首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
危险性评价是滑坡灾害预防与减灾工作首要解决的重要内容.在地理信息系统技术支持下, 以山地灾害频发区——小江流域作为研究对象, 选取坡度、土体粘聚力和内摩擦角这3个评价指标构建滑坡危险性分级评价指标体系, 将投影寻踪技术运用到滑坡危险性等级评价中, 对评价样本的各指标因素进行线性投影, 以最优投影方向所对应的投影特征值作为评价依据, 建立了滑坡危险性等级综合评价模型, 绘制了滑坡危险性等级分布图.结果表明: 研究区极高危险区、高危险区、中等危险区、低危险区和极低危险区的面积比例为14.28∶9.41∶69.12∶7.00∶0.19;根据所建立的5级评价指标体系对研究区60个土质滑坡点资料进行了验证, 在占研究区总面积23.69%的高、极高危险区的小范围内, 实际发生土质滑坡数量45个, 占总土质滑坡数量的75.00%;中等危险性级别以上区域拥有的土质滑坡数量占全部土质滑坡的96.67%;不同危险性级别的滑坡体积方量统计结果表明, 滑坡体积方量密度随危险性级别的提高而迅速增加.对比评价结果及实测结果可知, 投影寻踪分级结果符合实际情况, 证实了该方法的正确性, 为滑坡危险性评价提供了一条新思路.   相似文献   

2.
雅江县位于四川省西部雅砻江中游河段,以中山-高山峡谷地貌为主,地质灾害频发.为保障人民生命财产安全,基于逻辑回归与确定性系数叠加分析,进行雅江县上游河段滑坡灾害危险性评价.结果表明:1)雅江县上游河段滑坡极易发生在海拔2 500~3 000 m、拔河高度600~900 m、坡度30~45°、距离河流水系0~200 m范围较硬岩夹较软岩类地带;2)雅江县上游河段高危险区、极高危险区面积占总面积的46.75%,发生滑坡占滑坡总数的65.91%,说明该区域内滑坡分布密集,危害程度相对较高,与野外实际调查结果相符;3)雅江县上游河段呷拉镇一带多属极高危险区、高危险区,瓦多乡一带多属中等危险区,木绒乡、普巴绒乡一带多属低危险区、极低危险区;4)通过查验点及ROC曲线对评价结果验证,该评价结果有较高的准确性,能够作为研究区防灾减灾与河谷开发利用的合理方案依据.  相似文献   

3.
采用层次分析法,选取了地层岩性、地质构造、地形地貌、河流、植被、降雨量和人类活动7个一级指标,以及工程地质岩组、地震密度、地震动峰值加速度、坡度、坡向、河流、植被覆盖度、年降水量和公路9个二级指标,通过构建层次结构、构造判断矩阵、层次单排序和一致性检验,确定各评价指标权重。并利用GIS空间分析功能,对各个评价因子进行综合评价,得到陕西省地震次生地质灾害危险性等级区划图。最后,对评价结果进行了验证。研究结果表明:1)陕西省地震次生地质灾害危险性等级可以划分为不危险区、低危险区、中危险区和高危险区4个等级,其中不危险区面积39766.99km~2,低危险区面积74284.39km~2,中危险区面积63636.89km~2,高危险区面积27652.87km~2,所占比例分别为19.37%,36.18%,30.99%和13.47%;2)危险性等级自北而南逐渐增加,陕北黄土高原地震次生地质灾害以中低危险为主,关中渭河平原整体危险性较小,陕南秦巴山地高危区面积最大,高危险区主要分布在陕南秦巴山地和陕北黄土高原地区,尤其是秦巴山地,需要重点防控;3)危险区空间分布具有相对集中性和局地差异性的特点;4)所选取灾害点样本的分布与危险性等级区划具有一致性,86.62%的灾害点落在危险区内,具有一定的可信度,达到了预期的区划效果。  相似文献   

4.
陕西陇县地质灾害危险性分区评价   总被引:6,自引:2,他引:6  
在陇县地质灾害详细调查的基础上.通过统计分析确定了各类主要影响因素,采用信息量法和定性评价方法分别进行了地质灾害的危险性评价.建立了地质灾害评价指标体系,确定了地质灾害危险性判别标准,进行了地质灾害危险区划.共划分为高危险区、中危险区、低危险区和极低危险区4个等级,在此基础上,又划分了12个亚区.其中高危险区面积为619.19 km2,占总面积的25.79%,中危险区面积为509.74km2,占总面积的21.23%,低危险区面积为711.75 km2,占总面积的29.65%,极低危险区面积为559.87 km2,占全区面积的23.32%.  相似文献   

5.
三峡库区重庆市丰都县滑坡灾害危险性评价   总被引:6,自引:10,他引:6  
在对三峡库区丰都县滑坡灾害调查和统计分析的基础上,初步概括了滑坡灾害的分布特征和主要影响因素,进而利用综合信息模型评价了丰都县滑坡灾害的危险性,将丰都县滑坡灾害的危险性划分为高危险区、中危险区、低危险区和基本安全区4个等级。其中,高危险区和中危险区分别占全县总面积的2.6%和23.2%,主要分布在长江干流及其支流两岸的居民相对集中区,不同规模的滑坡灾害经常发生,因此潜在危害也很大;低危险区占全县总面积的47.5%,偶有小规模的滑坡灾害发生;基本安全区占全县总面积的25.5%,在人为因素的诱发下可能偶有小规模的滑坡灾害发生,适合于大型工程建设和城镇居民点建设。  相似文献   

6.
汶川Ms 80级大地震诱发了数以万计的滑坡灾害。在大约48678 km2的滑坡影响区域内,作者采用震后遥感影像解译并结合野外调查的方法,共解译出48007处滑坡。应用GIS技术,建立了汶川地震诱发滑坡灾害及相关地形、地质空间数据库。采用地震滑坡确定性系数分析方法,分析了地震滑坡关于地震烈度、岩性、坡度、断层、高程、坡向、河流与公路等8个因素的易发程度。基于GIS栅格分析方法,分别对16种不同影响因子组合类型进行地震滑坡易发性评价。最后,应用AUC(Area Under Curve,评价曲线下面积)方法得到最佳因子组合及其对应的评价结果,使用自然分类法则方法将研究区按滑坡易发程度分为极高易发区、高易发区、中易发区、低易发区与极低易发区5类,极高易发区与高易发区面积之和约1169046km2,占研究区总面积的2402%,其中发育滑坡面积为52484 km2,占滑坡总面积的7373%。结果表明了极高与高易发区与实际滑坡之间有着良好的一致性,方法的评价结果成功率(AUC值)达到82107%。  相似文献   

7.
BP神经网络因具有良好的精度和拟合能力,被广泛地运用在区域性滑坡危险性预测中。本文建立了基于BP神经网络的地震滑坡危险性评价模型并应用于四川九寨沟地区,以2017年8月8日的九寨沟MS7.0地震引发的4834个历史滑坡为例,将其随机划分为70%的训练样本集用于九寨沟地区地震滑坡危险性预测,以及30%的验证样本集对预测结果的精度进行评估。选取高程、坡度、坡向、平行发震断层距离、垂直发震断层距离、震中距离、距道路距离、地面峰值加速度(PGA)以及岩性共9个影响因子,分析发震断层对地震滑坡的控制作用,并总结九寨沟地区地震滑坡空间分布规律特征,其中发震断层、岩性和坡度对九寨沟地区地震滑坡分布产生重要影响。利用模型得到九寨沟地震滑坡危险性预测图,结果显示73.19%的滑坡位于极高和高危险区域,与实际地震滑坡分布基本相符。通过30%的验证样本集来绘制预测成功率曲线,结果表明模型预测成功率(AUC值)为0.90,证实了BP神经网络在九寨沟地区地震滑坡危险性预测中具有良好的精度和拟合能力,评价结果为后续地震滑坡灾害预测和防震减灾工作提供了科学的参考。  相似文献   

8.
在甘肃省甘谷县地质灾害详细调查的基础上, 通过对研究区地质环境条件及地质灾害基本特征分析研究, 选取了历史地质灾害发育程度、地形地貌、工程地质岩组、地质构造、水文条件、植被条件、降雨量、人类工程活动等影响因素, 建立了相应的地质灾害危险性评价指标体系.采用专家评判方法, 基于GIS技术平台, 对甘谷县地质灾害进行了危险性综合评价, 并与定性评价相结合, 最终将研究区划分为高危险区、中危险区、低危险区、极低危险区4个等级, 其中, 高危险区面积为393.19 km2, 占总面积的25.01%, 中危险区面积为544.04 km2, 占总面积的34.61%, 低危险区面积为324.69 km2, 占总面积的20.65%, 极低危险区面积为310.08 km2, 占总面积的19.73%.   相似文献   

9.
证据权法在区域滑坡危险性评价中的应用以贵州省为例   总被引:3,自引:0,他引:3  
以GIS为技术平台,采用证据权法对研究区进行了滑坡地质灾害危险性分析。综合分析历史滑坡数据及其环境因素和触发因素,数据源主要有地形图、DEM、地质图,选取地层岩性、构造、高程、坡度、坡向、地形起伏度、道路、水系作为危险性评价因子。首先应用ArcGIS软件对数据源进行处理,提取各个评价因子图层,并对每个图层进行分级、缓冲区分析等处理,建立若干证据层。然后将历史灾害点与评价因子进行空间关联分析,计算每个评价因子等级的权重,最后计算出评价单元的危险性指数,并将危险性分为极高危险区、高危险区、中等危险区、低危险区。采用成功率曲线法对证据权法评价精度进行验证,结果表明本次评价的精度为71%。利用历史滑坡数据对评价结果进行验证,结果显示评价结果与实际情况较为吻合,说明证据权可以客观定量地评价各影响因子对滑坡的影响程度,该方法应用于区域地质灾害危险性评价比较有效。  相似文献   

10.
以湖南省澧源镇为例,利用证据权模型和灰色关联度模型分别计算了坡度、地层岩性、斜坡形态、土地利用类型、人类工程活动5个因子二级状态证据权值和一级因子权重;综合2种模型确定全区滑坡易发性指数后,完成基于斜坡单元的全区滑坡易发性区划;根据研究区岩土体类型(碎屑岩类、碳酸盐岩夹碎屑岩类、碳酸盐岩类和松散岩土体类)分组研究不同滑坡发生概率下的有效降雨阈值曲线(I-D曲线)。研究降雨时间为3日、有效强度为22.4 mm/d的降雨工况下各岩土体类型滑坡发生的时间概率。综合时间概率和易发性结果得到澧源镇基于有效降雨阈值的滑坡灾害危险性区划图。研究结果表明:澧源镇滑坡灾害高和极高易发区占研究区总面积的25%,主要沿澧河分布;极高危险区和高危险区占研究区总面积的14%,主要分布在澧河北侧。  相似文献   

11.
文章以德格县为研究区,以7 m DEM进行地形分析处理,并结合相关调查数据建立了德格县滑坡灾害数据库,通过选取的地震峰值加速度、断裂带、水系、坡度、坡向、高程、岩性等7个指标,在GIS技术支持下,利用信息量模型(I)、层次分析法模型(AHP)、确定性系数模型(CF)相互耦合对研究区灾害敏感性评价,再分析得到活动频率因素对研究区全县域进行危险性评价,将得到的结果分成4个区域,分别为高危险区、较高危险区、中危险区、低危险区,其中高、较高危险区占总面积2.23%。其中,滑坡灾害占总灾害的42%。评价结果与实际调查结果符合程度较高,能够为该地域未进行实地调查的地方进行相关滑坡灾害的预测预报,并对安全防治提供技术支持,亦可以为其他地区滑坡灾害危险性评价提供理论指导和技术参考。  相似文献   

12.
本文以北川县杨家沟为小流域地震地质灾害危险性评价的典型实例,根据地震地质灾害特征,选取坡度、坡向、地层岩性、距断裂带距离、斜坡结构、高程和坡形7个评价因子,在各评价因子对地震地质灾害影响程度分析基础上,采用层次分析法确定评价因子的权重,并在GIS平台下对各评价因子进行综合分析处理,得到小流域地震地质灾害危险性评价图。研究表明,杨家沟地震地质灾害最大影响因子为距断裂带距离,其次为斜坡结构、坡度、地层岩性、高程、坡形及坡向;地震地质灾害危险性评价预测表明,杨家沟流域内高危险区面积8.98 km~2,占流域面积的40.43%。对比杨家沟实际地震地质灾害分布情况,占面积70.74%或占总数66.38%的地震地质灾害位于高危险区内,表明危险性评价成果可信度较高。研究成果对小流域地震地质灾害危险性评价方法研究具有一定的意义。  相似文献   

13.
针对崩塌、滑坡和泥石流等灾种齐全的高山峡谷区,选取四川省阿坝县为研究区,采用多灾种耦合的评价思路,开展地质灾害危险性精细化评价。崩塌、滑坡等斜坡类灾害危险性评价以栅格为评价单元,泥石流灾害危险性评价以流域为评价单元。基于信息量模型和层次分析法,分别开展危险性评价,进而采用取大值的方法,获取研究区综合地质灾害危险性评价结果。研究表明,工作区综合地质灾害极高危险区、高危险区面积明显大于单灾种评价结果,极高危险区、高危险区主要位于崩塌、滑坡较发育的碎裂岩区域和极度易发的泥石流流域。针对高山峡谷区地质灾害危险性评价,多灾种耦合的评价思路能更合理的反映不同类型灾害在形态及空间上的差异,获取更精确的危险性评价结果。  相似文献   

14.
区域地质灾害评价是减灾防治的重要非工程手段,构建区域滑坡危险性评价模型,对提高地质灾害评价精度和防治效率具有重要意义。文章以滑坡频发的大渡河中游地区为研究区,初选高程、坡度、坡向、地震动参数、土壤类型、工程地质岩组、年平均降雨量和地形湿度指数(TWI)等13个因子,建立滑坡危险性初级评价指标体系。考虑各因子对滑坡形成贡献程度的不同和目前常权栅格叠加方式对滑坡危险性评价结果精度的影响,引入了地理探测器和变权栅格叠加,构建了地理探测器、信息量法和变权栅格叠加的组合模型(GDIV模型)。基于2021年四川省1∶50 000地质灾害风险调查中313处滑坡地质灾害隐患点,开展基于GDIV模型的大渡河中游地区滑坡危险性评价,并与逻辑回归模型和信息量模型的组合模型(LRI模型)评价结果进行对比分析。结果表明:研究区以中危险及以下危险区为主,占总面积的78.3%,极高和高危险区主要分布在大渡河、革什扎河和东谷河两岸的低海拔地区;与LRI模型相比,基于GDIV模型的评价结果精度更高,其受试者工作特征(ROC)曲线的线下面积(AUC)值为0.917。文章提出的GDIV模型提高了区域滑坡危险性评价精度,可为...  相似文献   

15.
以2008年5月12日汶川地震区为研究区,基于高分辨率航片与卫星影像开展地震滑坡目视解译,制作了汶川地震滑坡编录图.选择坡度、坡向、高程、与水系距离、与公路距离、与映秀-北川断裂距离、地震烈度、岩性共8个影响因子开展地震滑坡危险性评价工作.滑坡样本采用前期48007处滑坡编录点数据,不滑样本为在基于证据权重模型的滑坡危险性评价结果的低危险区与极低危险区随机选择的48000个点.基于这8个影响因子与逻辑回归模型,建立了汶川地震滑坡危险性索引图.采用这48007个滑坡样本点与汶川地震滑坡最新编录的增加滑坡,分别进行模型的成功率与预测率检验.结果表明,模型成功率为81.739%,预测率达到86.278%.  相似文献   

16.
使用遥感技术、地理信息系统技术和ArcGIS平台,分析崩塌滑坡在坡度、高程、地层岩性、距离发震断层距离和距离水系距离方面的敏感性。用信息量法,以此五因子为评价因子,对研究区进行危险性评价。结果表明,中度和高度危险的区域分别占研究区24.79%和20.48%,91%的受损房屋处于基本无危险区和轻度危险区,但仍有部分房屋处于中高度危险区,应做好安全防范工作。  相似文献   

17.
滑坡危险性评价是滑坡灾害防治和管理的重要依据。文章基于层次分析法和随机森林模型,结合距离函数法,探索性地提出了一种新的组合赋权法(RF-AHP)。采用RF-AHP对青海省贵德县北部山区滑坡进行了危险性评价,对比探讨了AHP、RF和RF-AHP三种模型评价结果与实际滑坡灾害的吻合性,结果表明:(1)RF-AHP在高危险区和极高危险区面积占比38.38%的情况下,包括了60.13%的滑坡灾害,结果准确性相比AHP和RF两种模型有较大提升;(2)随着危险性等级的逐步提高,RF-AHP区划结果中相应分区的灾害实际发生的比率也随之增高,并对三种方法出现结果差异的客观原因进行了分析讨论,证明RF-AHP适用于滑坡危险性评价工作。  相似文献   

18.
本文以涪江上游南坝-水晶流域滑坡为研究对象, 选取坡度、高程、坡向、岩性、岸坡结构等9个影响因子, 基于GIS平台, 采用滑坡确定性系数模型与层次分析模型相结合的 (CF-AHP) 模型对研究区进行滑坡危险性评价。根据评价结果, 将研究区划分为极高危险区 (18. 57%) 、高危险区 (38. 71%) 、中危险区 (23. 92%) 、低危险区 (18. 8%) 四个等级。利用危险性评价结果对比法和受试者工作特征曲线 (ROC) 对评价结果进行验证, 得到ROC曲线下面积AUC值为88. 36%, 表明CF-AHP模型能够较客观准确地对研究区滑坡危险性评价。  相似文献   

19.
2010年4月14日07时49分(北京时间),青海省玉树县发生了Ms7.1级大地震。作者基于高分辨率遥感影像解译与现场调查验证的方法,圈定了2036处本次地震诱发滑坡。这些滑坡受地震地表破裂控制强烈,规模相对较小,常常密集成片分布。滑坡类型多样,以崩塌型滑坡为主,还包括滑动型、流滑型、碎屑流型、复合型等类型的滑坡。本文基于地理信息系统(GIS)与遥感(RS)技术,应用逻辑回归模型开展玉树地震滑坡危险性评价,并对结果合理性进行检验。应用GIS技术建立玉树地震滑坡灾害及相关滑坡影响因子空间数据库,选择高程、斜坡坡度、斜坡坡向、斜坡曲率、与水系距离、坡位、断裂、地层岩性、归一化植被指数(NDVI)、公路、同震地表破裂、地震动峰值加速度(PGA)共12个因子作为玉树地震滑坡影响因子,在GIS平台下将这些因子专题图层栅格化。应用逻辑回归模型得到每个因子分级的回归系数,然后建立滑坡危险性指数分布图。利用玉树地震滑坡空间分布图对滑坡危险性指数图进行检验,正确率达到83.21%。滑坡危险性分级结果表明,在占研究区总面积4.97%的"很高危险度"的较小范围内,实际发育滑坡数量为766个,占总滑坡面积的比例高达37.62%,表明地震滑坡危险性评价结果良好。不同危险性级别的滑坡点密度统计结果表明,滑坡点密度随着危险性级别的升高而非常迅速的升高。  相似文献   

20.
为了弥补滑坡灾害危险性区划研究中影响因子和等级划分的不确定性,结合前人研究成果,依据斜坡几何形态、岩性、地质构造、河流侵蚀、土地利用类型、人类工程活动、降水条件等影响因子与研究区实际已发生的滑坡灾害数之间的关系,编制重庆市万州区滑坡灾害危险性评价标准,并基于GIS技术和信息量模型法,计算滑坡评价因子的信息量,就万州区滑坡危险性进行区划,最后基于乡镇行政区对该区滑坡危险性区划进行细化。结果表明:建设用地、坡高为90~200 m的地形、1 024~1 060 mm的年降雨量以及侏罗系中统上沙溪庙组岩层等因素对万州区滑坡发生影响较大;根据滑坡灾害危险性评价标准,万州区滑坡灾害被划分为高、中、低、极低等4个危险区;应用信息量模型法得到的万州区滑坡危险性区划与实际情况比较吻合;高危险区和中危险区面积分别为564.4 km2和848.6 km2,分别占万州区总面积的16.3%和24.5%,主要分布于长江干流及支流两岸的居民相对集中区以及公路干线地段;高危险和中危险乡镇主要分布在万州区经济较为发达的长江干流两岸,尤其是左岸的黄柏乡、太龙镇、天城镇、李河镇等以及万州主城区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号