首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
R. W. Girdler 《Tectonophysics》1970,10(5-6):579-582
Some highlights of a discussion meeting held at the Royal Society of London from 27 to 29 March 1969 are presented.  相似文献   

2.
3.
A number of basins are observed to extend inland from the coasts on both sides of the Gulf of Aden. The basins are orientated at approximately right angles to the spreading direction and intersect the coasts at the meeting of sheared and rifted continental margins. They appear to be grabens, one wall of which is continuous with the half graben of the neighbouring rifted margin. It is suggested that these were once parts of a number of discrete rifts arranged en-echelon along a zone of lithospheric weakness during the early opening of the Gulf of Aden, which became redundant when transform faults formed. The proposed development of rifts and transform faults is similar to that of a spreading centre, transform fault, spreading centre pattern developed in the freezing wax model of Oldenburg and Brune (1975). The Gulf of Suez at the northern end of the Red Sea is interpreted in a similar way since it has a number of features in common with the basins in the continents adjacent to the Gulf of Aden.  相似文献   

4.
Knowing Moho discontinuity undulation is fundamental to understanding mechanisms of lithosphereasthenosphere interaction, extensional tectonism and crustal deformation in volcanic passive margins such as the study area, which is located in the southwestern corner of the Arabian Peninsula bounded by the Red Sea and the Gulf of Aden. In this work, a 3D Moho depth model of the study area is constructed for the first time by inverting gravity data from the Earth Gravitational Model(EGM2008) using th...  相似文献   

5.
In 1976, the Institute of Physics of the Earth and the Institute of Oceanology, the U.S.S.R. Academy of Sciences, carried out deep seismic soundings in the Barents Sea along a profile 700 km long northeast of Murmansk. A system of reversed and overlapping traveltime curves from 200 to 400 km long has been obtained. The wave correlation was effected by several independent approaches, which identified on the records the refracted and reflected waves from boundaries in the Earth's crust and the upper mantle. Different methods were applied for the solution of the inverse problem: the isochrone method, the intercept-time method, and the iteration method.The use of these different methods gives an indication of the general applicability of the interpretation and of the most reliable elements in the seismic model.All the interpretations and representations of the section positively establish an essentially horizontal inhomogeneity of the Earth's crust in the Barents Sea. On the whole the structure is similar to that of deep sedimentary basins of the East European platform. The thickness of the sedimentary layer varies from 8 to 17 km, the average crustal thickness is about 35–40 km; the velocities in the upper part of the consolidated crust are 5.8–6.4 km/s; in the lower crust they are 6.8–7.0 km/s and higher.  相似文献   

6.
The quantitative distribution of planktonic foraminifera, pteropods, and coccolithophorids, as well as oxygen-isotope variations were analyzed in four deep-sea cores from the Gulf of Aqaba (Elat) and the northernmost Red Sea. The core record covers about 150,000 yr. Detailed stratigraphic subdivision is facilitated by combining all calcareous plankton groups. Time-stratigraphic correlation and dating beyond the radiocarbon range are possible by comparison of the oxygen-isotope curves. During the glacial maximum salinity rose to more than 50‰, while winter temperature of the upper waters fell by at least 4°C compared to the present. The rise in salinity can be accounted for by sea-strait dynamics and lowering of sea level. The Gulf of Aqaba and the Red Sea were continuously connected through the Straits of Tiran, and there is no indication of desiccation during the glacial maximum.  相似文献   

7.
Refraction data taken from ocean bottom seismograph recordings in the western Arafura Sea indicate a continental‐type structure for the region. This structure is characterised by a thin column (2 km) of sediments, with velocities ranging from about to 2 to 4 km s‐1, overlying an essentially two layer crust. The compressional wave velocities in the upper and lower crust are 5.97 and 6.52 km s‐1, respectively, with the boundary between the layers at a depth of 11 km. Very weak mantle‐refracted arrivals with a velocity of about 8.0 km s‐1 were recorded. Large‐amplitude, later arrivals, beginning at distances near 100 and 150 km, have been interpreted to be part of the retrograde branches from the 8.0 and 7.33 km s‐1 layers, respectively. Model studies indicate that a small positive velocity gradient is required between 17 and 30 km, and that the Moho is at a depth of 34 km. A third set of large amplitude, later arrivals starting at a distance near 250 km has been interpreted as most probably multiple refraction‐reflection arrivals from the 5.97 and 6.52 km s‐1 layers. Correlation of this structure with the stratigraphic logs from exploratory oil wells in the Arafura Sea using layer velocities indicates that rocks younger than Jurassic appear to thin towards the east.  相似文献   

8.
An interpretation of deep seismic sounding measurements across the ocean-continent transition of the Red Sea-Saudi Arabian Shield is presented. Using synthetic seismograms based on ray tracing we achieve a good fit to observed traveltimes and some of the characteristic amplitudes of the record sections. Crustal thickness varies along the profile from 15 km in the Red Sea Shelf to 40–45 km beneath the Asir Mountains and the Saudi Arabian Shield. Based on the computation of synthetic seismograms our model requires a velocity inversion in the Red Sea-Arabian Shield transition. High-velocity oceanic mantle material is observed above continental crust and mantle, thereby forming a double-layered Moho. Our results indicate a thick sedimentary basin in the shelf area, and zone of high velocities within the Asir Mountains (probably uplifted lower crust). Prominent secondary low-frequency arrivals are interpreted as multiples.  相似文献   

9.
Plio-Pleistocene microtephra in DSDP site 231, Gulf of Aden   总被引:1,自引:0,他引:1  
We reconstruct a Plio-Pleistocene microscopic tephrostratigraphy for DSDP Site 231 in the Gulf of Aden. Systematic microtephrostratigraphy increases the potential for identifying tephra horizons for regional stratigraphic correlation and age control, as well as providing information about eruptive histories. Microtephra reveal three main pulses of volcanism c. 4.0–3.2 Ma, 2.4 Ma and 1.7–1.3 Ma, corresponding to peaks in volcanic activity recorded in the East African Rift System. Previous studies of DSDP Site 231 have reported six visible tephra horizons (up to 25 cm thick) with geochemical compositions matching East African tuffs. We find 68 additional microtephra horizons through microscopic examination of 1050 samples (each integrating c. 3 ka) in over 200 m of marine sediments. We report the major and minor element geochemical compositions of individual glass shards in six of these microtephra horizons and establish a robust correlation at 168.73 m to the Lokochot Tuff (3.58 Ma), which together with previously identified tephra, provides a tightly constrained chronostratigraphy for the mid Pliocene.  相似文献   

10.
Redox transformations of iron in the surface waters of the Gulf of Aqaba, Red Sea, were studied on recurrent cruises from September 2006 to May 2007. Fe(II) concentrations and oxidation kinetics were measured in situ using luminol chemiluminescence. High Fe(II) concentrations of 200-400 pM were recorded in the autumn, followed by low concentrations of 20-130 pM in the winter-spring. A distinct diurnal pattern in Fe(II) concentrations was observed in the autumn with maximum values coinciding with maximum solar irradiance. In situ and in vitro Fe(II) oxidation rates showed temporal and spatial variability that was accounted for by changes in water temperature and pH. Dissolved oxygen was found to be the dominant oxidant in all but one cruise. In situ photoreduction rates (deduced from oxidation rates) were linearly correlated with solar irradiance during the autumn, suggesting that the reducible iron pool was not exhausted even at the strongest irradiances and that it was kept constant throughout the season. Phytoplankton had no discernible influence on Fe(II) production, consumption, or oxidation kinetics. Given the fast oxidation and photoreduction rates of up to 180 pM min−1, the turn-over rates of iron were estimated at 10-30 per day. Such a dynamic Fe redox cycle probably influences the chemical reactivity and bioavailability of iron and may enhance the solubility of the abundant aerosol dust.  相似文献   

11.
A high heat-flow (∼900 mW m−2) has been observed over a volcanic structure at the Ocean-Continent Transition in the Eastern Gulf of Aden (Oman margin). The anomaly is superposed to a progressive increase of heat-flow across the margin and can be interpreted either by (1) heat refraction, (2) fluid discharge or (3) cooling magma. The two first explanations cannot be ruled out definitely by modelling analysis, but require unlikely thermal conductivity or permeability values. The third one implies that the latest activity of the volcano was about 100 000 years old and therefore continued c. 18 Ma after the break-up of Africa and Arabia. This potential mechanism is consistent with other lines of evidence of post-rifting activity in the Gulf of Aden and could invalidate the conventional assumption that rifted-margins become passive after the break-up of continents.  相似文献   

12.
13.
14.
Numerous ge ological and geophysical investigations within the past decades have shown that the Rhinegraben is the most pronounced segment of an extended continental rift system in Europe. The structure of the upper and lower crust is significantly different from the structure of the adjacent “normal” continental crust.

Two crustal cross-sections across the central and southern part of the Rhinegraben have been constructed based on a new evaluation of seismic refraction and reflection measurements. The most striking features of the structure derived are the existence of a well-developed velocity reversal in the upper crust and of a characteristic cushion-like layer with a compressional velocity of 7.6–7.7 km/sec in the lower crust above a normal mantle with 8.2 km/sec. Immediately below the sialic low-velocity zone in the middle part of the crust, an intermediate layer with lamellar structure and of presumably basic composition could be mapped.

It is interesting to note that the asymmetry of the sedimentary fill in the central Rhinegraben seems to extend down deeper into the upper crust as indicated by the focal depths of earthquakes. The top of the rift “cushion” shows a marked relief which has no obvious relation to the crustal structure above it or the visible rift at the surface.  相似文献   


15.
K. Hinz 《Tectonophysics》1973,20(1-4):295-302
Within the frame of the German-French project ANNA-1970, two long refraction profiles were investigated north and south of the island of Majorca.

For the southern Balearic Basin an oceanic crust can be derived from the travel-time curves consisting of a 4.0 km thick Cenozoic sedimentary layer with: Vp = 2.35 (km/sec) + 0.35 (sec−1) × Z (km) and a 5 km thick layer with: Vp = 4.0 (km/sec) + 0.28 (sec−1) × Z (km)

The transition to the upper mantle takes place at a depth of 12 km. Directly south of Majorca a crustal thickening was measured which may be caused by the process of crustal shortening. P]In the northern Balearic Basin a faulted transitional type of crust has been observed indicating probably an embryonic and juvenile ocean expansion.  相似文献   


16.
Hari Narain 《Tectonophysics》1973,20(1-4):249-260
Studies carried out by various investigators up to 1971 to delineate the Indian crustal structure using body wave travel times, surface wave dispersion and gravity methods are summarised and reviewed. The average crustal thickness is found to be 35–40 km in the Indian peninsular shield, 30–35 km in the Indo Gangetic plains and 60–80 km in the Himalayas and the Tibetan plateau region. The limitations of the various methods used and the errors in the estimation of crustal thickness by them are discussed. As no deep refraction work for crustal studies has been carried out so far in India, this topic is not covered in this study.  相似文献   

17.
Seismic refraction profiles completed in the past twenty years reveal that the top of the basement complex generally lies near sea level in East Antarctica but typically 2 or 3 km below sea level in West Antarctica. Throughout much of East Antarctica the thickness of the layer overlying the basement complex is less than half a kilometer, although a Phanerozoic sequence more than 1 km thick probably underlies the ice at the South Pole. Throughout central West Antarctica, on the other hand, a section one to several kilometers thick generally overlies the basement complex. The observed sedimentary section is no more than one half kilometer thick on either side of the Transantarctic Mountains. Rocks with high seismic velocities typical of the lower continental crust occur within a few kilometers of the surface on both sides of the Transantarctic Mountains. This occurrence lends support to the hypothesis of an abrupt increase in crustal thickness between West and East Antarctica.

In 1969, deep seismic soundings were carried out by the 14th Soviet Antarctic Expedition near the coast of Queen Maud Land. The crustal thickness was found to be about 40 km near the mountains, decreasing to about 30 km near the coast. In the top 15 km of the crust there is a gradual downward increase in P-wave velocity from 6.0 to 6.3 km/sec. The average velocity through the crust is 6.4 km/sec and the measured velocity below the M-discontinuity is 7.9 km/sec.

At the southwestern margin of the Ronne Ice Shelf, near-vertical reflections from the M-discontinuity have been recorded. A mean P-wave velocity of 6 km/sec in the crust was measured, leading to an estimated depth to M of 24 km below sea level.

Seismic surface wave dispersion studies indicate a mean crustal thickness of about 30 km in West Antarctica and about 40 km in East Antarctica. The dispersion data also show that group velocities across East Antarctica are much closer to those along average continental paths than to those across the Canadian shield. The results thus support other indications that central East Antarctica is not a simple crystalline shield.

P′P′-reflections beneath the continent support the existence of a low-velocity channel for P-waves, but show no significant difference in deep structure between Antarctica and other continents.  相似文献   


18.
Eduard Berg   《Tectonophysics》1973,20(1-4):165-182
Knowledge of the crustal structure is still fragmentary, despite the stimulus to geophysical work provided by the earthquake of March 28, 1964 (GMT), the underground nuclear explosion LONGSHOT, and the June 1967 series of earthquakes in the Fairbanks area. The most reliable information about struc ture has come from a combination of seismic explosion-refraction profiles, gravity surveys, and magnetic surveys. This report is a summary of recent investigations, but the results are not adequate to permit unambiguous generalizations about crustal structure.  相似文献   

19.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

20.
Sharm Obhur is a narrow coastal inlet about 10 km long. The maximum depth at the entrance is about 35 m, which decreases gradually towards the head. Nine field trips were conducted for hydrographic survey in the Sharm during April 2015–January 2016 covering pre-summer transition, summer, pre-winter transition and winter seasons. In each trip, eight stations along the central axis of the Sharm were occupied for the measurement of temperature and salinity. In addition, an Acoustic Doppler Current Profiler (ADCP) mooring was deployed near the entrance (at station 2) during 18 February–26April 2015. The vertical structures of temperature and salinity show two distinct layers—a relatively low saline surface layer and a high saline bottom layer. The thermohaline properties increase from the entrance towards the head in all the seasons except for a slight decrease in temperature during December. Near the head, the observed maximum temperature and salinity are 33.22 °C (August) and 40.36 psu (April), respectively, while the observed minimum temperature and salinity are 25.05 °C and 38.97 psu, respectively, during January. The water exchange between the Sharm and the Red Sea shows two-layer structure, with a surface inflow and a deep outflow which is typical of basins where evaporation exceeds precipitation. The pressure gradient generated by the increasing density towards the head pushes the relatively low saline surface water from the Red Sea to the Sharm with a gradient in surface salinity influenced by the evapouration and heat exchange. Near the head, it sinks and returns as a deep water flow. The estimated flushing time of the Sharm varies between 7 and 12 days with an average of 9.5 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号