首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
He-Ar isotopic compositions of fluid inclusions trapped in pyrites from some representative PGE-polymetallic deposits in Lower Cambrian black rock series in South China were analyzed by using an inert gas isotopic mass spectrometer. The results show that the ore-forming fluids possess a low 3He/4He ratio, varying from 0.43×10-8 to 26.39×10-8, with corresponding R/Ra value of 0.003-0.189. The 40Ar/36Ar ratios are 258-287, close to those of air saturated water (ASW). He-Ar isotopic indicator studies show that the ore-forming fluids were mainly derived from the formation water or basinal hot brine and sea water, while the content of mantle-derived fluid or deep-derived magmatic water might be negligible. The PGE-polymetallic mineralization might be related to the evolution of the Caledonian miogeosynclines distributed along the southern margin of the Yangtze Craton. During the Early Cambrian, the formation water or basinal hot brine trapped in Caledonian basins which accumulated giant thick sediments was  相似文献   

2.
The Lanping basin, Yunnan province, SW China, is located at the juncture of the Eurasian and Indian Plates in the eastern part of the Tibetan Plateau. The Lanping basin, in the Sanjiang Tethyan metallogenic province, is a significant Cu–Ag–Zn–Pb mineralized belt in China that includes the largest sandstone‐hosted Zn–Pb deposit in the world, the Jinding deposit, as well as several Ag–Cu deposits (the Baiyangping and Jinman deposits). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7,000 t Ag, are mainly hosted in Meso‐Cenozoic clastic rocks and are dominantly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the basin. The Baiyangping, Babaoshan, and Hetaoqing ore deposits are representative of the epithermal base metal deposits in the Lanping basin. The microthermometric data show that the ore‐forming fluids for these deposits were low temperature (110–180 °C) and had bimodal distribution of salinity at moderate and mid to high salinities (approximately 2–8 wt.% and 18–26 wt.% NaCl equivalent). The C and O isotope data indicate that the ore‐forming fluids were related to hot basin brines. We present new He and Ar isotope data on volatiles released from fluid inclusions contained in sulfides and in barite in these three deposits. 3He/4He ratios of the ore‐forming fluids are 0.01 to 0.14 R/Ra with a mean of 0.07 Ra (where R is the 3He/4He ratio and Ra is the ratio for atmospheric helium). This mean value is intermediate to typical 3He/4He ratios for the crust (R/Ra = 0.01 to 0.05) and the ratio for air‐saturated water (R/Ra = 1). The mean ratio is also significantly lower than the ratios found for mantle‐derived fluids (R/Ra = 6 to 9). The 40Ar/36Ar ratios of the ore‐forming fluids range from 298 to 382 with a mean of 323. This value is slightly higher than that for the air‐saturated water (295.5). The 3He/4He ratios of fluids from the fluid inclusions imply that the ore‐forming fluid for the Baiyangping, Babaoshan, and Hetaoqing deposits was derived from the crust and that any mantle‐derived He was negligible. The content of the radiogenic Ar ranges between 0.2 to 20.4%, and the proportion of air‐derived 40Ar averages 94.1%. This indicates that atmospheric Ar was important in the formation of these deposits but that some radiogenic 40Ar was derived from crustal rocks. Based on these observations coupled with other geochemical evidence, we suggest that the ore‐forming fluids responsible for the formation of the Ag–Cu–Pb–Zn polymetallic ore deposits in the Baiyangping area of the Lanping basin were mainly derived from crustal fluids. The fluids may have mixed with some amount of air‐saturated water, but there was no significant involvement of mantle‐derived fluids.  相似文献   

3.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

4.
The orogenic gold deposits in Southeast Guizhou are an important component of the Xuefeng polymetallic ore belt and have significant exploration potential, but geochronology research on these gold deposits is scarce. Therefore, the ore genetic models are poorly constrained and remain unclear. In the present study, two important deposits(Pingqiu and Jinjing) are investigated, including combined Re-Os dating and the He-Ar isotope study of auriferous arsenopyrites. It is found that the arsenopyrites from the Pingqiu gold deposit yielded an isochron age of 400 ± 24 Ma,with an initial ~(187)Os/~(188)Os ratio of 1.24 ± 0.57(MSWD = 0.96). An identical isochron age of 400 ± 11 Ma with an initial ~(187)Os/~(188)Os ratio of 1.55 ± 0.14(MSWD = 0.34) was obtained from the Jinjing deposit. These ages correspond to the regional Caledonian orogeny and are interpreted to represent the age of the main stage ore. Both initial ~(187)Os ratios suggest that the Os was derived from crustal rocks. Combined with previous rare earth element(REE), trace elements, Nd-Sr-S-Pb isotope studies on scheelite, inclusion fluids with other residues of gangue quartz, and sulfides from other gold deposits in the region, it is suggested that the ore metals from Pingqiu and Jinjing were sourced from the Xiajiang Group. The He and Ar isotopes of arsenopyrites are characterized by ~3 He/~4 He ratios ranging from 5.3 × 10~(-4) Ra to 2.5 × 10~(-2) Ra(Ra = 1.4 × 10~(-6), the ~3 He/~4 He ratio of air), 40 Ar=/~4 He ratios from 0.64 × 10~(-2) to 15.39×10~(-2), and ~(40)Ar/~(36)Ar ratios from 633.2 to 6582.0. Those noble gas isotopic compositions of fluid inclusions also support a crustal source origin,evidenced by the Os isotope. Meanwhile, recent noble gas studies suggest that the amount of in situ radiogenic ~4 He generated should not be ignored, even when Th and U are present at levels of only a few ppm in host minerals.  相似文献   

5.
The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral ~(40)Ar/~(39)Ar dating and report reliable ~(40)Ar/~(39)Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.  相似文献   

6.
The Tieshanlong tungsten‐polymetallic deposit is a large wolframite deposit of quartz vein type located in southern Jiangxi, South China. It is genetically related to a high‐K S‐type granite. Seven pyrite and two wolframite samples, selected for He and Ar isotope analyses, yielded 3He/4He values of 0.04–0.98 Ra, 40Ar/36Ar ratios of 293.5–368.0, and 38Ar/36Ar ratios of 0.176–0.193. These data indicate that the ore‐forming fluids associated with the deposit did not result from a simple mixing of the crustal‐ and mantle‐derived end‐member fluids, but that primeval meteoric fluids were also involved in the generation of the associated granitic magma by partial melting of crustal metasedimentary rocks. Further investigations show that only minimal He from the mantle was added during generation of the associated granitic magma. It is postulated that boiling and second mixing with “new” meteoric fluids took place during migration of magmatic‐hydrothermal fluids into wall‐rock fractures, resulting in a drastic decrease of their metal transport capacity, which triggered the tungsten‐polymetallic mineralization.  相似文献   

7.
The Jiapigou gold belt (>150 t Au), one of the most important gold-producing districts in China, is located at the northeastern margin of the North China Craton. It is composed of 17 gold deposits with an average grade around 10 g/t Au. The deposits are hosted in Archean gneiss and TTG rocks, and are all in shear zones or fractures of varying orientations and magnitudes. The δ34S values of sulfide from ores are mainly between 2.7?‰ and 10?‰. The Pb isotope characteristics of ore sulfides are different from those of the Archean metamorphic rocks and Mesozoic granites and dikes, and indicate that they have different lead sources. The sulfur and lead isotope compositions imply that the ore-forming materials might originate from multiple, mainly deep sources. Fluid inclusions in pyrite have 3He/4He ratios of 0.6 to 2.5 Ra, whereas their 40Ar/36Ar ratios range from 1,444 to 9,805, indicating a dominantly mantle fluid with a negligible crustal component. δ18O values calculated from hydrothermal quartz are between ?0.2?‰ and +5.9?‰, and δD values of the fluids in the fluid inclusions in quartz are from ?70?‰ to ?96?‰. These ranges suggest dominantly magmatic water with a minor meteoric component. The noble gas isotopic data, along with the stable isotopic data, suggest that the ore-forming fluids have a dominantly mantle source with minor crustal addition.  相似文献   

8.
The paper considers the results of high-precision Pb–Pb isotopic analysis of 120 galena samples from 27 Au and Ag deposits of the South Verkhoyansk Synclinorium (SVS) including large Nezhdaninsky deposit (628.8 t Au). The Pb isotopic composition is analyzed on a MC-ICP-MS NEPTUNE mass-spectrometer from solutions with an error of no more than ±0.02% (2σ). Four types of deposits are studied: (i) stratified vein gold–quartz deposits (type 1) hosted in metamorphosed Upper Carboniferous–Lower Permian terrigenous rocks and formed during accretion of the Okhotsk Block to the North Asian Craton synchronously with dislocation metamorphism and related granitic magmatism; (ii) vein gold–quartz (Nezhdaninsky type) deposits also hosted in Lower Permian metasedimentary rocks; (iii) Au–Bi deposits localized at the contact zones of the Late Cretaceous granitic plutons; and (iv) Sn–Ag polymetallic deposits related to granitic and subvolcanic rocks of the Okhotsk Zone of the SVS. The deposits of types 2, 3, and 4 are postaccretionary. The general range of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios is 18.1516–18.5903 (2.4%), 15.5175–15.6155 (0.63%), and 38.3010–39.0481 (2.0%), respectively. In 206Pb/204Pb–207Pb/204Pb and 206Pb/204Pb–208Pb/204Pb diagrams, the data points of Pb isotopic compositions of all deposits occupy restricted, partly overlapping areas along a general elongated trend. The various SVS Au–Ag deposits can be classified according to the Pb isotopic composition in accordance with all three Pb ratios. Deposits of the same type show distinct Pb isotopic compositions that strongly exceed the scale of analytical error (±0.02%). The differences in Pb isotopic composition within specific deposits are low and subordinate and have little effect on variations in the Pb isotopic composition of the SVS deposits. The μ2 values (Stacey–Kramers model), which characterize the 238U/204Pb ratios of ore lead sources of the SVS deposits, widely vary from 9.7 to 9.38. The ω2 values (232Th/204Pb) are 39.82–36.61, whereas the Th/U ratios are 4.04–3.86. The content of all three radiogenic Pb isotopes and μ2 values of feldspars from SVS intrusive rocks are strongly distinct from those of galena of stratified gold–quartz and vein gold–quartz deposits and are identical to Pb of galena from Au–Bi and Sn–Ag polymetallic deposits, indicating a mostly magmatic origin for the Pb of these deposits. Detailed isotopic study of the Nezhdaninsky deposit shows different Pb isotopic composition of two consecutive mineral assemblages (gold–sulfide and Ag polymetallic): ~0.30, ~0.07, and ~0.22% for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios, respectively. These differences are interpreted as a result of involvement of at least two metal sources during the evolution of an ore-forming system: (i) host Lower Permian terrigenous rocks and (ii) a magmatic source similar in Pb isotopic composition to that of Sn–Ag polymetallic deposits. The Pb isotopic composition and μ2 and Th/U values show that lead of stratified gold–quartz deposits combines isotopic tracers of lower and upper crustal sources (Upper Carboniferous–Lower Permian terrigenous rocks), lead of which was mobilized by ore-bearing fluids. The high 208Pb/206Pb ratios and Th/U evolutionary parameter are common to all Pb isotopic composition of all studied Au–Ag deposits and SVS Cretaceous intrusive rocks and indicate that Pb sources were depleted in U relative to Th. Taking into account the structure of the region and conceptions on its evolution, we can suggest that the magma source was related to lower crustal subducted rocks of the Archean (~2.6 Ga) North Asian Craton and the Okhotsk terrane.  相似文献   

9.
More than 90% of the tungsten resources of China are in the Nanling region of South China, and the Yaogangxian vein deposit is the largest tungsten deposit in this region. The tungsten deposits have ages of 150–160 Ma, and are spatially, temporally and genetically related to granites which were previously believed to be produced by crustal anatexis. This paper provides He and Ar isotope data of fluid inclusions in pyrite and arsenopyrite from the Yaogangxian W veins. 3He/4He ratios range from 0.41 to 3.03 Ra (where Ra is the 3He/4He ratio of air?=?1.39?×?10?6), and 40Ar/36Ar ratios from 328 to 1,191. Moreover, there are excellent correlations between He and Ar isotopic compositions. The results suggest that the ore-forming fluids are a mixture between a crustal fluid containing atmospheric Ar and crustal 4He and a fluid containing mantle components. It is likely that the former is a low temperature meteoric fluid, and the later is a fluid exsolved from the W-associated granitic magma, which formed by crustal melting induced by intrusion of a mantle-derived magma.  相似文献   

10.
The reserves of the Duobaoshan porphyry Cu-Au-Mo-Ag deposit(also referred to as the Duobaoshan porphyry Cu deposit) ranks first among the copper deposits in China and 33rd among the porphyry copper deposits in the world. It has proven resources of copper(Cu), molybdenum(Mo), gold(Au), and silver(Ag) of 2.28×106 t, 80×103 t, 73 t, and 1046 t, respectively. The major characteristics of the Duobaoshan porphyry Cu deposit are as follows. It is located in a zone sandwiched by th...  相似文献   

11.
The Yinan gold deposit in the Luxi area of Shandong Province in northeastern China is a skarn-type ore deposit. In this article, we present results from sulphur, lead, carbon–oxygen, and helium–argon isotope chemistry to characterize the ore genesis and source features. We also present rhenium–osmium ages from molybdenite to evaluate the timing of ore formation. The δ34S values of pyrite from the ore deposit range from 0.7‰ to 5.60‰ with a mean at 2.70‰, close to mantle and meteorite sulphur. Among Pb isotopes, 206Pb/204Pb values range from 18.375 to 18.436, 207Pb/204Pb values from 15.694 to 15.8, and 208Pb/204Pb values from 38.747 to 39.067. The δ13C values of calcite associated with the ores range from ?0.2‰ to ?0.5‰ and their δ18O values show variation from 9.4‰ to 12.6‰, suggesting a mixed fluid source. The 3He/4He and 40Ar/36Ar ratios of fluids trapped in pyrite are in the range of 0.27–1.11 Ra and 439.4–826, respectively, with calculated proportion of the mantle-derived He ranging from 3.25% to 14.03% and atmosphere argon ranging from 35.8% to 67.3%. The data suggest that the ore-forming fluids were derived from the crust and were mixed with a distinct contribution of mantle helium. The Re and Os values vary from 32 × 10?6 to 93.02 × 10?6 and from 0.01 × 10?9 to 0.34 × 10?9, respectively. The model ages of molybdenite range from 126.96 ± 1.82 Ma to 129.49 ± 2.04 Ma, with a weighted mean age of 128.08 ± 0.75 Ma and isochron age of 130.3 ± 3 Ma. These ages are close to the age of the associated quartz diorite porphyrite pluton, suggesting a close relationship between Cretaceous magmatism and metallogeny in NE China. A comparison of the Yinan gold deposit in the Luxi area with those of the Jiaodong area shows that the contrast in metallogenic features between the two are linked with the tectonic and geodynamic history.  相似文献   

12.
文章利用黄铁矿流体包裹体惰性气体同位素,探讨了广西栗木锡铌钽矿田成矿流体的来源.黄铁矿流体包裹体的3He/4He比值为0.14~0.97 Ra,远远低于地幔流体的比值,接近饱和大气水的比值,并与地壳流体的比值处在相同的数量级上;40 Ar/36 Ar比值为555.98~ 855.11,平均705.55,显然偏离大气氩的同位素组成;40Ar*/4He比值为0.08~0.27,平均值为0.153,接近地壳值;20Ne/22 Ne=9.671~9.748和21Ne/22 Ne=0.0306~ 0.0330,具有饱和大气水的Ne同位素比值特征.结果表明,广西栗木锡铌钽矿田老虎头、牛栏岭和金竹源3个矿床的成矿流体是大气水和地壳流体的混合流体;水溪庙矿床的成矿流体也主要是大气水和地壳流体的混合流体,但可能有少量地幔流体的加入.  相似文献   

13.
The Yinshan deposit in the Jiangnan tectonic belt in South China consists of Pb‐Zn‐Ag and Cu‐Au ore bodies. This deposit contains approximately 83 Mt of the Cu‐Au ores at 0.52% Cu and 0.8 g/t Au, and 84 Mt of the Pb‐Zn‐Ag ores at 1.25% Pb, 1.02% Zn and 33.3 g/t Ag. It is hosted by low‐grade metamorphosed sedimentary rocks and mafic volcanic rocks of the lower Mesoproterozoic Shuangqiaoshan Group, and continental volcanic rocks of the Jurassic Erhuling Group and dacitic subvolcanic rocks. The ore bodies mainly consist of veinlets of sulfide minerals and sulfide‐disseminated rocks, which are divided into Cu‐Au and Pb‐Zn‐Ag ore bodies. The Cu‐Au ore bodies occur in the area close to a dacite porphyry stock (No. 3 stock), whereas Pb‐Zn‐Ag bodies occur in areas distal from the No. 3 stock. Muscovite is the main alteration mineral associated with the Cu‐Au ore bodies, and muscovite and chlorite are associated with the Pb‐Zn‐Ag ores. A zircon sensitive high‐resolution ion microprobe U‐Pb age from the No. 3 dacite stock suggests it was emplaced in Early Jurassic. Three 40Ar‐39Ar incremental‐heating mineral ages from muscovite, which are related to Cu‐Au and Pb‐Zn‐Ag mineralization, yielded 179–175 Ma. These muscovite ages indicate that Cu‐Au mineralization occurred at 178.2±1.4 Ma (2σ), and Pb‐Zn‐Ag mineralization at 175.4±1.2 Ma (2σ) and 175.3±1.1 Ma (2σ), which supports a restricted period for the mineralization. The Early Jurassic ages for the mineralization at Yinshan are similar to that of the porphyry Cu mineralization at Dexing in Jiangnan tectonic belt, and suggest that the polymetallic mineralization occurred in a regional transcompressional tectonic regime.  相似文献   

14.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

15.
The Tonggou Cu polymetallic deposit in the Bogda Orogenic Belt, Eastern Tianshan shows evidence for three stages of hydrothermal mineralization: early pyrite veins (Stage 1), polymetallic sulfide ± epidote–quartz (Stage 2), and late-stage pyrite–calcite veins (Stage 3). Fluid inclusion petrography and microthermometry analyses indicate that the liquid-rich aqueous inclusions (L), vapour-rich aqueous inclusions (V), and NaCl daughter mineral–bearing three phase inclusions (S) formed during the main stage of mineralization, and that the ore fluids represent high-temperature and high-salinity H2O-NaCl hydrothermal fluids that underwent boiling. Stable isotope (H, O) data indicate that the ore fluids of the Tonggou deposit were originally derived from magmatic water in Stage 2 and subsequently mixed with local meteoric water during Stage 3. Sulphur isotope compositions (6.7‰ to 10.9‰) are consistent with the δ34S values of pyrite from the Qijiaojing Formation sandstone, indicating the primary source of the sulphur ore. Furthermore, chalcopyrite grains separated from the chalcopyrite-rich ore samples yield an isochron age of 303 ± 12 Ma (MSWD = 1.2). These results indicate that the Tonggou deposit is a transition between high–sulfidation and porphyry deposits which formed in the Late Carboniferous. It also suggests an increased likelihood for the occurrence of Cu (Au, Mo) in the Bogda Orogenic Belt, especially at locations where the Cu-Zn deposits are thicker; further deep drilling and exploration are encouraged in these areas.  相似文献   

16.
The Bairendaba vein-type Ag–Pb–Zn deposit, hosted in a Carboniferous quartz diorite, is one of the largest polymetallic deposits in the southern Great Xing'an Range. Reserves exceeding 8000 tonnes of Ag and 3 million tonnes of Pb?+?Zn with grades of 30 g/t and 4.5% have been estimated. We identify three distinct mineralization stages in this deposit: a barren pre-ore stage (stage 1), a main-ore stage with economic Ag–Pb–Zn mineralization (stage 2), and a post-ore stage with barren mineralization (stage 3). Stage 1 is characterized by abundant arsenopyrite?+?quartz and minor pyrite. Stage 2 is represented by abundant Fe–Zn–Pb–Ag sulphides and is further subdivided into three substages comprising the calcite–polymetallic sulphide stage (substage 1), the fluorite–polymetallic sulphide stage (substage 2), and the quartz–polymetallic sulphide stage (substage 3). Stage 3 involves an assemblage dominated by calcite with variable pyrite, galena, quartz, fluorite, illite, and chlorite. Fluid inclusion analysis and mineral thermometry indicate that the three stages of mineralization were formed at temperatures of 320–350°C, 200–340°C, and 180–240°C, respectively. Stage 1 early mineralization is characterized by low-salinity fluids (5.86–8.81 wt.% NaCl equiv.) with an isotopic signature of magmatic origin (δ18Ofluid = 10.45–10.65‰). The main ore minerals of stage 2 precipitated from aqueous–carbonic fluids (4.34–8.81 wt.% NaCl equiv.). The calculated and measured oxygen and hydrogen isotopic compositions of the ore-forming aqueous fluids (δ18Ofluid = 3.31–8.59‰, δDfluid?=??132.00‰ to??104.00‰) indicate that they were derived from a magmatic source and mixed with meteoric water. Measured and calculated sulphur isotope compositions of hydrothermal fluids (δ34S∑S?=??1.2–3.8‰) indicate that the ore sulphur was derived mainly from a magmatic source. The calculated carbon isotope compositions of hydrothermal fluids (δ13Cfluid?=??26.52‰ to??25.82‰) suggest a possible contribution of carbon sourced from the basement gneisses. The stage 3 late mineralization is dominated (1.40–8.81 wt.% NaCl equiv.) by aqueous fluids. The fluids show lower δ18Ofluid (?16.06‰ to??0.70‰) and higher δDfluid (?90.10‰ to??74.50‰) values, indicating a heated meteoric water signature. The calculated carbon isotope compositions (δ13Cfluid?=??12.82‰ to??6.62‰) of the hydrothermal fluids in stage 3 also suggest a possible contribution of gneiss-sourced carbon. The isotopic compositions and fluid chemistry indicate that the ore mineralization in the Bairendaba deposit was related to Early Cretaceous magmatism.  相似文献   

17.
粤北诸广南部铀矿田是我国重要的花岗岩型铀矿产地之一,有关诸广南部花岗岩型铀矿田的成因,多年来一直存在较大的争议。本文以诸广南部铀矿田典型铀矿床成矿期萤石、方解石和黄铁矿中流体包裹体为测试对象,研究了成矿流体的He、Ar同位素地球化学。研究表明,萤石流体包裹体的~3He/~4He比值为0. 021~0. 186Ra,~(40) Ar/~(36)比值为298. 4~2515. 7;方解石流体包裹体的3He/4He比值为0. 027~0. 209Ra,~(40) Ar/~(36)比值为295. 9~327. 2;黄铁矿流体包裹体的3He/4He比值为0. 021~1. 543Ra,~(40) Ar/~(36)比值为326. 9~1735. 1; He-Ar同位素系统显示成矿流体的3He/4He比值略高于地壳氦同位素特征值(0. 01~0. 05Ra),但低于幔源氦同位素特征值(6~9Ra),~(40) Ar/~(36)比值接近或高于大气氩的同位素组成(~(40) Ar/~(36)=295. 5),成矿流体为壳-幔混合来源。结合H-O、He-Ar、C和Sr等多元同位素证据表明,成矿流体由两个端元组成:一是含有一定放射性成因Ar的大气降水的地壳流体,二是含幔源He的地幔流体。进一步研究表明,受NNW向断裂控制的棉花坑、书楼丘、长排等铀矿床受地幔流体影响比较大,而受NE向断裂控制的蕉坪、东坑、烟筒岭铀矿床受大气降水影响比较大。  相似文献   

18.
The Lugokan ore cluster is located in the southeastern part of Transbaikalia within the Aga–Borzya structural–formational zone of the Mongol–Okhotsk orogenic belt. The 40Ar/39Ar dating of K-bearing minerals of syngenetic to ore parageneses has been carried out applying stepwise heating technique: it has been demonstrated that the earliest gold-ore mineral associations are Au–pyrite–arsenopyrite (163 ±1.9 Ma) and Au–chalcopyrite (160 ±2 Ma). The later parageneses encompass the Au–polymetallic (156.3 ± 1.8 Ma) and Au–Bi (155.9 ± 4.5 Ma) one. By their ages and position in the general scheme of the Late Jurassic magmatism of Eastern Transbaikalia, the Lugokan’s ore cluster gold-bearing mineral associations corresponds to the time of intrusion of the Shakhtama pluton (161 Ma) and the Porphyry Complex (159–155 Ma).  相似文献   

19.
The Jinding superlarge lead and zinc deposit has attracted the attention of geologists of the world and its metallogenesis has long been in dispute. This paper takes the Jinding deposit and the Baiyangping Cu-Ag-Co deposit which was recently found at about 30 km north of Jinding as one ore belt, and, based on researches on the helium, argon, and xenon isotopic compositions of primary inclusions in ore-forming solutions of the main stage, the authors have found that the 3He/4He ratio of the ore-forming fluid is 2.7′ 10- 6 (varying from 0.19 to 1.97 Ra), the 4He/40Ar ratio (0.24- 3.12) is close to the mantle characteristic ratio, and the xenon isotopic composition and evolution show characters of the mantle xenon. The above results reveal the characteristics of mantle source and crust-mantle fluid mixing (mantle helium reaching 32%) and the metallogenic contributions of the deep processes in the Jinding-Baiyangping ore belt.  相似文献   

20.
The polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu deposits in the Kapan, Alaverdi and Mehmana mining districts of Armenia and the Nagorno–Karabakh region form part of the Tethyan belt. They are hosted by Middle Jurassic rocks of the Lesser Caucasus paleo-island arc, which can be divided into the Kapan Zone and the Somkheto–Karabakh Island Arc. Mineralization in Middle Jurassic rocks of this paleo-island arc domain formed during the first of three recognized Mesozoic to Cenozoic metallogenic epochs. The Middle Jurassic to Early Cretaceous metallogenic epoch comprises porphyry Cu, skarn and epithermal deposits related to Late Jurassic and Early Cretaceous intrusions. The second and third metallogenic epochs of the Lesser Caucasus are represented by Late Cretaceous volcanogenic massive sulfide (VMS) deposits with transitional features towards epithermal mineralization and by Eocene to Miocene world-class porphyry Mo–Cu and epithermal precious metal deposits, respectively.The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are poorly understood and previous researchers named them as copper–pyrite, Cu–Au or polymetallic deposits. Different genetic origins were proposed for their formation, including VMS and porphyry-related scenarios. The ore deposits in the Kapan, Alaverdi and Mehmana mining districts are characterized by diverse mineralization styles, which include polymetallic veins, massive stratiform replacement ore bodies at lithological contacts, and stockwork style mineralization. Sericitic, argillic and advanced argillic alteration assemblages are widespread in the deposits which have intermediate to high-sulfidation state mineral parageneses that consist of tennantite–tetrahedrite plus chalcopyrite and enargite–luzonite–colusite, respectively. The ore deposits are spatially associated with differentiated calc-alkaline intrusions and pebble dykes are widespread. Published δ34S values for sulfides and sulfates are in agreement with a magmatic source for the bulk sulfur whereas published δ34S values of sulfate minerals partly overlap with the isotopic composition of contemporaneous seawater. Published mineralization ages demonstrate discrete ore forming pulses from Middle Jurassic to the Late Jurassic–Early Cretaceous boundary, indicating time gaps of 5 to 20 m.y. in between the partly subaqueous deposition of the host rocks and the epigenetic mineralization.Most of the described characteristics indicate an intrusion-related origin for the ore deposits in Middle Jurassic rocks of the Lesser Caucasus, whereas a hybrid VMS–epithermal–porphyry scenario might apply for deposits with both VMS- and intrusion-related features.The volcanic Middle Jurassic host rocks for mineralization and Middle to Late Jurassic intrusive rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone show typical subduction-related calc-alkaline signature. They are enriched in LILE such as K, Rb and Ba and show negative anomalies in HFSE such as Nb and Ta. The ubiquitous presence of amphibole in Middle Jurassic volcanic rocks reflects magmas with high water contents. Flat REE patterns ([La/Yb]N = 0.89–1.23) indicate a depleted mantle source, and concave-upward (listric-shaped) MREE–HREE patterns ([Dy/Yb]N = 0.75–1.21) suggest melting from a shallow mantle reservoir. Similar trace element patterns of Middle Jurassic rocks from the Somkheto–Karabakh Island Arc and the Kapan Zone indicate that these two tectonic units form part of one discontinuous segmented arc. Similar petrogenetic and ore-forming processes operated along its axis and Middle Jurassic volcanic and volcanosedimentary rocks constitute the preferential host for polymetallic Cu–Au–Ag–Zn ± Pb, Cu–Au and Cu mineralization, both in the Somkheto–Karabakh Island Arc and the Kapan Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号