:预测系统较好地预测出2006年我国北方地区春季降水偏少、土壤偏干的状况,但对风场的预测与实况有一定的差距,由预测的气候距平结果推断2006年春季我国北方沙尘次数正常略偏少,与实况相反;对2007年春季的预测结果表明,2007年春季我国北方,特别是西北及内蒙古沙源地区土壤湿度偏湿,冷空气活动势力偏弱,不利于沙尘天气的形成,由此预测2007年春季我国北方沙尘趋势与常年相比略偏弱. 相似文献
7.
Analyses of cloud water path(CWP)data over China available from the International Satellite Cloud Climatology Project(ISCCP)are performed for the period 1984-2004.Combined with GPCP precipitation data,cloud water cycle index(CWCI)is also calculated.The climatic distributions of CWP are found to be dependent on large-scale circulation,topographical features,water vapor transport and similar distribution features which are found in CWCI except in the Sichuan Basin.Influenced by the Asia monsoon,CWP over China exhibits very large seasonal variations in different regions.The seasonal cycles of CWCI in different regions are consistent and the largest CWCI occurs in July.The long-term trends of CWP and CWCI are investigated,too.Increasing trends of CWP are found during the period with the largest increase found in winter.The decreasing trends of CWCI dominate most regions of China.The differences in long-term trends between CWP and CWCI suggest that CWP only can influence the variation of CWCI to a certain extent and that other factors need to be involved in cloud water cycle researches.This phenomenon reveals the complexity of the hydrological cycle related to cloud water. 相似文献
8.
A. Jost D. Lunt M. Kageyama A. Abe-Ouchi O. Peyron P. J. Valdes G. Ramstein 《Climate Dynamics》2005,24(6):577-590
The analyses of low-resolution models simulations of the last glacial maximum (LGM, 21 kyr BP) climate have revealed a large
discrepancy between all the models and pollen-based palaeoclimatic reconstructions. In general, the models are too warm relative
to the observations, especially in winter, where the difference is of the order of 10°C over western Europe. One of the causes
of this discrepancy may be related to the low spatial resolution of these models. To assess the impact of using high-resolution
models on simulated climate sensitivity, we use three approaches to obtain high-resolution climate simulations over Europe:
first an atmospheric general circulation model (AGCM) with a stretched grid over Europe, second a homogeneous T106 AGCM (high
resolution everywhere on the globe) and last a limited area model (LAM) nested in a low-resolution AGCM. With all three methods,
we have performed simulations of the European climate for present and LGM conditions, according to the experimental design
recommended by the Palaeoclimate Modeling Intercomparison Project (PMIP). Model results have been compared with updated pollen-based
palaeoclimatic indicators for temperature and precipitation that were initially developed in PMIP. For each model, a low-resolution
global run was also performed. As expected, the low-resolution simulations underestimate the large cooling indicated by pollen
data, especially in winter, despite revised slightly warmer reconstructions of the temperatures of the coldest month, and
show results in the range of those obtained in PMIP with similar models. The two high-resolution AGCMs do not improve the
temperature field and cannot account for the discrepancy between model results and data, especially in winter. However, they
are able to reproduce trends in precipitation more closely than their low-resolution counterparts do, but the simulated climates
are still not as arid as depicted by the data. Conversely, the LAM temperature results compare well with climate reconstructions
in winter but the simulated hydrological cycle is not consistent with the data. Finally, these results are discussed in regard
of other possible causes for discrepancies between models and palaeoclimatic reconstructions for the LGM European climate. 相似文献
9.
利用全球气候模式CAEM3嵌套区域模式MM5模拟了现代和中全新世时的气候,从模拟结果可以发现中全新世有效降水变化中心随季节变化,最大的有效降水增加出现在夏季东北地区和内蒙古东部,最大值超过3 mm/d;同时,黄河与长江之间区域降水减少,最大变化超过2 mm/d.中国北方地区云量增加,同时,中国东部的长江流域云量减少.高云量变化较小,低云量变化最大,最大变化超过2成.夏季,对应着黄河与长江之间区域的云量减少,这个区域的温度升高最大.从水汽的变化可以看到长江流域地区水汽减少,相对湿度也减少,这与云量的变化一致;华南地区水汽的变化与季节有关;东北地区水汽增加,相对湿度增大,对应云量的增加和降水增多.从结果可以发现相对湿度最大的变化超过15%,不是一个常数.有些地区温度升高,但是水汽却减少.但是,在LGM的温度降低的区域,水汽一致减少.这说明温度降低水汽对应减少,但温度升高不一定对应水汽增加.这与全球尺度水汽相对湿度基本保持常数的结果不同.中全新世时,长江流域除春季外变得干燥、少雨和高温,东北和内蒙古东部变得多雨和潮湿. 相似文献
10.
11.
干旱半干旱地区尘卷风研究进展 总被引:1,自引:0,他引:1
杨兴华 《沙漠与绿洲气象(新疆气象)》2016,10(2):1-8
尘卷风是一种发生在对流边界层的垂直涡旋,多发生在干旱半干旱地区,其旋转过程中强上升气流携带大量沙尘粒子,成为沙尘气溶胶排放的一个重要起沙过程。然而,相对于沙尘暴研究,目前对尘卷风及大气边界层的起沙过程的认知相当有限。从尘卷风发生的时空变化、边界层特征、形成原因和输沙量4个方面对尘卷风当前研究状况进行总结,并指出当前尘卷风研究重点及未来研究方向。 相似文献
12.
13.
B. Delmonte J. R. Petit K. K. Andersen I. Basile-Doelsch V. Maggi V. Ya Lipenkov 《Climate Dynamics》2004,23(3-4):427-438
Three east Antarctic ice cores (Dome B, EPICA-Dome C and Komsomolskaia) give evidence for a uniform dust input to the polar plateau during the last glacial maximum (LGM)/Holocene transition (20 to 10 kyr BP) and the 87Sr/86Sr versus 143Nd/144Nd isotopic signature of the mineral particles highlights a common provenance from southern South America at that time. However, the size distribution of dust from the three ice cores highlights important differences within the east Antarctic during the LGM and shows clearly opposite regional trends during the climatic transition. Between Dome B and Dome C the timing of these changes is also different. A geographical diversity also arises from the different phasing of the short-term (multi-secular scale) dust size oscillations that are superposed at all sites on the main trends of glacial to interglacial changes. We hypothesize the dust grading is controlled by size fractionation inresponse to its atmospheric pathway, either in terms of horizontal trajectory or in altitude of transport. Such mechanism is supported also by the dust size changes observed during a volcanic event recorded in Vostok ice. Ice core dust size data suggest preferential upper air subsidence over the EDC-KMS region and easier penetration of relatively lower air masses to the DB area during the LGM. At the end of the last glacial period and during the climatic transition the region of relatively higher subsidence progressively moved southward. The scenario proposed, supported also by the LGM/Holocene regional changes of snow accumulation, likely operates even at sub-millennial time scale. 相似文献
14.
气溶胶质量密度是气溶胶重要的参数,它影响着大气中复杂的化学反应,也与气溶胶的传输过程和空间分布息息相关.基于MERRA-2再分析资料提供的气溶胶柱质量密度数据,研究了我国塔里木盆地1980—2018年长时间序列的沙尘气溶胶柱质量密度的时空分布特征.结果表明,沙尘气溶胶和沙尘PM2.5气溶胶柱质量密度有很大的变化范围,平均值分别为0.33和0.086 g/m2,同时具有明显的年际、月和季节变化特征.沙尘气溶胶和沙尘PM2.5气溶胶柱质量密度的年平均值在0.24~0.41和0.06~0.11 g/m2范围内变化;春季最大,其平均值分别为0.47和0.12 g/m2,冬季最小,其平均值分别为0.13和0.04 g/m2;月平均值最大出现在5月,分别为0.57和0.14 g/m2,最小在1月,分别为0.1和0.03 g/m2. 相似文献
15.
Sulfate-coated dust particles in the free troposphere over Japan 总被引:1,自引:0,他引:1
Tomoko Kojima Peter R. Buseck Yasunobu Iwasaka Atsushi Matsuki Dmitri Trochkine 《Atmospheric Research》2006,82(3-4):698
Airborne aerosol collections were performed over Wakasa bay (36°00′N, 135°30′E) in March and Kumano open sea (34°00′N, 136°50′E) and Seto (35°10′N, 137°10′E) in July 2001 at altitudes between 1.0 and 5.8 km. The particles were individually analyzed using transmission electron microscopy (TEM). Relatively large mineral-dust (mostly clay) particles were abundant in the March samples. They also dominated in July in the mid-troposphere higher than 4 km altitude, whereas sea salt and ammonium sulfate were more abundant at lower altitudes. Ca-coated grid samples show many traces of aqueous sulfate droplets. The proportions of former sulfate droplets to the total collected particles apparently increased with increasing relative humidity at the time of sampling. TEM analysis revealed that a significant fraction of these former droplets enclose mineral-dust particles as well as sea salt, soot, and fly ash. Some enclose mixtures of mineral-dust, sea-salt, soot, and fly ash particles. The results provide evidence that mineral dust from the Asian continent could acquire coatings of sulfate while being transported in the free troposphere. The mineral-dust particles probably acquired the sulfate coatings either through heterogeneous uptake of gaseous SO2 and subsequent oxidation or through coagulation with cloud or fog droplets. The presence of the mixed particles in sulfate droplets also indicates that aggregation of particles of different origins occurred through cloud processing. Such sulfate-coated dust particles would affect cloud formation, precipitation, and chemistry of the free troposphere. 相似文献
16.
利用内蒙古科尔沁沙地和沈阳地区同步气象要素梯度观测和地面大气颗粒物(PM2.5和PM10)质量浓度观测资料,分析了中国北方地区2020年5月10日一次大范围扬沙天气过程微气象学和沙尘输送特征。结果表明:受大尺度天气系统影响,此次沙尘天气过程中科尔沁沙地不同高度(<20 m)风速均明显增加,各层相对湿度和浅层地表含水量有所降低,较强湍流动力作用配合干燥的土壤和大气环境有利于沙源地区地表大量的沙尘粒子释放到大气中。此后这些沙尘粒子随较强的西北气流集中在2—3 km以下高度向下游地区输送。受沙尘输送的影响,沈阳地区10日小时平均PM10浓度最高达817μg·m-3,能见度减小至3.7 km。此外,科尔沁沙地起沙过程中能见度与摩擦速度存在明显的反相关关系(相关系数R2=0.93),与湍流动力学热通量相关性相对较小,表明湍流动力作用在此次起沙过程占主导作用。 相似文献
17.
The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps 总被引:28,自引:0,他引:28
Through analyzing the yearly average data obtained from 123 regular meteorological observatorieslocated in the Tibetan Plateau (T-P), this article studies the characteristics of climate change in T-P inthe last 40 years. From the distribution of the linear trend, it can be concluded that the southeasternpart of T-P becomes warmer and wetter, with an obvious increase of rainfall. The same characteristicsare found in the southwestern part of T-P, but the shift is smaller. In the middle of T-P, temperature andhumidity obviously increase with the center of the increase in Bangoin-Amdo. The south of the TarimBasin also exhibits the same tendency. The reason for this area being humid is that it gets less sunshineand milder wind. The northeastern part of T-P turns warmer and drier. Qaidam Basin and its westernand southern areas are the center of this shift, in which the living environment is deteriorating. Analyzingthe characteristics of the regional average time series, it can be found that in the mid-1970s, a significantsudden change occurred to annual rainfall, yearly average snow-accumulation days and surface pressurein the eastern part of T-P. In the mid-1980s, another evident climatic jump happened to yearly averagetemperature, total cloud amount, surface pressure, relative humidity, and sunshine duration in the samearea. That is, in the mid 1980s, the plateau experienced a climatic jump that is featured by the increase oftemperature, snow-accumulation days, relative humidity, surface pressure, and by the decrease of sunshineduration and total cloud amount. The sudden climatic change of temperature in T-P is later than that ofthe global-mean temperature. From this paper it can be seen that in the middle of the 1980s, a climaticjump from warm-dry to warm-wet occurred in T-P. 相似文献
18.
Ground-based visible differential absorption spectrometry during twilight has been used for NO2 total column observations at the Antarctica Peninsula, Marambio Base (64S, 56W), during the austral spring of 1989 (9 September to 25 November).Results show moderate NO2 vertical column levels of 1.5 to 2.5×1015 molec cm-2 in the morning and 2 to 3×1015 molec cm-2 in the evening until middle October, highly modulated by planetary wave activity. From that date until the end of the period, a steady increase occurs which is associated with the rising of lower stratosphere temperature as the vortex weakens, reaching values of 5×1015 molec cm-2 in late November, with small a.m.-p.m. differences. NO2 is found to be positively correlated to both total ozone and 50 hPa temperature during the entire spring. However, when analyzing the departures from linear trends, a highly negative correlation has been observed from day 301 onwards. 相似文献
19.
The influence of continental ice,atmospheric CO2, and land albedo on the climate of the last glacial maximum 总被引:1,自引:0,他引:1
The contributions of expanded continental ice, reduced atmospheric CO2, and changes in land albedo to the maintenance of the climate of the last glacial maximum (LGM) are examined. A series of experiments is performed using an atmosphere-mixed layer ocean model in which these changes in boundary conditions are incorporated either singly or in combination. The model used has been shown to produce a reasonably realistic simulation of the reduced temperature of the LGM (Manabe and Broccoli 1985b). By comparing the results from pairs of experiments, the effects of each of these environmental changes can be determined.Expanded continental ice and reduced atmospheric CO2 are found to have a substantial impact on global mean temperature. The ice sheet effect is confined almost exclusively to the Northern Hemisphere, while lowered CO2 cools both hemispheres. Changes in land albedo over ice-free areas have only a minor thermal effect on a global basis. The reduction of CO2 content in the atmosphere is the primary contributor to the cooling of the Southern Hemisphere. The model sensitivity to both the ice sheet and CO2 effects is characterized by a high latitude amplification and a late autumn and early winter maximum.Substantial changes in Northern Hemisphere tropospheric circulation are found in response to LGM boundary conditions during winter. An amplified flow pattern and enhanced westerlies occur in the vicinity of the North American and Eurasian ice sheets. These alterations of the tropospheric circulation are primarily the result of the ice sheet effect, with reduced CO2 contributing only a slight amplification of the ice sheet-induced pattern. 相似文献
20.
A. Laîné M. Kageyama D. Salas-Mélia A. Voldoire G. Rivière G. Ramstein S. Planton S. Tyteca J. Y. Peterschmitt 《Climate Dynamics》2009,32(5):593-614
Mid-latitude eddies are an important component of the climatic system due to their role in transporting heat, moisture and
momentum from the tropics to the poles, and also for the precipitation associated with their fronts, especially in winter.
We study northern hemisphere storm-tracks at the Last Glacial Maximum (LGM) and their influence on precipitation using ocean-atmosphere
general circulation model (OAGCM) simulations from the second phase of the Paleoclimate Modelling Intercomparison Project
(PMIP2). The difference with PMIP1 results in terms of sea-surface temperature forcing, fundamental for storm-track dynamics,
is large, especially in the eastern North Atlantic where sea-ice extends less to the south in OAGCMs compared to atmospheric-only
GCMs. Our analyses of the physics of the eddies are based on the equations of eddy energetics. All models simulate a consistent
southeastward shift of the North Pacific storm-track in winter, related to a similar displacement of the jet stream, partly
forced by the eddies themselves. Precipitation anomalies are consistent with storm-track changes, with a southeastward displacement
of the North Pacific precipitation pattern. The common features of North Atlantic changes in the LGM simulations consist of
a thinning of the storm-track in its western part and an amplification of synoptic activity to the southeast, in the region
between the Azores Islands and the Iberian Peninsula, which reflects on precipitation. This southeastward extension is related
to a similar displacement of the jet, partly forced by the eddies. In the western North Atlantic, the synoptic activity anomalies
are at first order related to baroclinic generation term anomalies, but the mean-flow baroclinicity increase due to the presence
of the Laurentide ice-sheet is partly balanced by a loss of eddy efficiency to convert energy from the mean flow. Moisture
availability in this region is greatly reduced due to more advection of dry polar air by stationary waves, leading to less
synoptic-scale latent heat release and hence less precipitation also. In terms of seasonality, the stormy season is shifted
later in the year by a few days to a month depending on the season and the model considered. This shift does not directly
reflect on the first-order seasonal cycle of precipitation, which also depends on other mechanisms, especially in summer. 相似文献