首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abundance of helium relative to hydrogen is spectroscopically determined in prominences and in the chromosphere by using 1952, 1958, 1962 and 1966 eclipse data. Care is taken in the intensity calibration of emission lines, the self-absorption, and the departure from local thermodynamic equilibrium. We find from the line profiles and intensities of prominences and the chromosphere that the neutral helium lines are emitted in the metal-hydrogen emitting region where the kinetic temperature is low enough, 6000 8000 K, so that only the ionization due to UV radiation from the corona can explain the intensity of neutral helium emission. Also we find that the intensity ratio of Hei 3888.65 to H8 3889.05 increases towards the upper boundaries of prominences and of the chromosphere and that it approaches to a universal limiting value, both in various prominences or in the chromosphere, where it is considered that the ionization of neutral helium and hydrogen is nearly complete. From these facts the helium to hydrogen number ratio is found to be 6.5 ± 1.5%.A new schematic model of the chromosphere is presented where spicules have no hot region of emitting neutral helium lines. Here it is suggested that the kinetic temperature of spicules, 6000 8000 K, would be primarily determined by the radiation temperature of the corona and the transition region beyond the Lyman continuum of hydrogen which happens to be around those temperatures.  相似文献   

2.
Atmospheric expansion through Joule heating by horizontal electric fields   总被引:1,自引:0,他引:1  
Incoherent scatter measurements made along a magnetic field line into aurora during a period of high electric field in the recovery phase of a substorm show (1) considerably increased electron densities well above the normal F-region maximum, and (2) field-aligned plasma drifts that increase with altitude. A model invoking atmospheric expansion through Joule heating by the horizontal electric field driving the auroral electrojet is used to explain the observations. From this study it is concluded that during magnetically disturbed periods (1) Joule heating by the auroral electrojet raises the neutral temperature and density in the auroral zone ionosphere at F-region heights, (2) ionization formed by the aurora is transported upward by the expanding atmosphere, at times producing an appreciable increase in lower exospheric plasma densities on the field lines containing the aurora, and (3) combined satellite, radar, and optical observations during periods of aurora and high electric field could provide measured F-region collision frequencies.  相似文献   

3.
Frances Tang 《Solar physics》1987,107(2):233-237
A survey of two years (1973 and 1979) of quiescent prominences reveals that substantially more (20 and 96% more, respectively, in the two years surveyed) quiescent prominences were formed on neutral lines between bipolar regions than on neutral lines inside bipolar regions.Present prominence models are based on the magnetic field configuration of the neutral lines of single bipolar regions, possibly because it is assumed that most prominences evolved from there. In view our new finding, a new model is needed in which the evolution begins at the boundary of two adjacent bipolar regions.  相似文献   

4.
V. A. Krat 《Solar physics》1967,1(2):191-203
A new model is proposed for the solar chromosphere, which is assumed to be an instable inhomogeneous formation, consisting of numerous elements (filaments), each with different temperature and density. Fluctuations of the magnetic field may give rise to chromospheric turbulence and may also cause the chromospheric inhomogeneities.The chromosphere is suggested to consist of four discrete groups of filaments: (1) metallic filaments where the conditions for the emission of lines of neutral metals are optimal, (2) hydrogenic elements, with optimum conditions for the emission of the Balmer series of hydrogen, (3) helium filaments, with optimum conditions for the appearence of the neutral helium lines, (4) the subcoronal filaments, representing a transition from chromospheric to coronal formations.The metallic filaments may be further subdivided, first into filaments where the emission arises from scattering of photospheric radiation - these emit lines of neutral metals and of some metallic ions (CaII, SrII, and others), and further into filaments where the emission is farther from LTE conditions; the latter filaments are characterized by a somewhat higher electron temperature and by an electron density at least exceeding that of the other elements by an order of 10. Computations of the optimum conditions for the emission of the neutral helium lines were made with the aid of new tables of Sobolev. The helium filaments in the low chromosphere have lower temperatures and are denser than those in the upper chromosphere; for a part they may also be considered as hydrogen filaments. The derivation of the physical parameters of the subcoronal filaments was based on data on the Heii4686 chromospheric line emission and also on rocket observations of the ultraviolet solar spectrum. In order to evaluate the relative distribution of the various filaments between heights of 0 and 5000 km, data on the radio emission of the Sun at 8 mm are also used. Characteristics of the proposed model of the chromosphere are given in Table III and Figure 1.  相似文献   

5.
The effect of frictional heating by means of neutral winds on the ion and electron temperature in the undisturbed ionosphere is studied theoretically by solving a system of basic ionospheric and atmospheric equations. The study shows that both the electron and ion temperatures are increased in the night-time ionosphere through friction. In the region between 150 and 200 km Ti may exceed T6 by as much as 130°. The increase of Ti due to friction amounts to about 100–200°, depending on the atmospheric model employed in calculating the neutral wind velocity. It is illustrated that frictional heating may be very important for the determination of the neutral temperature from measured ion temperature values.  相似文献   

6.
We show that the rotation of coronal holes can be understood in terms of a current-free model of the coronal magnetic field, in which holes are the footpoint locations of open field lines. The coronal field is determined as a function of time by matching its radial component to the photospheric flux distribution, whose evolution is simulated including differential rotation, supergranular diffusion, and meridional flow. We find that ongoing field-line reconnection allows the holes to rotate quasi-rigidly with their outer-coronal extensions, until their boundaries become constrained by the neutral line of the photospheric field as it winds up to form stripes of alternating magnetic polarity. This wind-up may be significantly retarded by a strong axisymmetric field component which forces the neutral line to low latitudes; it is also gradually halted by the cross-latitudinal transport of flux via supergranular diffusion and a poleward bulk flow. We conclude that a strong axisymmetric field component is responsible for the prolonged rigid rotation of large meridional holes during the declining phase of the sunspot cycle, but that diffusion and flow determine the less rigid rotation observed near sunspot maximum, when the holes corotate with their confining polarity stripes.  相似文献   

7.
Tyan Yeh 《Solar physics》1987,107(2):247-262
This paper elucidates the topological relationship between the distribution of polarity neutral lines on the solar surface and the interspersion of closed field lines among open field lines in the corona. The solar surface contains polarity neutral lines, that are spatially nested in a series-and-parallel hierarchy. The corona is partitioned by separatrix surfaces into a corresponding hierarchy of nested magnetic cells. The complexity of the magnetic structure of the corona consists in the embedding of magnetic cells of closed field lines amid open field lines.Polarity neutral lines lie necessarily on the foot surfaces of magnetic cells that are filled with closed field lines. There are two topologically distinct types of magnetic cells of closed field lines: closed and open. Only the open cells are overlain by current sheets. Each of the heliospheric current sheets separates the open field lines encircled by an open cells from the open field lines encircling the cell. Since closed cells have no images in the outer corona, the cell structure of the latter reflects those polarity neutral lines associated with the open cells in the lower corona. Accordingly, there are fewer heliospheric current sheets, as revealed by magnetic neutral lines on the source surface, in interplanetary space than polarity neutral lines on the solar surface.  相似文献   

8.
Zirconium (Zr), together with strontium and yttrium, is an important element in the understanding of the Galactic nucleosynthesis. In fact, the triad Sr‐Y‐Zr constitutes the first peak of s‐process elements. Despite its general relevance not many studies of the solar abundance of Zr were conducted. We derive the zirconium abundance in the solar photosphere with the same CO5BOLD hydrodynamical model of the solar atmosphere that we previously used to investigate the abundances of C‐N‐O. We review the zirconium lines available in the observed solar spectra and select a sample of lines to determine the zirconium abundance, considering lines of neutral and singly ionised zirconium. We apply different line profile fitting strategies for a reliable analysis of Zr lines that are blended by lines of other elements. The abundance obtained from lines of neutral zirconium is very uncertain because these lines are commonly blended and weak in the solar spectrum. However, we believe that some lines of ionised zirconium are reliable abundance indicators. Restricting the set to Zr II lines, from the CO5BOLD 3D model atmosphere we derive A (Zr) = 2.62 ± 0.06, where the quoted error is the RMS line‐to‐line scatter (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The height distribution of the kinetic temperature of solar H spicules is determined using the widths of optically thin hydrogen and metallic lines obtained at the total solar eclipse of 1966: the temperature was found to be 8600 K at the height of 2200 km measured from the radial optical depth of unity at 5000 Å, and to decrease to a minimum of 5000 K ± 180 K at 3200 km, and to increase again to 8200 K at 6000 km.The height distribution of the non-thermal turbulent velocity is also determined and is shown to be consistent with the neutral helium line widths emitted at the kinetic temperature of 5000–8000 K.  相似文献   

10.
A helium model atom that includes 55 He I levels and the He II ground level in a detailed consideration has been constructed to investigate the departures from local thermodynamic equilibrium (LTE) in the formation of helium lines in stars with effective temperatures from 9300 to 20 000 K. For eight stars with effective temperatures from 9380 to 17 500 K the helium abundance has been determined from He I lines. The neutral helium lines in B stars cannot be described under LTE conditions using the common helium abundance. Furthermore, the profiles of several lines cannot be described in terms of the LTE approach at all. In contrast, a satisfactory coincidence of the theoretical and observed profiles for the entire set of helium lines observed in a wide spectral range can be achieved using virtually the same helium abundance by taking into account the departures from LTE. The LTE and non-LTE helium abundances can differ by up to a factor of 2–3, depending on the stellar parameters. The higher the stellar temperature, the stronger the departures from LTE. As a rule, the lines in the blue spectral region are less affected by non- LTE effects. In the atmospheres of six stars the helium abundance corresponds, within the error limits, to the present-day solar value. A helium underabundance is observed in the atmospheres of Sirius and HD 72660 classified as hot Am stars.  相似文献   

11.
The He II → He I recombination of primordial helium plasma (z ? 1500–3000) is considered in terms of the standard cosmological model. This process affects the formation of cosmic microwave background anisotropy and spectral distortions. We investigate the effect of neutral hydrogen on the He II → He I recombination kinetics with partial and complete redistributions of radiation in frequency in the He I resonance lines. We show that to properly compute the He II → He I recombination kinetics, it is important to take into account not only the wings in the absorption and emission profiles of the He I resonance lines, but also the mechanism of the redistribution of resonance photons in frequency. Thus, for example, the relative difference in the numbers of free electrons for the model using Doppler absorption and emission profiles and the model using a partial redistribution in frequency is 1–1.3% for the epoch z = 1770–1920. The relative difference in the numbers of free electrons for the model using a partial redistribution in frequency and the model using a complete redistribution in frequency is 1–3.8% for the epoch z = 1750–2350.  相似文献   

12.
We have studied induction magnetometer data recorded at College, Alaska for the occurrence of ULF emissions associated with sudden impulses (SI). In this study we surveyed three years of data (1977–1979 inclusively) and found that for the 76 SI's reported in IAGA bulletins, 32 were found to be followed by ULF emissions in the College data. While the 76 SI's occurred at all local times those which were associated with ULF emissions at College peaked in occurrence near local noon. We have attempted to interpret these observations in terms of a simple model based upon a Chapman-Ferraro double-dipole model of the magnetosphere. Using this model an estimate of field compressions associated with SI's can be made and from this the increases in the temperature anisotropy and plasma beta may be estimated. This simple model predicts maximum growth rate near noon on high latitude field lines, just inside the magnetopause. Further, inspection of growth rate curves for varying plasma anisotropy and beta leads us to the conclusion that an increase in anisotropy is the primary cause of the ULF emissions observed.  相似文献   

13.
B. C. Low's study on non-linear force-free magnetic field is extended in an effort to explain the preflare low-lying magnetic loops observed by Skylab. Using Low's method of analytical continuation, a revised boundary-value problem is solved analytically. It is shown that high magnetic loops will evolve into low-lying ones when both the shear angle between field line and the neutral line increases with time and the foot-points of the field lines close upon the neutral line. The density, temperature and electric current density are high in these lowlying loops, thus providing conditions for flare (especially proton flare) build-up.  相似文献   

14.
The weakening of EUV line emission due to continuum absorptions of neutral hydrogen and neutral helium is investigated to examine its wavelength-dependence. After convolving the intensities predicted from multilevel calculations over an instrumental profile, we found a systematic, linear weakening for lines shortward of 912 Å, which can be attributed to Lyman continuum absorption in the cool chromospheric cloud. The degree of the weakening at the quiet Sun seems to be constant in the temperature range of 4.3 < log T < 5.4. We also find that the lines shortward of 504 Å are somewhat weakened by He i continuum absorption. From the comparison of both weakenings the temperature of the absorber is estimated to be rather low (T e 7 × 103 K).  相似文献   

15.
Daily maps of magnetic neutral lines derived from H observations have been superimposed on solar X-ray images for the period 15–30 June 1973. Nearly all X-ray-emitting structures consist of systems of arches covering chromospheric neutral lines. Areas of low emissivity, coronal holes, appear as the areas between arcades of arches. The presence of a coronal hole, therefore, is determined by the spacing between neutral lines and the scale of the arches over those neutral lines. X-ray emissivity on the solar disk extends from neutral lines in proportion to the vertical and horizontal scale of the arches over those neutral lines. Increasing scale of arches corresponds with increasing age of magnetic fields associated with the neutral line. All X-ray filament cavities coincided with neutral lines, but filaments appeared under cavities for only part of their length and for only a fraction of the disk passage.A substantial portion of this work was done while a visitor at American Science and Engineering, Cambridge, Mass. 02139, U.S.A.  相似文献   

16.
Eclipse observations of total line intensities (Cr i: two groups of lines; Ti ii, Fe ii and Cr ii: two lines each) are interpreted in terms of departures from LTE. The same method as described in Paper III (van Dessel, 1974) is used. The HSRA model is used to compute the LTE populations. A distribution of NLTE-coefficients is obtained for each group of lines. The lines discussed in the present paper are seen to remain in emission down to some 1000 km inside the limb. As a consequence, interpretation is less simple than for the Fe i lines (Paper III); population and excitation temperatures are found to be rather divergent from Holweger's temperature, which was used for a first approximation.  相似文献   

17.
We present a high signal-to-noise grating spectrum between 43-196.9 μm of the Orion molecular cloud towards the massive star-forming region IRc2, obtained with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). CO lines up to J=20-19 have been detected around Orion-IRc2, while in the central position higher quantum numbers have been found. Lines of the 13CO isotopic species have also been observed in several directions. In addition, high quality LWS-FP observations of some CO lines have been performed towards IRc2. The data analysis suggest that at least two regions of Orion-IRc2 contribute to the observed CO emission: the ridge, responsible of the spatial extension, and the plateau, dominating the line flux observed towards the center of the map. CO emission through the Orion molecular cloud has been studied in terms of temperature, column density and H2 volume density, using and Large Velocity Gradient (LVG) model. We find that the flux ratio of the several CO lines can not be explained in terms of an homogeneous source, but a gradient in temperature and density must be involved. Besides the CO lines, several molecular and fine-structure atomic lines have been detected in all observed positions. A detailed discussion of other molecular species rather than CO (H2O, OH...) can be found in the contribution by Cernicharo et al (1998). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Finn  G. D.  Jefferies  J. T. 《Solar physics》1974,34(1):57-75

A non-LTE formulation is given for the transfer of radiation in the autoionizing lines of neutral aluminum at λ1932 and λ1936 through both the Bilderberg and Harvard-Smithsonian model atmospheres. Numerical solutions for the common source function of these lines and their theoretical line profiles are calculated and compared with the corresponding LTE profiles. Our results show that the non-LTE profiles provide a better match with the observations. They also indicate that the continuous opacity of the standard solar models should be increased in this wavelength region if the center-limb variations of observed and theoretical profiles of these lines are to be in reasonable agreement.

  相似文献   

19.
The asymmetry of 11 absorption lines of neutral iron was determined from observations made with the double-pass system on the horizontal solar telescope Asu-5. An attempt was made to interpret this asymmetry in terms of progressive sound waves. The value of asymmetry computed theoretically was shown to be on average only 20 % of the observed value.  相似文献   

20.
X-ray emissions from Young Stellar Objects (YSO) are detected by many X-ray missions that are providing important information about their properties. However, their emission processes are not fully understood. In this research note, we propose a model for the generation of emissions from a YSO on the basis of a simple interaction between the YSO and its surrounding circumstellar accretion disc containing neutral gas and charged dust. It is assumed that the YSO has a weak dipole type magnetic field and its field lines are threaded into the circumstellar disc. Considering the motion of ions and charged dust particles in the presence of neutral gas, we show that the sheared dust-neutral gas velocities can lead to a current along the direction of ambient magnetic field. Magnitude of this current can become large and is capable of generating an electric field along the magnetic field lines. It is shown how the particles can gain energy up to MeV range and above, which can produce high-energy radiations from the YSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号