首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
Ecological land rent is the excess profit produced by resource scarcity, and is also an important indicator for measuring the social and economic effects of resource scarcity. This paper, by calculating the respective ecological land rents of all the provinces in China for the years 2002 and 2007, and with the assistance of the software programs ArcGIS and GeoDA, analyzes the spatial differentiation characteristics of ecological land rent; then, the influencing factors of ecological land rent differentiation among the provinces are examined using the methods of traditional regression and spatial correlation analysis. The following results were obtained: First, ecological land rent per unit of output in China shows stable distribution characteristics of being low in the southwestern and northeastern provinces, and high in Hebei and Henan provinces. There is also an increasing tendency in the central and western provinces, and a decreasing one in the eastern provinces. In general, the spatial distribution of ecological land rent per unit of output in China is quite scattered. Second, the total ecological land rent shows significant spatial aggregation characteristics, in particular the provinces in China possessing high total amounts of ecological land rent tend to be adjacent to one another, as do those with low total amounts, and the spatial difference characteristics of the eastern, central and western provinces are distinguished. The Bohai Rim, Yangtze River Delta and Pearl River Delta are shown to be highly clustering regions of total ecological land rent, while the western provinces have very low ecological land rent in terms of total amount. Third, population distribution, economic level and industrial structure were all important influencing factors influencing ecological land rent differentiation among provinces in China. Furthermore, population density, urbanization level, economic density, per capita consumption level and GDP per capita were all shown to be positively related to total ecological land rent, which indicates that spatial clustering exists between ecological land rent and these factors. However, there was also a negative correlation between ecological land rent and agricultural output percentage, indicating that spatial scattering exists between ecological land rent and agricultural output percentage.  相似文献   

2.
The quantity and spatial pattern of farmland has changed in China, which has led to a major change in the production potential under the influence of the national project of ecological environmental protection and rapid economic growth during 1990–2010. In this study, the production potential in China was calculated based on meteorological, terrain elevation, soil and land-use data from 1990, 2000 and 2010 using the Global Agro-ecological Zones model. Then, changes in the production potential in response to farmland changes from 1990 to 2010 were subsequently analyzed. The main conclusions were the following. First, the total production potential was 1.055 billion tons in China in 2010. Moreover, the average production potential was 7614 kg/ha and showed tremendous heterogeneity in spatial pattern. Total production in eastern China was high, whereas that in northwestern China was low. The regions with high per unit production potential were mainly distributed over southern China and the middle and lower reaches of the Yangtze River. Second, the obvious spatiotemporal heterogeneity in farmland changes from 1990 to 2010 had a significant influence on the production potential in China. The total production potential decreased in southern China and increased in northern China. Furthermore, the center of growth of the production potential moved gradually from northeastern China to northwestern China. The net decrease in the production potential was 2.97 million tons, which occupied 0.29% of the national total actual production in 2010. Third, obvious differences in the production potential in response to farmland changes from 1990 to 2000 and from 2000 to 2010 were detected. The net increase in the production potential during the first decade was 10.11 million tons and mainly distributed in the Northeast China Plain and the arid and semi-arid regions of northern China. The net decrease in the production potential during the next decade was 13.08 million tons and primarily distributed in the middle and lower reaches of the Yangtze River region and the Huang-Huai-Hai Plain. In general, the reason for the increase in the production potential during the past two decades might be due to the reclamation of grasslands, woodlands and unused land, and the reason for the decrease in the production potential might be urbanization that occupied the farmland and Green for Grain Project, which returned farmland to forests and grasslands.  相似文献   

3.
中国不同区域能源消费碳足迹的时空变化(英文)   总被引:4,自引:2,他引:2  
Study on regional carbon emission is one of the hot topics under the background of global climate change and low-carbon economic development, and also help to establish different low-carbon strategies for different regions. On the basis of energy consumption and land use data of different regions in China from 1999 to 2008, this paper established carbon emission and carbon footprint models based on total energy consumption, and calculated the amount of carbon emissions and carbon footprint in different regions of China from 1999 to 2008. The author also analyzed carbon emission density and per unit area carbon footprint for each region. Finally, advices for decreasing carbon footprint were put forward. The main conclusions are as follows: (1) Carbon emissions from total energy consumption increased 129% from 1999 to 2008 in China, but its spatial distribution pattern among different regions just slightly changed, the sorting of carbon emission amount was: Eastern China > Northern China > Central and Southern China > Southwest China > Northwest China. (2) The sorting of carbon emission density was: Eastern China > Northeast China > Central and Southern China > Northern China > Southwest China > Northwest China from 1999 to 2003, but from 2004 Central and Southern China began to have higher carbon emission density than Northeast China, the order of other regions did not change. (3) Carbon footprint increased significantly since the rapid increasing of carbon emissions and less increasing area of pro-ductive land in different regions of China from 1999 to 2008. Northern China had the largest carbon footprint, and Northwest China, Eastern China, Northern China, Central and Southern China followed in turn, while Southwest China presented the lowest area of carbon footprint and the highest percentage of carbon absorption. (4) Mainly influenced by regional land area, Northern China presented the highest per unit area carbon footprint and followed by Eastern China, and Northeast China; Central and Southern China, and Northwest China had a similar medium per unit area carbon footprint; Southwest China always had the lowest per unit area carbon footprint. (5) China faced great ecological pressure brought by carbon emission. Some measures should be taken both from reducing carbon emission and increasing carbon absorption.  相似文献   

4.
北宋中期耕地面积及其空间分布格局重建(英文)   总被引:3,自引:1,他引:2  
To understand historical human-induced land cover change and its climatic effects, it is necessary to create historical land use datasets with explicit spatial information. Using the taxes-cropland area and number of families compiled from historical documents, we esti-mated the real cropland area and populations within each Lu (a province-level political region in the Northern Song Dynasty) in the mid-Northern Song Dynasty (AD1004-1085). The es-timations were accomplished through analyzing the contemporary policies of tax, population and agricultural development. Then, we converted the political region-based cropland area to geographically explicit grid cell-based fractional cropland at the cell size of 60 km by 60 km. The conversion was based on calculating cultivation suitability of each grid cell using the topographic slope, altitude and population density as the independent variables. As a result, the total area of cropland within the Northern Song territory in the 1070s was estimated to be about 720 million mu (Chinese area unit, 1 mu = 666.7 m2), of which 40.1% and 59.9% oc-curred in the north and south respectively. The population was estimated to be about 87.2 million, of which 38.7% and 61.3% were in the north and south respectively, and per capita cropland area was about 8.2 mu. The national mean reclamation ratio (i.e. ratio of cropland area to total land area; RRA hereafter for short) was bout 16.6%. The plain areas, such as the North China Plain, the middle and lower reaches of the Yangtze River, Guanzhong Plain, plains surrounding the Dongting Lake and Poyang Lake and Sichuan Basin, had a higher RRA, being mostly over 40%; while the hilly and mountainous areas, such as south of Nanling Mountains, the southwest regions (excluding the Chengdu Plain), Loess Plateau and south-east coastal regions, had a lower RRA, being less than 20%. Moreover, RRA varied with topographic slope and altitude. In the areas of low altitude (≤250 m), middle altitude (250-100 m) and high altitude (1000-3500 m), there were 443 million, 215 million and 64 million mu of cropland respectively and their regional mean RRAs were 27.5%, 12.6% and 7.2% respectively. In the areas of flat slope, gentle slope, medium slope and steep slope, there were 116 million, 456 million, 144 million and 2 million mu of cropland respectively and their regional mean RRAs were 34.6%, 20.7%, 8.5% and 2.3% respectively.  相似文献   

5.
Quantitative characterization of environmental characteristics of cropland(ECC)plays an important role in maintaining sustainable development of agricultural systems and ensuring regional food security. In this study, the changes in ECC over the Songnen Plain, a major grain crops production region in Northeast China, were investigated for the period 1990–2015. The results revealed significant changes in climate conditions, soil physical properties and cropland use patterns with socioeconomic activities. Trends in climate parameters showed increasing temperature(+0.49°C/decade, p 0.05) and decreasing wind speed(–0.3 m/s/decade, p 0.01) for the growing season, while sunshine hours and precipitation exhibited non-significant trends. Four topsoil parameters including soil organic carbon(SOC), clay, bulk density and pH, indicated deteriorating soil conditions across most of the croplands, although some do exhibited slight improvement. The changing amplitude for each of the four above parameters ranged within –0.052 to 0.029 kg C/kg, –0.38 to 0.30,–0.60 to 0.39 g/cm~3, –3.29 to 2.34, respectively. Crop production significantly increased(44.0 million tons) with increasing sown area of croplands(~2.5 million ha) and fertilizer application(~2.5 million tons). The study reveals the dynamics of ECC in the Songnen Plain with intensive cultivation from 1990 to 2015. Population growth, economic development, and policy reform are shown to strongly influence the spatiotemporal changes in cropland characteristics.The study potentially provides valuable scientific information to support sustainable agroecosystem management in the context of global climate change and national socioeconomic development.  相似文献   

6.
On arable land changes in Shandong Province and their driving forces   总被引:3,自引:0,他引:3  
IntroductionAlmost all the provinces and autonomous regions in China have experienced decrease of arable land in the processes of economic development, population growth and urbanization. The situation is more serious in Shandong Province because of the big population and being an agricultural province. From 1949 to 1999, the arable land was decreased by more than 2 million ha in this province accompanied by rapid population growth. The total population in the province in 1999 was twice of t…  相似文献   

7.
Quantitative estimation of the influence of various factors,such as black carbon,snow grain,dust content,and water con tent on albedo is essential in obtaining an accurate albedo.In this paper,field measurement data,including snow grain size,density,liquid water content,and snow depth was obtained.Black carbon and dust samples were collected from the snow surface.A simultaneous observation using ASD(Analytical Spectral Devices)spectral data was employed in the Qiyi glacier located on Qilian Mountain.The measurements were compared with results obtained from the Snow,Ice,and Aerosol Radiation(SNICAR)model.Additionally,a HYbrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)air mass backward trajectory model was used to track the source of black carbon.The simulation was found to correlate well with observed data.Liquid water content was the most influential factor of albedo among the several influencing fac tors,followed by black carbon content and snow grain size.Finally,snow density change had the least toward albedo.HYSPLIT atmospheric trajectories model can only approximately show the source of black carbon and not clearly indicate the source region of black carbon.  相似文献   

8.
The development of grass-feeding livestock breeding is the key to promoting the transition from grain-consumption type animal husbandry to grain-saving type animal husbandry in China, and to solving the problem of competition for grain between people and livestock. From the perspective of economic geography, this paper first defines the conversion standard for the breeding quantity of livestock, and then uses exploratory spatial data analysis technology and econometric models and methods to systematically investigate the sequential variation process, geographical aggregation characteristics, and influencing factors of grass-feeding livestock breeding in China. The study results show the following: 1) The breeding quantity of grass-feeding livestock in China has an obvious overall growth trend, but there is an obvious difference among the livestock species. During the period 1978–2012, the breeding quantity of grass-feeding livestock in China grew by 92.5%; and the breeding quantity within the same period was beef cattle sheep dairy cow. 2) On the county scale, the number of increasing areas of the breeding quantity of grass-feeding livestock is larger than the number of decreasing areas, and the growth rate of breeding quantity of grass-feeding livestock in northern China is higher than that in southern China, which initially forms the pattern of "hot in the north and cold in the south". 3) The spatial Durbin model shows that the per capita output of grain, proportion of productive land area, urban per capita disposable income, agricultural mechanization level, agricultural labor productivity and policy factor have positive effects on the development of grass-feeding livestock breeding, while the per capita GDP, urbanization level and proportion of non-agricultural income have obvious negative effects on it. 4) Grass-feeding livestock breeding in China can be divided into six major types of areas, and each type of area should be regulated and controlled in terms of their respective focus of attention according to regional conditions and situation of agricultural production.  相似文献   

9.
基于空间模型的全球粮食安全评价   总被引:3,自引:1,他引:2  
This paper presents a scenario-based assessment of global future food security. To do that,the socio-economic and climate change scenarios were defined for the future and were linked to an integrated modeling framework. The crop yields simulated by the GIS-based Environmental Policy Integrated Climate (EPIC) model and crop areas simulated by the crop choice decision model were combined to calculate the total food production and per capita food availability,which was used to represent the status of food availability and stability. The per capita Gross Domestic Product (GDP) simulated by IFPSIM model was used to reflect the situation of food accessibility and affordability. Based on these two indicators,the future food security status was assessed at a global scale over a period of approximately 20 years,starting from the year 2000. The results show that certain regions such as South Asia and most African countries will likely remain hotspots of food insecurity in the future as both the per capita food availability and the capacity of being able to import food will decrease between 2000 and 2020. Low food production associated with poverty is the determining factor to starvation in these regions,and more efforts are needed to combat hunger in terms of future actions. Other regions such as China,most Eastern European countries and most South American countries where there is an increase in per capita food availability or an increase in the capacity to import food between 2000 and 2020 might be able to improve their food security situation.  相似文献   

10.
Zhang  Yongnian  Pan  Jinghu  Zhang  Yongjiao  Xu  Jing 《地理学报(英文版)》2021,31(3):327-349
In 2007, China surpassed the USA to become the largest carbon emitter in the world. China has promised a 60%–65% reduction in carbon emissions per unit GDP by 2030, compared to the baseline of 2005. Therefore, it is important to obtain accurate dynamic information on the spatial and temporal patterns of carbon emissions and carbon footprints to support formulating effective national carbon emission reduction policies. This study attempts to build a carbon emission panel data model that simulates carbon emissions in China from 2000–2013 using nighttime lighting data and carbon emission statistics data. By applying the Exploratory Spatial-Temporal Data Analysis(ESTDA) framework, this study conducted an analysis on the spatial patterns and dynamic spatial-temporal interactions of carbon footprints from 2001–2013. The improved Tapio decoupling model was adopted to investigate the levels of coupling or decoupling between the carbon emission load and economic growth in 336 prefecture-level units. The results show that, firstly, high accuracy was achieved by the model in simulating carbon emissions. Secondly, the total carbon footprints and carbon deficits across China increased with average annual growth rates of 4.82% and 5.72%, respectively. The overall carbon footprints and carbon deficits were larger in the North than that in the South. There were extremely significant spatial autocorrelation features in the carbon footprints of prefecture-level units. Thirdly, the relative lengths of the Local Indicators of Spatial Association(LISA) time paths were longer in the North than that in the South, and they increased from the coastal to the central and western regions. Lastly, the overall decoupling index was mainly a weak decoupling type, but the number of cities with this weak decoupling continued to decrease. The unsustainable development trend of China's economic growth and carbon emission load will continue for some time.  相似文献   

11.
广东省碳减排总量目标的地区分解及其盈亏格局   总被引:1,自引:0,他引:1  
林文声  胡新艳 《热带地理》2014,34(5):618-626
合理界定初始排放权并进行排放权交易是实现减排目标和减排资源最优配置的关键。对低碳试点省广东进行减排目标地区分解,既能明确减排责任,又能使碳交易变得更加明确而具有可操作性。设定广东碳减排目标的假设情景,以碳排放核算方法和最优经济增长模型为基础,引入兼顾人均平等和历史责任的“碳预算”思路,对广东省减排目标进行地区分解,计算各市排放权配额并测算未来时期排放权的盈亏格局,初步模拟广东省各市之间“碳交易”基础。结果表明:1)1985―2020年全省累积碳排放配额区间为524 659.185 5~542 518.565 2万t,人均碳排放配额区间为57.065 5~59.008 0 t/人。人均碳排放配额、人口数量和实际碳排放量是影响各市排放权配额的重要因素。2)预计到2020年7个城市将出现“碳预算”赤字,主要分布于珠三角;14个城市拥有“碳预算”盈余,集中分布在粤北山区和东西两翼。  相似文献   

12.
据统计,旅游碳排放已占全球碳排放总量的4.9%,加强对其研究和控制是关乎人类能否可持续发展的重要命题。本文基于地理学的视角,研究了中国2007年到2017年间30个省、市、自治区入境旅游碳足迹时空分布的特征和演化规律。在利用碳足迹综合计算模型和空间分析方法基础上,深入揭示了中国入境旅游碳足迹的时空分布特征及演化规律。结果表明,2007年到2017年间,中国入境旅游碳足迹呈现急速上升又稍有回落的趋势,总量从562.30万t上升到1088.09万t,增长1.94倍,其中交通和邮电业占比最大;近十年来我国多数省市的入境旅游碳足迹变异程度不高,维持在较平稳的状态;空间维度上,则呈现东南向西北方向递减趋势。  相似文献   

13.
俞佳立  杨上广 《地理科学》2020,40(9):1429-1438
运用基尼系数法对2007—2016年长三角地区41个城市每万人医院和卫生院个数、每万人床位数、每万人医生数及人均医疗卫生支出的差距进行测定;同时运用数据包络分析方法和Malmquist生产率指数模型对医疗卫生支出的综合效率及全要素生产率指数进行研究,并运用空间自相关模型分析效率的时空演化。研究表明:长三角各市医疗卫生行业各项指标差距总体呈现缩小态势,且不同省份之间仍有一定差异;2007—2016年长三角各市医疗卫生支出综合效率均值为0.720,效率不高,区域内各城市之间的综合效率差异明显,传统的经济强市并非是效率高值的集聚区域,高?高、低?低效率的集聚仅表现在初始年份,后期集聚效应则明显减弱;平均全要素生产率指数为0.842,生产率年均下降15.8%,主要是由技术进步的下降所致,不同城市间全要素生产率指数表现出不同特征,整体呈上升趋势,且空间集聚效应在减弱。  相似文献   

14.
长三角地区城市土地与能源消费CO2排放的时空耦合分析   总被引:1,自引:0,他引:1  
探究城市土地与碳排放的时空耦合关系,是协调城市土地与生态环境亟待解决的重要问题。基于重心模型、总体耦合态势模型和空间耦合协调模型,使用建成区面积、能源消费和DMSP/OLS夜间灯光等数据,分析了1995—2013年长三角地区城市土地与能源消费碳排放的时空耦合特征,并考虑空间因素的影响,构建空间滞后面板Tobit模型分析其驱动因素。结果表明:① 1995—2013年,建成区面积与碳排放量总体上均呈增加趋势。建成区面积由1251 km 2,增加至4394 km 2,碳排放量由30389.49万t,增加至90405.22万t。城市土地与碳排放间呈显著的正相关;② 城市土地与碳排放空间差异明显,上海、南京、杭州、苏州和无锡的城市建成区面积相对较大,碳排放相对较高;③ 长三角地区城市土地与碳排放耦合关系总体上呈减弱-增强-波动的态势。协调关系处于不断演化过程中,低协调阶段的城市数量明显减小,高协调阶段的城市数量明显增加,且呈集聚分布特点。南京、无锡、苏州、杭州和宁波处于高协调阶段;④ 空间滞后面板Tobit模型结果表明:城镇化对城市土地与碳排放耦合协调度具有驱动和制动的双重作用。同时,人口密度、经济水平、产业结构和空间因素对其也具有重要影响。  相似文献   

15.
Based on statistical data and population flow data for 2016,and using entropy weight TOPSIS and the obstacle degree model,the centrality of cities in the Yangtze River Economic Belt(YREB)together with the factors influencing centrality were measured.In addition,data for the population flow were used to analyze the relationships between cities and to verify centrality.The results showed that:(1)The pattern of centrality conforms closely to the pole-axis theory and the central geography theory.Two axes,corresponding to the Yangtze River and the Shanghai-Kunming railway line,interconnect cities of different classes.On the whole,the downstream cities have higher centrality,well-defined gradients and better development of city infrastructure compared with cities in the middle and upper reaches.(2)The economic scale and size of the population play a fundamental role in the centrality of cities,and other factors reflect differences due to different city classes.For most of the coastal cities or the capital cities in the central and western regions,factors that require long-term development such as industrial facilities,consumption,research and education provide the main competitive advantages.For cities that are lagging behind in development,transportation facilities,construction of infrastructure and fixed asset investment have become the main methods to achieve development and enhance competitiveness.(3)The mobility of city populations has a significant correlation with the centrality score,the correlation coefficients for the relationships between population mobility and centrality are all greater than 0.86(P<0.01).The population flow is mainly between high-class cities,or high-class and low-class cities,reflecting the high centrality and huge radiating effects of high-class cities.Furthermore,the cities in the YREB are closely linked to Guangdong and Beijing,reflecting the dominant economic status of Guangdong with its geographical proximity to the YREB and Beijing's enormous influence as the national political and cultural center,respectively.  相似文献   

16.
2000年以来长江经济带城市职能结构演变特征及战略思考   总被引:1,自引:1,他引:0  
王振波  罗奎  宋洁  徐建斌 《地理科学进展》2015,34(11):1409-1418
基于城市职能的专业化部门、职能规模和职能强度三要素,利用全国第五次和第六次人口普查数据,分析了2000-2010年长江经济带城市职能结构与演变特征。结果显示:①工业、建筑业、商业、房地产、科研和其他服务业部门是长江经济带的基本职能部门;②长三角地区是长江经济带的工业重心,城市群和大城市的工业化进程显著,产业梯度转移已经取得显著效果,但尚缺少国家层面分区分级的调控引导机制,生态环境安全面临巨大压力;③建筑和房地产业职能正在由下游向上中游转移,并拉动包括商业、科研、金融、社会服务、其他服务业等生产性和生活性服务业的迅猛发展,但城市产业同构现象严重,中心城市集聚能力不足;④交通通信业职能下降,难以支撑长江经济带国家战略的顺利实施。针对以上特征与问题,建议以管理机制创新培育流域一体化城市(群)职能分工体系,以流域产业准入标准保障协同发展的绿色城市职能体系,以城市群战略和国家级新区链接城市职能互协互补网络体系,以长江经济带综合立体交通走廊优化沿江城市资源配置格局。  相似文献   

17.
一次能源消费导致的二氧化碳排放量变化   总被引:12,自引:4,他引:8  
郭义强  郑景云  葛全胜 《地理研究》2010,29(6):1027-1036
从不同燃料和不同地区入手,分析了我国1995~2006年间一次能源消费导致的二氧化碳排放量变化情况。结果表明:1995~2006年间,我国一次能源消费导致的二氧化碳年总排放量呈现"先减少后增加"的发展态势,其拐点出现在2000年,而且2001年后各个省(区、市)的二氧化碳年排放量较前期均有大幅度的增加,总排放量由1995年的78678万t碳增长到2006年的146919万t碳,年均增长率5.84%,人均二氧化碳年排放量也由0.62t碳/人增加到1.12t碳/人;煤炭消费导致的二氧化碳排放量占全国二氧化碳年总排放量的79%~85%;我国七大区和大部分省(区、市)二氧化碳年排放量与全国总排放量有类似的发展态势,其中华北、华东地区二氧化碳排放量居全国首位,山西省的二氧化碳排放量位居全国第一。  相似文献   

18.
长江经济带农业发展的现状特征与模式转型   总被引:5,自引:0,他引:5  
李裕瑞  杨乾龙  曹智 《地理科学进展》2015,34(11):1458-1469
本文基于统计数据揭示长江经济带农业发展的现状特征,并结合农业农村发展范式及其演化的回顾,探讨新时期长江经济带农业发展模式转型及其基本策略。研究发现:长江经济带作为我国最重要的农业生产区域之一,近年来农业综合生产能力虽不断提升,但产品产量和产业产值占全国的比重呈下降趋势;农产品国际贸易呈现良好态势,但农产品加工业发展仍较薄弱;农业生产化学品投入强度不断提高,带来的环境问题函待解决;农业发展的新业态不断涌现,工资性收入成为农民收入的主体和动力源。新时期长江经济带的农业发展应充分吸收多功能农业生产和网络化乡村发展范式的有益成分,激发内生动力、整合外部动力,以全国粮食生产核心区、现代农业先行区、农产加工优势区、特色农业产业带为关键目标,实现“七大转变”,着力推进区域农业的多功能转型。深化相关改革、加大财政投入、鼓励创新创业、优化区域布局、加强区域合作、强化村镇建设是实现转型的重要保障。  相似文献   

19.
Global warming has been one of the major concerns behind the world's high-speed economic growth. How to implement the coordinated development of the carbon footprint and the economy will be the core issue of the world's economic and social development, as well as the heated debate of the research at home and abroad in recent years. Based on the energy consumption, integrated with the "Top-Down" life cycle approach and geographically weighted regression(GWR) model, this paper analyzed the spatial differences and multi-mechanism of carbon footprint in provincial China in 2010. Firstly, this study calculated the amount of carbon footprint of each province using "Top-Down" life cycle approach and found that there were significant differences of carbon footprint and per capita carbon footprint in provincial China. The provinces with higher carbon footprint, mainly located in northern China, have large economic scales; the provinces with higher per capita carbon footprint are mainly distributed in central cities such as Beijing, Shanghai and energy-rich regions and heavy chemical bases. Secondly, with the aid of GIS and spatial analysis model(GWR model), this paper had unfolded that the expansion of economic scale is the main driver of the rapid growth of carbon footprint. The growth of population and urbanization also acted as promoting factors for the increase of the carbon footprint. Energy structure had no considerable promoting effect for the increase of the carbon footprint. Improving energy efficiency is the most important factor to inhibit the growing carbon footprint. Thirdly, developing low-carbon economies and low-carbon industries, as well as advocating low-carbon city construction and improving carbon efficiency would be the primary approaches to inhibit the rapid growth of carbon footprint. Moderately controlling the economic scale and population size would also be required to alleviate carbon footprint. Meanwhile, environmental protection and construction of low-carbon cities would evoke extensive attention in the process of urbanization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号