首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lower Zone of the Eastern Bushveld Complex in the Olifants River Trough   总被引:4,自引:4,他引:4  
The Lower Zone of the Eastern Bushveld Complex in the OlifantsRiver Trough reaches 1584 m in thickness and is divisible intoBasal subzone, Lower Bronzitite, Harzburgite subzone, and UpperBronzitite. The Lower Zone is directly and conformably overlainby the Critical Zone; there is no break between the two. The principal cumulus minerals in the Lower Zone are bronziteand olivine. Chromite is an accessory cumulus mineral in peridotites,especially in the Harzburgite subzone, and cumulus plagioclaseoccurs in two thin units in the Basal subzone. Elsewhere plagioclase,with or without chromian augite, is postcumulus in origin. Electron microprobe analyses show that the range in En and Focontents of bronzite and olivine, respectively, is only a fewper cent over the entire rock sequence. Highest values of bothare found in the Harzburgite subzone. From modal and mineralanalyses the bulk composition of the Lower Zone (wt. per cent)is calculated as SiO2—53.94, TiO2—0.08, Cr2O3—0.55,V2O3—0.01, Al2O3—2.64, NiO—0.09, FeO (totalFe as FeO)—9.62, MnO—0.20, MgO—31.72, CaO—1.48,K2O—0.1, Na2O—0.13. This composition is unlike thatof any magma type, indicating that the Lower Zone is indeeda pile of crystal cumulates. From the data for the Lower Zone, together with available datafor the Critical, Main, and Upper Zones, the average MgO contentof the Eastern Bushveld Complex is calculated as about 13 percent, the Cr content as in excess of 1000 ppm. Even if the Complexformed from a single body of magma, the magma cannot have beentholeiitic, but rather olivine tholeiitic or picritic. An hypothesis of evolution of the Lower Zone is presented. Shiftsin total pressure are inferred to have been a major factor inproducing the succession of rock types and in producing theextraordinarily persistent chromitites of the overlying CriticalZone. It is suggested that the extraordinary richness in chromiteof the Bushveld is related to its formation not from tholeiiticmagma, but from more Mg-rich, chromium-rich magma drawn froma deeper level of the mantle than that which has yielded thetholeiitic basalts.  相似文献   

2.
The Late Archaean-Early Proterozoic Transvaal Sequence is preserved within the Transvaal, Kanye and Griqualand West basins, with the 2050 Ma Bushveld Complex intrusive into the upper portion of the succession within the Transvaal basin. Both Transvaal and Bushveld rocks are extensively mineralized, the former containing large deposits of iron, manganese, asbestos, andalusite, gold, fluorine, lead, zinc and tin ores, and the latter some of the World's major occurrences of PGE, chromium and vanadium ores. Transvaal sedimentation began with thin, predominantly clastic sedimentary rocks (Black Reef-Vryburg Formations) which grade up into a thick package of carbonate rocks and BIF (Chuniespoort-Ghaap-Taupone Groups). These lithologies reflect a carbonate-BIF platform sequence which covered much of the Kaapvaal craton, in reaction to thermal subsidence above Ventersdorp-aged rift-related fault systems. An erosional hiatus was followed by deposition of the clastic sedimentary rocks and volcanics of the Pretoria-Postmasburg-Segwagwa Groups within the three basins, under largely closed-basin conditions. An uppermost predominantly volcanic succession (Rooiberg Group-Loskop Formation) is restricted to the Transvaal basin. A common continental rift setting is thought to have controlled Pretoria Group sedimentation, Rooiberg volcanism and the intrusion of the mafic rocks of the Rustenburg Layered Suite of the Bushveld Complex. The dipping sheets of the Rustenburg magmas cut across the upper Pretoria Group stratigraphy and lifted up the Rooiberg lithologies to form the roof to the complex. Subsequent granitic rocks of the Lebowa and Rashoop Suites of the Bushveld Complex intruded both upper Rustenburg rocks and the Rooiberg felsites.  相似文献   

3.
The Xinjie layered intrusion is one of a number of major ultramafic-mafic bodies hosting Fe-Ti-V deposits and Cu-Ni-PGE sulfide deposits in the Pan-Xi (Panzhihua-Xichang) area of the Sichuan Province, SW China. The Xinjie ultramafic-mafic layered intrusion, genetically related to the Permian plume-related Emeishan flood basalts, consists of three lithological cycles, each representing a sequence from ultramafic to mafic-felsic composition. The basal part of the intrusion is composed of three lithological units, namely, the Marginal Unit (MU), Peridotite Unit (PeU) and Pyroxenite Unit (PyU). In the present study, three major PGE-mineralised Cu-Ni sulfide layers were discovered within the Marginal and Pyroxenite Units. The major base-metal sulfides (BMS) comprise chalcopyrite, pyrrhotite, and pentlandite. Detailed microscopic and microprobe analyses revealed the presence of the sperrylite and Pd-Pt-Bi-Te minerals (merenskyite, moncheite, and michenerite). These PGMs are commonly associated with the BMS, or magnetite coexisting with BMS in the PGE-enriched layers. The 1:1 substitution between Pt and Pd, as well as between Te and Bi, confirms the complete solid-solution series between moncheite and merenskyite. The textural association of the PGMs with BMS and Fe-Ti oxides (magnetite) suggests that the PGMs may have crystallised slightly later than the hosting magnetite and BMS. The formation of magnetite may have played an important role in producing the sulfur-saturated melt and the PGEs thus concentrated in the sulfide liquid during the crystallisation history. It is therefore suggested that the Cu-Ni-PGE-bearing layers in the basal part of the Xinjie intrusion were generated by magma evolution processes.  相似文献   

4.
Summary ?Gabbro Akarem is a Late-Precambrian concentrically-zoned mafic-ultramafic intrusion located along a major fracture zone trending NE-SW in the Eastern Desert of Egypt. It intruded low-grade metasedimentary rocks, and has a contact metamorphic aureole a few meters wide. This intrusion comprises a dunite core enveloped by clinopyroxene hornblende-bearing lherzolite, olivine-hornblende clinopyroxenite and plagioclase hornblendite. The contacts between the rock types are gradational. They have cumulate textures and the observed crystallization sequence is: olivine ( + cotectic spinel)-orthopyroxene (Opx)-clinopyroxene (Cpx)-hornblende. Mafic minerals from the core of the intrusion are highly magnesian, a consistent increase in the Mg# of olivine (from 69 to 87), Opx (from 62 to 89), Cpx (from 85 to 96) and hornblends (from 62 to 88) is observed from the mafic to the ultramafic units. Spinel has a wide range of Cr# and Mg# ratios. The various rock units define a fractionation trend. The mafic rocks are slightly LREE-enriched relative to the ultramafic units and chondrites. In many aspects, the Gabbro Akarem intrusion is similar to Alaskan-type complexes. Mineralogical and geochemical data suggest that the different rock units were fractionated from a hydrous picritic magma with no apparent crustal contamination. A petrogenetic model involving a rapid rise of hydrous mantle magma along a major fracture zone is proposed. Extensive fractional crystallization led to magma chamber stratification; internal circulation and strong vertical stretching up the center of the rapidly rising diapir increased the rate of magma ascent towards the core. Due to cooling and high viscosity the marginal mafic magma was partly crystallized while the unsolidified core ultramafic magma continued its ascent. As a result, different mineral phases crystallized at different pressure-temperature paths. Field relations, geophysical, petrological and experimental studies support this model which explains many of the characteristics of the Gabbro Akarem and some other concentrically zoned mafic-ultramafic intrusions. Received April 24, 2001; revised version accepted November 20, 2001  相似文献   

5.
The Rum Layered Suite (NW Scotland) is generally regarded as one of a handful of classic examples of open‐system layered mafic‐ultramafic intrusions, or ‘fossilized’ basaltic magma chambers, world‐wide. The eastern portion of the Rum intrusion is constructed of sixteen repeated, coupled, peridotite–troctolite units. Each major cyclic unit has been linked to a major magma replenishment event, with repeated settling out of ‘crops’ of olivine and plagioclase crystals to form the cumulate rocks. However, there are variations in the lithological succession that complicate this oversimplified model, including the presence of chromitite (>60 vol. percent Cr‐spinel) seams. The ~2 mm thick chromitite seams host significant platinum‐group element (PGE) enrichment (e.g. ~2 ppm Pt) and likely formed in situ, i.e. at the crystal mush–magma interface. Given that the bulk of the world's exploited PGE come from a layered intrusion that bears remarkable structural and lithological similarities to Rum, the Bushveld Complex (South Africa), comparisons between these intrusions raise intriguing implications for precious metal mineralization in layered intrusions.  相似文献   

6.
We report the first Nd isotopic data on the cumulate rocks of the Bushveld Complex, South Africa. We analysed 17 whole-rock samples covering 4700 m of stratigraphy through the Lower, Critical and Main Zones of the intrusion at Union Section, north-western Bushveld Complex. The basal ultramafic portions of the complex have markedly higher ɛNd(T) (−5.3 to −6.0) than the gabbronoritic Main Zone (ɛNd(T) −6.4 to −7.9). The rocks of the Upper Critical Zone have intermediate values. These results are in agreement with new Nd isotope data on marginal rocks and sills in the floor of the complex that are generally interpreted as representing chilled parental magmas, and with published Sr isotopic data, all of which show a larger crustal component in the upper part of the intrusion. In contrast, the concentrations of many highly incompatible trace elements are decoupled from the isotopic signatures. The basal portions of the complex have higher ratios of incompatible to compatible trace elements than the upper portions. The variations of isotopic and trace-element compositions are interpreted in terms of a change in the nature of the crustal material that contaminated Bushveld magmas. Those magmas that fed into the lower part of the complex had assimilated a relatively small amount of incompatible trace-element-rich partial melt of upper crust, whereas magmas parental to the upper part of the complex had assimilated a higher proportion of the incompatible trace-element-poor residue of partial melting. Received: 5 October 1999 / Accepted: 7 July 2000  相似文献   

7.
新疆图拉尔根铜镍钴矿产于康古儿塔格—黄山韧性剪切带的北东段,是由硫化物深部熔离成矿为主兼就地熔离、热液叠加成矿多重作用形成的半隐伏矿床。1号岩体以全岩矿化为特征,可分为4个岩相:角闪橄榄岩、辉石橄榄岩、角闪辉石岩、辉长岩。岩性具有单期岩浆多次脉动上涌成矿特征。岩体m/f值为3.1~4.8,属于铁质超镁铁岩类,且具有低钛、低碱、低Al2O3特征,与黄山—镜儿泉镁铁质-超镁铁质杂岩带岩石化学特征相似。由稀土元素配分曲线和微量元素、过渡族元素蛛网图可知1号和2号岩体具有同源性,并具有互补性,预示2号岩体深部成矿潜力很大,虽然其地表辉长岩矿化微弱。根据横穿1号和2号岩体的大地电磁测深剖面图可以看出两个岩体在深部具有同一个岩浆通道,也验证了两岩体属于同一岩浆来源。较低的La/Sm(<2)和Th/Ta值(4.6)表明成矿岩浆为地幔来源,岩体就位时很少受到地壳的混染。  相似文献   

8.
The northern limb of the Bushveld Complex, South Africa contains a number of occurrences of platinum-group element (PGE) mineralisation within Main Zone rocks, whereas the rest of the complex has PGE-depleted Main Zone units. On the farm Moorddrift, Cu–Ni–PGE sulphide mineralisation is hosted within the Upper Main Zone in a layered package of gabbronorites, mottled anorthosites and thin pyroxenites. Our observations indicate that a 10-m-thick, ‘reef-style’ package of mineralisation has been extensively ‘disturbed’, forming a mega breccia which in some localities may distribute mineralised rocks over intersections of over 300 m. The sulphides are made up of pyrrhotite, pentlandite and chalcopyrite, heavily altered around their margins and overprinted by secondary pyrite. Platinum-group mineral assemblages typical of primary magmatic deposits, with Pt and Pd tellurides and sperrylite, are present in the ‘reef-style’ package, whereas there is a decrease in tellurides and an increase in antimonides in the ‘disturbed’ package, interpreted to be related to hydrothermal recrystallization during veining and brecciation. Sulphur isotopes show that all sulphides within the mineralised package on Moorddrift have a crustal signature consistent with local country rock sediments of the Transvaal Supergroup. We interpret the mineralisation at Moorddrift as a primary sulphide reef, likely produced as a result of the mixing of crustally contaminated magmas in the Upper Main Zone, which has been locally disrupted post-crystallisation. At present, there are no firm links between Moorddrift and the other known PGE occurrences in the Main Zone at the Aurora and Waterberg projects, although the stratigraphic position of all may be similar and thus intriguing. Nonetheless, they do demonstrate that the Main Zone of the northern limb of the Bushveld Complex, unlike the eastern and western limbs, can be considered a fertile unit for potential PGE mineralisation.  相似文献   

9.
The stratigraphy and geological position of the eastern compartment of the Bushveld Complex are described. A mechanical model for the initiation and growth of the eastern compartment of the Bushveld intrusion has been developed using thin elastic plate theory, assuming linked conical magma chambers. It is shown that the contribution to the pressure at the base of a cell by the restitutional force exerted by the roof of Rooiberg felsites is 104 times as great as that of the layers of host in the cone. Both are minimal compared to the lithostatic pressure exerted by the magma pile. Roof deformation is therefore seen to be a more important process than sagging of the floor during intrusion—a feature which probably occurred during cooling, solidification and isostatic readjustment of the area.A stratigraphie model is proposed in which the intrusion of basic rocks into the Transvaal sequence is discussed in the light of continuous basin subsidence. Early submarine sedimentation in an irregularly-floored basin some 620 km in diameter situated on the Archaean craton gave rise to a 7.7 km thick sedimentary pile, to which was added some 7 km of subaerial basalts and felsites. Depression of the floor of the basin into the regime of maximum horizontal compression induced favourable conditions for the intrusion of a total of 2.5 km of diabase sills which further assisted the subsidence. The 9 km thick Bushveld Complex was intruded into the basal sections at points along a 010° trend in a regime characterised by shear failure. Early magma influxes gave rise to a laminated marginal zone forming a shallow cone, with associated sill activity, whilst continued later influxes filled the conical cell, transgressed the floor and uparched the roof. Partial melting in the regions beneath the Complex, exacerbated by continued crustal depression, gave rise to the late Bushveld granites.  相似文献   

10.
金川含矿超镁铁岩侵入体侵位序列   总被引:1,自引:0,他引:1       下载免费PDF全文
金川铜镍硫化物矿床是世界第三大镍矿床,但其成岩成矿过程及侵位机制一直存在较大争论。根据金川含矿超镁铁岩岩石学特征、穿插关系、矿物成分及地球化学特征,提出了金川含矿岩体5阶段的成岩、成矿侵位序列,它们分别是:(1)超镁铁质岩浆侵位;(2)浸染状硫化物矿浆侵位;(3)网状硫化物矿浆侵位;(4)块状硫化物矿浆侵位;(5)铂钯富集体侵位。金川铜镍(铂)矿床中Ni,Cu,Pt,Pd,Rh,Ir,Ru,及Co与S呈正相关关系;当ω(S)=5%~15%时,铂族元素发生明显的分离作用,铂族金属主要富集在铂钯富集体中。铂钯富集体是硫化物矿浆经单硫化物固溶体结晶后的残余熔浆;块状矿石是单硫化物固溶体堆积而成的产物。金川铜镍硫化物矿床的侵位机制为岩墙型岩浆通道。  相似文献   

11.
Halogen-bearing minerals, especially apatite, are minor butubiquitous phases throughout the Bushveld Complex. Interstitialapatite is near end-member chlorapatite below the Merensky reef(Lower and Critical Zones) and has increasingly fluorian compositionswith increasing structural height above the reef (Main and UpperZones). Cl/F variations in biotite are more limited owing tocrystal-chemical controls on halogen substitution, but are alsoconsistent with a decrease in the Cl/F ratio with structuralheight in the complex. A detailed section of the upper LowerZone to the Critical Zone is characterized by an upward decreasein sulfide mode from 0·01–0·1% to trace–0·001%.Cu tends to correlate with other incompatible elements in mostsamples, whereas the platinum-group elements (PGE) can behaveindependently, particularly in the Critical Zone. The decreasein the Cl/F ratio of apatite in the Main Zone is associatedwith a shift to more radiogenic Sr isotopic signature, implyingthat the unusually Cl-rich Lower and Critical Zones are notdue to assimilation of crustal rocks. Nor is the Main Zone moreCl rich where it onlaps the country rocks of the floor, suggestinglittle if any Cl was introduced by infiltrating country rockfluids. Instead, the results are consistent with other studiesthat suggest Bushveld volatile components are largely magmatic.This is also supported by apatite–biotite geothermometry,which gives typical equilibrium temperatures of 750°C. Theincreasingly fluorian apatite with height in the Upper Zonecan be explained by volatile saturation and exsolved a Cl-richvolatile phase. The high Cl/F ratio inferred for the Lower andCritical Zone magma(s) and the evidence for volatile saturationduring crystallization of the Upper Zone indicate the Lowerand Critical Zones magma(s) were unusually volatile rich andcould easily have separated a Cl-rich fluid phase during solidificationof the interstitial liquid. The stratigraphic distribution ofS, Cu and the PGE in the Critical Zone cannot readily be explainedeither by precipitation of sulfide as a cotectic phase or asa function of trapped liquid abundance. Evidence from potholesand the PGE-rich Driekop pipe of the Bushveld Complex implythat migrating Cl-rich fluids mobilized the base and preciousmetal sulfides. We suggest that the distribution of sulfideminerals and the chalcophile elements in the Lower and CriticalZones reflects a general process of vapor refining and chromatographicseparation of these elements during the evolution and migrationof a metalliferous, Cl-rich fluid phase. KEY WORDS: Bushveld Complex; chlorine; platinum-group elements; layered intrusions  相似文献   

12.
The Lower Proterozoic Salt Lick Creek intrusion, East Kimberley region, Western Australia, is a layered intrusion divisible into two well-defined zones, the Basal and Main Zones, whose combined stratigraphic thickness, as now exposed, is approximately 1000 metres. The Basal Zone, 360 metres thick, contains three members, two of which (Members 1 and 3) are dominated by olivine, plagioclase cumulates (including harrisites and allivalites); Member 2, near the middle of the Basal Zone, consists substantially of more olivine-rich cumulates, including plagioclase-bearing dunites. The Main Zone, commencing with Member 4 plagioclase, orthopyroxene cumulates, is composed largely of anorthositic cumulates of Member 5. Mild but nevertheless measurable rhythmic layering is superimposed upon the three members comprising the Basal Zone. Electron probe microanalyses of the primary phases across some 500 metres of cumulates indicate limited cryptic variation with stratigraphic height. Olivine ranges in composition from Fo81 to Fo84, orthopyroxene from Ca2Mg83Fe15 to Ca2Mg78Fe20, clinopyroxene from Ca48Mg46Fe6 to Ca44Mg48Fe8, and plagioclase from An84 to An88 but mineral compositions are not a simple function of stratigraphic height. It is inferred that the parental magma(s) was high-alumina mafic, intrinsically subalkaline, strongly olivine- and plagioclase-normative and in all likelihood tholeiitic in its affinities. The olivine-free cumulates of the Main Zone display a higher level of normative saturation than the cumulates of the Basal Zone but mineral and host rock chemistries, particularly 100 Mg/ (Mg+Fe2+) atomic ratios, are not favourable to proposals which would relate the origin of the Main Zone or the several members of the intrusion to the differentiation of a single pool of magma. It is suggested that the Main Zone, at least, derived from a separate pulse of relatively more saturated magma and that the lateral replenishment by more or less undifferentiated magma was also a fundamental and critical factor in the genesis of the Basal Zone cumulates.  相似文献   

13.
R. Grant Cawthorn   《Lithos》2007,95(3-4):381-398
Large layered intrusions are almost certainly periodically replenished during their protracted cooling and crystallization. The exact composition(s) of the replenishing magma(s) in the case of the Bushveld Complex, South Africa, has been debated, mainly on the basis of major element composition and likely crystallization sequences. The intrusion is dominated by orthopyroxene and plagioclase, and so their Cr and Sr contents, and likely partition coefficient values, can be used to re-investigate the appropriateness of the various proposed parental magmas. One magma type, with about 12% MgO, 1000 ppm Cr and 180 ppm Sr, can explain the genesis of the entire Lower and Critical Zones. A number of other magma compositions proposed to produce the Critical Zone fail to match these trace-element constraints by being too poor in Cr. A fundamentally different magma type was added at the base of the Main Zone, but none of the proposed compositions is consistent with the trace-element requirements. Specifically, the Cr contents are higher than predicted from pyroxene compositions. A further geological constraint is demonstrated from a consideration of the Cr budget at this level. There is an abrupt decrease from about 0.4% to 0.1% Cr2O3 in orthopyroxene across this Critical Zone–Main Zone transition. No realistic proportions of mixing between the residual magma at the top of the Critical Zone and any proposed added magma composition can have produced a composition that could have crystallized these low-Cr orthopyroxenes. Instead, it is suggested that the resident magma from the Upper Critical Zone was expelled from the chamber, possibly as sills into the country rocks, during influx of a dense, differentiated magma. Near the level of the Pyroxenite Marker in the Main Zone, there is further addition of a ferrobasaltic magma, with 6% MgO, 111 ppm Cr and 350 ppm Sr, that is consistent with the geochemical requirements.  相似文献   

14.
The Kalka Intrusion, central Australia has a 5000 m-thick layered sequence comprising Pyroxenite, Norite and Anorthosite Zones; an Olivine Gabbro Zone is enclosed by, and has a facies relationship with, the Norite Zone. Contamination is evidenced by high initial 87Sr/86Sr ratios ( 0.708) in the lower four-fifths of the intrusion, and resulted in pyroxenite rather than peridotite as a basal crystal accumulate. After an early phase of erratic buildup in contamination due to assimilation of ragged granulite wall-rock, armouring of the walls and mixing produced an homogeneous Norite Zone (threshold) magma body crystallising opx-cpx-plag. Within the succeeding 3500 m of section plagioclase An values have a general decline up sequence (An74-60-feldspar threshold) with superimposed short term digressions to more calcic compositions. Initial 87Sr/86Sr ratios also fall very gradually (0.7081-0.7078 — isotopic threshold) with transient fluctuations to distinctly lower values. Maxima in plagioclase An contents and 87Sr/ 86Sr minima may be correlated with the spasmodic appearance of olivine and pronounced lithological variation. Such features are explained by the ponding of fresh bodies of uncontaminated magma on the floor of the chamber; these formed a hybrid with threshold magma that temporarily dominated crystallisation thereby perturbing plagioclase and isotopic compositions; eventually, mixing of the hybrid into the overlying threshold magma returned crystallisation to its initial state. The facies-controlled Olivine Gabbro Zone is the physical expression of ponded basal hybrid magmas. The onset of the Anorthosite Zone is marked by a pronounced decline in 87Sr/86Sr ratios to around 0.705 registering a major influx of new magma. In this instance the new magma dominated the system and a change to plagioclase as the dominant liquidus phase indicates a drastic change in input magma composition. The evolution of Kalka was determined by an interplay of crystal fractionation, fresh magma pulses, and magma mixing, with the latter effects producing both increases and decreases in plagioclase An contents; the complete process can only be revealed by combined mineral composition and isotopic data.  相似文献   

15.
16.
In the present study, we document the nature of contact-style platinum-group element (PGE) mineralization along >100 km of strike in the northern lobe of the Bushveld Complex. New data from the farm Rooipoort are compared to existing data from the farms Townlands, Drenthe, and Nonnenwerth. The data indicate that the nature of the contact-style mineralization shows considerable variation along strike. In the southernmost portion of the northern Bushveld, on Rooipoort and adjoining farms, the mineralized sequence reaches a thickness of 700 m. Varied-textured gabbronorites are the most common rock type. Anorthosites and pyroxenites are less common. Chromitite stringers and xenoliths of calcsilicate and shale are largely confined to the lower part of the sequence. Layering is locally prominent and shows considerable lateral continuity. Disseminated sulfides may reach ca. 3 modal % and tend to be concentrated in chromitites and melanorites. Geochemistry indicates that the rocks can be correlated with the Upper Critical Zone. This model is supported by the fact that, in a down-dip direction, the mineralized rocks transform into the UG2-Merensky Reef interval. Between Townlands and Drenthe, the contact-mineralized sequence is thinner (up to ca. 400 m) than in the South. Chromitite stringers occur only sporadically, but ultramafic rocks (pyroxenites, serpentinites, and peridotites) are common. Xenoliths of calcsilicate, shale, and iron formation are abundant indicating significant assimilation of the floor rocks. Sulfides may locally form decimeter- to meter-sized massive lenses. PGE grades tend to be higher than elsewhere in the northern Bushveld. The compositions of the rocks show both Upper Critical Zone and Main Zone characteristics. At Nonnenwerth, the mineralized interval is up to ca. 400 m thick. It consists largely of varied-textured gabbronorites, with minor amounts of igneous ultramafic rocks and locally abundant and large xenoliths of calcsilicate. Layering is mostly weakly defined and discontinuous. Disseminated sulfides (<ca. 3 modal %) occur throughout much of the sequence. Geochemistry indicates that the rocks crystallized mainly from tholeiitic magma and thus have a Main Zone signature. The implication of our findings is that contact-style PGE mineralization in the northern lobe of the Bushveld Complex cannot be correlated with specific stratigraphic units or magma types, but that it formed in response to several different processes. At all localities, the magmas were contaminated with the floor rocks. Contamination with shale led to the addition of external sulfur to the magma, whereas contamination with dolomite may have oxidized the magma and lowered its sulfur solubility. In addition to contamination, some of the magmas, notably those of Upper Critical Zone lineage present at the south-central localities, contained entrained sulfides, which precipitated during cooling and crystallization.  相似文献   

17.
The Potato River intrusion is a Keweenawan (1100 Ma) mafic plutonemplaced in Keweenawan volcanics and earlier Proterozoic metasedimentaryrocks along the southeastern flank of the Lake Superior syncline.It comprises the following lithostratigraphic zones: a thinto absent Border zone of altered olivine gabbro; a Lower zoneof olivine gabbro; a Picritic zone of picrite and troctolite;a Middle zone of olivine gabbro and leucogabbro; an Upper zoneof quartz leucogabbro and ferrogabbro; and a Roof zone of granophyricand granitic rocks. Fractional crystallization is evident fromcompositional changes in the rocks and cumulus minerals withstratigraphic height. Elements concentrated in the cumulus mineralsolivine and plagioclase (Mg, Fe2+, Al, Ca, Ni, Co, Cr, Sr) decreasewith height; elements concentrated in the trapped liquid (Na,K, La, Y, Zr, Nb, Rb, Ba) increase with height; and other elements(Ti, Fe3+, P, Ga, V, Sc, Cu, Zn) show complicated behavior relatedto the appearance of additional cumulus phases such as clinopyroxene,Fe-Ti oxides, and apatite. Lower zone rocks contain some sulfide,probably from sulfur derived from the country rock, and theUpper zone has sulfides probably precipitated from an immisciblesulfide liquid. The sulfide-bearing rocks have similaritiesto those of other intrusions, such as Bushveld, Stillwater,and Skaergaard. The picritic and troctolitic rocks of the Picritic zone indicatethat the intrusion was open to additional injections of maficmagma. Roof zone granophyric rocks are residual liquids intrudedalong the upper margin of the intrusion during regional tilting,but Roof zone granitic rocks are probably melted country rock.An attempt is made to estimate by reverse stratigraphic summationthe compositional path of the magma that solidified above thePicritic zone. The first compositions are highly aluminous,which suggests that the upper part of the intrusion has beenenriched in plagioclase by convection-aided crystal sorting.A complementary unit of mafic rocks is not exposed, but it couldbe present down dip. Some of the later compositions are similarto typical Keweenawan high-Al tholeiites. The magma did notundergo extreme iron enrichment, probably because of oxygenfugacity buffering.  相似文献   

18.
Three hornblende-bearing intrusive masses consisting mainly of cumulate rocks derived from a water-rich, alkali-basalt magma are described. They probably all belong to one Lower Palaeozoic 'sill-like' intrusion with an original sloping floor. The sequence is divided into nine zones, and three major, and numerous minor units are recognized. Deuteric activity produced important alteration sequences, while Caledonian regional metamorphism only caused substantial alteration to the mineralogy in the marginal zones of the intrusion.  相似文献   

19.
“His mind was like a soup dish—wide and shallow; ...” - Irving Stone on William Jennings Bryan
A compilation of the Sr-isotopic stratigraphy of the Bushveld Complex, shows that the evolution of the magma chamber occurred in two major stages. During the lower open-system Integration Stage (Lower, Critical and Lower Main Zone), there were numerous influxes of magma of contrasting isotopic composition with concomitant mixing, crystallisation and deposition of cumulates. Larger influxes correspond to the boundaries of the zones and sub-zones and are marked by sustained isotopic shifts, major changes in mineral assemblages and development of unconformities. During the upper, closed system Differentiation Stage (Upper Main Zone and Upper Zone), there were no major magma additions (other than that which initiated the Upper Zone), and the thick magma layers evolved by fractional crystallisation. The Lower and Lower Critical Zones are restricted to a belt that runs from Steelpoort and Burgersfort in the northeast, to Rustenburg and Northam in the west and an outlier of the Lower and Lower Critical Zone, up to the LG4 chromitite layer, in the far western extension north of Zeerust. It is only in these areas that thick harzburgite and pyroxenite layers are developed and where chromitites of the Lower Critical Zone occur. These chromitites include the economically important c. 1 m thick LG6 and MG1 layers exposed around both the Eastern and Western lobes of the Bushveld Complex. The Upper Critical Zone has a greater lateral extent than the Lower Critical Zone and overlies but also onlaps the floor-rocks to the south of the Steelpoort area . The source of the magmas also appears to have been towards the south as the MG chromitite layers degrade and thin northward whereas the LG layers are very well represented in the North and degrade southward. Sr and Os isotope data indicate that the major chromitite layers including the LG6, MG1 and UG2 originated in a similar way. Extremely abrupt and stratigraphically restricted increases in the Sr isotope ratio imply that there was massive contamination of intruding melt which “hit the roof” of the chamber and incorporated floating granophyric liquid which forced the precipitation of chromite (Kruger 1999; Kinnaird et al. 2002). Therefore, each chromitite layer represents the point at which the magma chamber expanded and eroded and deformed its floor. Nevertheless, this was achieved by in situ contamination by roof-rock melt of the intruding Critical Zone liquids that had an orthopyroxenitic to noritic lineage. The Main Zone is present in the Eastern and Western lobes of the Bushveld Complex where it overlies the Critical Zone, and onlaps the floor-rocks to the south, and the north where it is also the basal zone in the Northern lobe. The new magma first intruded the Northern lobe north of the Thabazimbi–Murchison Lineament, interacted with the floor-rocks, incorporated sulphur and precipitated the “Platreef” along the floor-rock contact before flowing south into the main chamber. This exceptionally large influx of new magma then eroded an unconformity on the Critical Zone cumulate pile, and initiated the Main Zone in the main chamber by precipitating the Merensky Reef on the unconformity. The Upper Zone magma flowed into the chamber from the southern “Bethal” lobe as well as the TML. This gigantic influx eroded the Main Zone rocks and caused very large-scale unconformable relationships, clearly evident as the “Gap” areas in the Western Bushveld Complex. The base of this influx, which is also coincident with the Pyroxenite Marker and a troctolitic layer in the Northern lobe, is the petrological and stratigraphic base of the Upper Zone. Sr-isotope data show that all the PGE rich ores (including chromitites) are related to influxes of magma, and are thus related to the expansion and filling of the magma chamber dominantly by lateral expansion; with associated transgressive disconformities onto the floor-rocks coincident with major zone changes. These positions in the stratigraphy are marked by abrupt changes in lithology and erosional features over which succeeding lithologies are draped. The outcrop patterns and the concordance of geochemical, isotopic and mineralogical stratigraphy, indicate that during crystallisation, the Bushveld Complex was a wide and shallow, lobate, sill-like sheet, and the rock-strata and mineral deposits are quasi-continuous over the whole intrusion.
F. Johan KrugerEmail:
  相似文献   

20.
马润则 《矿物岩石》1990,10(1):19-27,T002
安宁村含钒钛磁铁矿层侵入体侵位于下元古界变质岩中,厚约500m,岩体层状构造发育,分异程度较高,可分为四个岩相带和若干次级的韵律层。其初始岩浆为富铁钛,贫硅的弱碱性玄武岩浆,源于上地幔。岩浆中的律性成核与重力分异作用的结果,形成层状岩系。成岩温度1250-900℃,氧逸度foz=10^-6.38,平均成岩压力9.55kbar。较高的成岩压力控制了岩浆演化的主要途径和主要矿物组合;而偏高的氧逸度则是较早期大量Ti-Fe氧化物堆积形成岩浆结晶分异型富矿层的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号