共查询到18条相似文献,搜索用时 62 毫秒
1.
建立了用碳酸钠-四硼酸钠熔融分解样品,电感耦合等离子体发射光谱法同时测定铬铁矿石中铁、铝、钙、镁、硅、锰、磷、钛、钒、钴、镍等11种元素的方法。对熔剂用量、元素分析谱线、仪器条件参数选择和基体效应等进行讨论,考察了铬量对测定结果的影响。结果表明,铬对各元素的测定结果影响明显,采取在标准溶液中加入一定量铬、熔剂和盐酸,保持基体与试样一致,消除了基体效应。方法检出限为0.12 ~3.83 μg/g,精密度(RSD,n=12)为0.65%~3.86%。经国家标准物质(GBW 07201、GBW 07202)进行验证,测定值和标准值一致,加标回收率为91.4%~107.2%。 相似文献
2.
等离子体发射光谱法测定大气颗粒物中的无机元素 总被引:10,自引:4,他引:10
建立了用等离子体发射光谱(ICP-AES)测定大气颗粒物中无机元素的分析方法,包括样品消解体系的选择,仪器的操作条件及采样滤膜的选择,产对自行采样分析测得的无机元素数据作了初步的讨论。实验结果表明:采用HNO3-HClO4消解体系,操作方便,样品消解较完全;选用石英滤膜查减低空白值,保证测定质量以及同时在一张滤膜上测定大气颗粒物中的有机碳、元素碳及无机元素;内标法可有效降低由于仪器漂移等因素对测定 相似文献
3.
过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中铬磷钒 总被引:1,自引:2,他引:1
样品经过氧化钠碱熔,溶解后的上层清液直接酸化,用电感耦合等离子体发射光谱测定钛铁矿中铬、磷、钒的含量。确定了钛铁矿石中Cr、P、V的分析谱线、光谱级次;为了消除钠盐基体的影响,确定稀释因子为1000,标准曲线基体与样品基体保持一致;为避免过氧化钠熔矿后溶液碱性较大对进样系统造成腐蚀,加入2.00 mL盐酸对溶液进行酸化。方法检出限为4.46~23.55μg/g,采用国家一级标准物质进行验证,方法准确度小于10%,精密度为0.68%~9.90%。本法与分光光度法单一元素测定相比较,具有测量范围宽、结果准确、操作简便、省时省力、适合大批量样品测定等突出的优点。 相似文献
4.
运用电感耦合等离子体发射光谱(ICP-AES)测定地球化学样品中的钍,样品处理方法通常是采用四酸溶矿。但在实际测定中发现,当钍含量接近本底时,检测结果不稳定;当基体干扰大时,钍含量甚至无法检出。本文对样品前处理方法进行改进,采用过氧化钠碱熔样品,10 g/L氢氧化钠溶液过滤洗涤,再用热的40%盐酸溶解沉淀,ICP-AES法测定钍的含量。通过实验确定了钍的最佳分析谱线为401.913 nm,方法检出限为0.21μg/g,精密度(RSD,n=6)为7.7%~15.9%,准确度(n=6)为7.0%~10.0%,加标回收率为92.0%~104.0%。经国家标准物质验证,本方法可准确测定钍含量大于0.21μg/g的样品。方法简便快捷,干扰少,较一般的酸溶ICP-AES测定方法的检出限(0.6~0.7μg/g)低,适用于大批量实际样品的快速检测。 相似文献
5.
高岭土经高氯酸-氢氟酸混合酸消解、挥硅处理,标准溶液中加入一定含量的铝进行基体匹配,电感耦合等离子体发射光谱法测定矿样中铁、锰、镁、钙、钠、钾的含量,方法基体效应较小,各待测元素之间没有明显干扰。方法用于分析有证标准物质和实际样品,分析结果与标准值和国家标准方法测定值一致,均在允许误差范围内;回收率为88%~107%;精密度(RSD,n=12)为0.77%~2.85%。与现行的单元素分析方法相比,建立的方法分析周期短,操作简单,适用于大批量高岭土的商品检验。 相似文献
6.
钛矿资源主要类型为钛铁矿岩矿、钛铁矿砂矿、金红石矿。钛铁矿属于难熔矿物,一般不溶于硝酸、盐酸或王水。对于高品位钛铁矿,即使采用盐酸-硝酸-氢氟酸-高氯酸混合酸溶解样品,钛元素也易水解形成难溶的偏钛酸析出,常给分析带来很大困难。容量法和分光光度法等传统方法测定钛存在操作流程长、步骤多、效率低等不足。因此,选择合适前处理方法的同时将大型仪器分析方法结合起来,有利于提高钛铁矿分析的准确度和测试效率。本文建立了以2.0g过氧化钠为熔剂,使用刚玉坩埚在700℃熔融样品15min,热水浸取后盐酸酸化,用电感耦合等离子体发射光谱(ICP-OES)测定钛铁矿中的高含量钛元素的方法。实验中采用全程空白试液稀释定容标准溶液消除了钠基体影响,通过优化熔融温度和时间使样品分解完全,考察了过氧化钠用量来降低待测溶液中盐分以保证测定的稳定性,通过选择合适的分析谱线并采用背景扣除法消除光谱干扰。本方法检出限为0.0035%,测试范围为0.0066%~62.50%(均以TiO2含量计);经钛铁矿国家标准物质(GBW07839、GBW07841)验证,相对标准偏差(RSD,n=12)为1.1%~2.1%,相对误差为-1.69%~1.11%。本方法应用于实际样品分析,相对标准偏差(RSD,n=12)均小于4%,TiO2分析结果与国家标准方法(硫酸铁铵容量法)一致。本方法有效解决了钛铁矿分解不完全及高含量的钛易水解的问题,实现ICP-OES对不同类型钛铁矿样品中钛元素的定量分析。 相似文献
7.
用氢氟酸-高氯酸消解体系分解样品,建立了石英砂中铁、钛、镁、锰、锌、铜、铅、砷、镉、镍、铬、钴、锑、铝、钡等15种杂质元素的电感耦合等离子体发射光谱测定方法。系统研究了氢氟酸-高氯酸和氢氟酸-硫酸消解体系对测定结果的影响,对氢氟酸、高氯酸试剂的用量、消解温度和仪器条件等参数进行了优化。选取石英砂样品进行加标回收试验,方法平均回收率为90.4%~110.7%,相对标准偏差(RSD,n=6)小于5.0%,检出限为0.17~0.88μg/g。方法简单、快速,样品一次前处理即可完成多种元素的检测,灵敏度高,精密度好,可满足生产企业对石英砂产品和原料杂质含量的控制。 相似文献
8.
应用电感耦合等离子体发射光谱法(ICP-OES)测定高钛含量的钛铝合金中铬铁钼硅时,单一酸不能使钛铝合金完全溶解;混合酸溶解样品后仍会出现少量杂质、溶解不完全的现象,且复溶时易出现沉淀现象,即使用浓王水也难以将沉淀再溶解。本实验在700℃温度下,采用过氧化钠进行碱熔20 min,盐酸酸化,建立了应用ICP-OES测定钛铝合金中的铬铁钼硅的方法。实验中采用钛基体匹配的方法降低了试液中钛浓度大于200μg/m L时的钛基体干扰,通过控制过氧化钠使用量来降低待测溶液中的盐分含量保证了测定的稳定性。方法检出限为0.002~0.005μg/m L,测定下限为0.007~0.017μg/m L;采用国家标准物质(GBW02501)进行验证,方法的相对标准偏差(RSD)为0.90%~4.89%,相对误差为1.2%~3.6%,回收率为91.6%~103.8%。本方法与酸溶法相比,样品溶解完全,测定准确、可靠,适用于高钛含量的钛铝合金多元素测定。 相似文献
9.
石墨化学性质稳定,需采用高温碱熔(1000℃)才可使样品分解完全,已有分析方法在样品前处理不同的阶段使用不同材质的坩埚。基于石墨性质和坩埚熔样情况,本文采用预先已均匀铺垫0.50 g碳酸钾的高熔点铂坩埚灼烧石墨样品,样品灼烧后直接在原坩埚中加入0.80 g碳酸钠碱熔,熔融物用稀盐酸提取后用电感耦合等离子光谱法(ICP-OES)实现了石墨中8种常量元素(硅铝钙镁铁钛锰磷)的同时测定。方法检出限为13~228μg/g,方法精密度(RSD,n=12)为0.7%~7.2%;全流程加标回收率为90.5%~105.0%;实际土状和鳞片石墨样品的测定结果与化学分析法无显著差异。本方法避免了铂坩埚的损毁和样品在前处理过程中的损失,分析过程简单、分析速度快。 相似文献
10.
建立了电感耦合等离子体发射光谱法测定地质样品中Ba、Be、Cr、Cu、Li、Mn、P、Sr、Ti、V、Zn、Al2O3、CaO、Fe2O3、K2O、Mg O、Na2O等17种成分的分析方法。采用硝酸、氢氟酸、盐酸、高氯酸进行样品消解,消解功率为1 200 W、雾化气压力为0.17 mpa、辅助气流量为0.6L/min,长波和短波的曝光时间均为15 s。研究了不同稀释倍数下基体效应对分析结果的影响,发现当稀释倍数为100时,基体效应产生的影响较小,各元素的分析结果较为满意。利用该方法测定国家一级标准物质,各元素测定结果的相对标准偏差均小于12%(n=12),相对误差的绝对值均小于14%,满足多目标区域地球化学调查规范(DZ/T0258-2014)对准确度和精密度的控制要求。 相似文献
11.
12.
13.
电感耦合等离子体原子发射光谱法同时测定沉积岩中15个元素 总被引:2,自引:10,他引:2
采用电感耦合等离子体原子发射光谱法同时测定沉积岩样品中K、Na、Ca、Mg、Fe、Mn、Ni、V、Ga、Cu、Zn、Sr、Ba、Cr和B等15个元素。在应用混合酸处理样品的过程中,加入适量的甘露醇能够抑制硼的挥发。在优化选定的仪器条件中,15个元素的检出限为0.0010-0.032mg/L。对岩石国家一级标准物质GBW 07105~GBW 07108进行检测,各元素的测定值与标准值吻合。方法的回收率为93.3%~106.0%,测定结果的相对标准偏差(RSD,n=10)均小于5.2%。 相似文献
14.
15.
采用硝酸、硫酸、氢氟酸在高压密封微波消解体系中完全消解褐煤、烟煤和无烟煤样品,消解温度为180℃以上,以178.283 nm作为磷的分析谱线,电感耦合等离子体发射光谱法测定煤样中磷的含量。通过扣除背景的方法消除了基体干扰和光谱干扰,Si、Fe、Ca、Al、Mg对磷的检测无显著影响。磷浓度在0~10 mg/L范围内与等离子体发射强度呈良好的线性关系,方法检出限为0.09 mg/L,回收率为94.5%~101.2%,精密度(RSD,n=12)为1.89%~5.21%。方法用于分析标准物质,测定值与标准值一致。 相似文献
16.
电感耦合等离子体原子发射光谱法(ICP-AES)测定纯铜中多种杂质元素 总被引:1,自引:0,他引:1
本文采用电感耦合等离子体发射光谱法同时测定纯铜中的Fe、P、Cd、Co、Mn、Ni、Pb、Zn、As、Sb、Bi、Sn、S、Ag、Se、Cr、Si、Mg、Te、Al、Ti、Hg、Be、Zr、B等25种杂质元素,并以差减法计算基体铜的含量,实现了对试样基体及杂质元素含量的同时测定。以基体匹配法配制工作曲线,有效地消除基体干扰。结果表明该方法对25种杂质元素的回收率在94~103.5%,相对标准偏差低于3.0%。方法简单、快速,测定结果满意。 相似文献
17.
电感耦合等离子体发射光谱法快速测定磷矿石中主次量组分 总被引:4,自引:3,他引:4
采用碳酸锂-硼酸混合熔剂在高频熔样机上熔融样品酸化定容后,直接用电感耦合等离子体发射光谱法快速测定磷矿石中五氧化二磷、氧化钙、氧化镁、二氧化硅、氧化铁、氧化铝、氧化钾、氧化钠、二氧化钛、氧化锰、氧化锶11种组分的含量,对入射波长、雾化压力、入射功率、提升量等分析条件进行了优化。方法检出限为0.0001~0.019μg/g,相对标准偏差(RSD,n=11)为0.78%~2.60%。建立的方法抗干扰能力强,线性范围宽,精密度高,结果准确,适用于磷矿石中主次量组分的分析。 相似文献
18.
电感耦合等离子体发射光谱法同时测定土壤样品中54种组分 总被引:3,自引:3,他引:3
用高氯酸-氢氟酸-硝酸消解样品,样品中的难溶组分被有效浸取,电感耦合等离子体发射光谱法测定土壤样品中稀土元素及稀散元素等54种组分。通过筛选分析谱线、合理设置背景扣除位置及干扰元素校正系数,改善了光谱干扰。方法经国家一级土壤标准物质分析验证,结果与标准值吻合,相对标准偏差低于6.0%。方法可测组分多,试剂用量少,简便快速,劳动强度低,能够满足基体组成复杂的区域土壤地球化学调查样品分析的要求,也为其他地球化学样品中相关组分的分析提供借鉴。 相似文献