首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attenuation in seismic wave propagation is a common cause for poor illumination of subsurface structures. Attempts to compensate for amplitude loss in seismic images by amplifying the wavefield may boost high‐frequency components, such as noise, and create undesirable imaging artefacts. In this paper, rather than amplifying the wavefield directly, we develop a stable compensation operator using stable division. The operator relies on a constant‐Q wave equation with decoupled fractional Laplacians and compensates for the full attenuation phenomena by performing wave extrapolation twice. This leads to two new imaging conditions to compensate for attenuation in reverse‐time migration. A time‐dependent imaging condition is derived by applying Q‐compensation in the frequency domain, whereas a time‐independent imaging condition is formed in the image space by calculating image normalisation weights. We demonstrate the feasibility and robustness of the proposed methods using three synthetic examples. We found that the proposed methods are capable of properly compensating for attenuation without amplifying high‐frequency noise in the data.  相似文献   

2.
To better understand (and correct for) the factors affecting the estimation of attenuation (Q), we simulate subsurface wave propagation with the Weyl/Sommerfeld integral. The complete spherical wavefield emanating from a P‐wave point source surrounded by a homogeneous, isotropic and attenuative medium is thus computed. In a resulting synthetic vertical seismic profile, we observe near‐field and far‐field responses and a 90° phase rotation between them. Depth dependence of the magnitude spectra in these two depth regions is distinctly different. The logarithm of the magnitude spectra shows a linear dependence on frequency in the far‐field but not in those depth regions where the near‐field becomes significant. Near‐field effects are one possible explanation for large positive and even negative Q‐factors in the shallow section that may be estimated from real vertical seismic profile data when applying the spectral ratio method. We outline a near‐field compensation technique that can reduce errors in the resultant Q estimates.  相似文献   

3.
In numerical simulations of ground motion, the constant quality factor Q of a viscoelastic medium can be determined using the time-domain constitutive approximation method of the generalized standard linear solid (GSLS) model. This study introduces a numerical seismic wavefield simulation method which combines the spectral element method with the constant-Q model. The method is used to simulate the seismic wavefield of the 1994 Northridge earthquake. The optimal attenuation coefficient for the simulated seismic waves in this study area is determined empirically based on a quantitative analysis of the deviation curve. Further, the effect of the quality factor on the simulated wavefield are analyzed according to the site characteristics of each seismic station. The quality factor shows a variable effect on the different frequency components of the simulated wavefield. The effect of the quality factor also varies with the characteristic parameters of each seismic station site, such as site velocity structure, fault distance, and azimuth angle.  相似文献   

4.
The attenuation of ground‐penetrating radar (GPR) energy in the subsurface decreases and shifts the amplitude spectrum of the radar pulse to lower frequencies (absorption) with increasing traveltime and causes also a distortion of wavelet phase (dispersion). The attenuation is often expressed by the quality factor Q. For GPR studies, Q can be estimated from the ratio of the real part to the imaginary part of the dielectric permittivity. We consider a complex power function of frequency for the dielectric permittivity, and show that this dielectric response corresponds to a frequency‐independent‐Q or simply a constant‐Q model. The phase velocity (dispersion relationship) and the absorption coefficient of electromagnetic waves also obey a frequency power law. This approach is easy to use in the frequency domain and the wave propagation can be described by two parameters only, for example Q and the phase velocity at an arbitrary reference frequency. This simplicity makes it practical for any inversion technique. Furthermore, by using the Hilbert transform relating the velocity and the absorption coefficient (which obeys a frequency power law), we find the same dispersion relationship for the phase velocity. Both approaches are valid for a constant value of Q over a restricted frequency‐bandwidth, and are applicable in a material that is assumed to have no instantaneous dielectric response. Many GPR profiles acquired in a dry aeolian environment have shown a strong reflectivity inside dunes. Changes in water content are believed to be the origin of this reflectivity. We model the radar reflections from the bottom of a dry aeolian dune using the 1D wavelet modelling method. We discuss the choice of the reference wavelet in this modelling approach. A trial‐and‐error match of modelled and observed data was performed to estimate the optimum set of parameters characterizing the materials composing the site. Additionally, by combining the complex refractive index method (CRIM) and/or Topp equations for the bulk permittivity (dielectric constant) of moist sandy soils with a frequency power law for the dielectric response, we introduce them into the expression for the reflection coefficient. Using this method, we can estimate the water content and explain its effect on the reflection coefficient and on wavelet modelling.  相似文献   

5.
用Q值刻画的地震衰减在地震信号处理和解释中具有很广泛的应用。利用反射地震资料进行Q值估计需要解决地震子波和反射系数序列耦合的问题。从反射地震资料中去除反射系数序列的影响,这个过程称为频谱校正。本文提出了一种基于子波估计的求取Q值的方法,进而设计了一个反Q滤波器。该方法利用反射地震资料的高阶统计量进行子波估计,并利用所估计子波实现频谱校正。我们利用合成数据实验给出了质心频移法与频谱比法这两种常用的Q值估计方法在不同参数设置下的性能。人工合成数据和实际数据处理表明,利用本文提出的方法进行频谱校正后,可以得到可靠的Q值估计。经过反Q滤波,地震数据的高频部分得到了有效地恢复。  相似文献   

6.
The attenuation of seismic waves propagating in reservoirs can be obtained accurately from the data analysis of vertical seismic profile in terms of the quality-factor Q. The common methods usually use the downgoing wavefields in vertical seismic profile data. However, the downgoing wavefields consist of more than 90% energy of the spectrum of the vertical seismic profile data, making it difficult to estimate the viscoacoustic parameters accurately. Thus, a joint viscoacoustic waveform inversion of velocity and quality-factor is proposed based on the multi-objective functions and analysis of the difference between the results inverted from the separated upgoing and downgoing wavefields. A simple separating step is accomplished by the reflectivity method to obtain the individual wavefields in vertical seismic profile data, and then a joint inversion is carried out to make full use of the information of the individual wavefields and improve the convergence of viscoacoustic full-waveform inversion. The sensitivity analysis of the different wavefields to the velocity and quality-factor shows that the upgoing and downgoing wavefields contribute differently to the viscoacoustic parameters. A numerical example validates our method can improve the accuracy of viscoacoustic parameters compared with the direct inversion using full wavefield and the separate inversion using upgoing or downgoing wavefield. The application on real field data indicates our method can recover a reliable viscoacoustic model, which helps reservoir appraisal.  相似文献   

7.
In previous publications, we presented a waveform-inversion algorithm for attenuation analysis in heterogeneous anisotropic media. However, waveform inversion requires an accurate estimate of the source wavelet, which is often difficult to obtain from field data. To address this problem, here we adopt a source-independent waveform-inversion algorithm that obviates the need for joint estimation of the source signal and attenuation coefficients. The key operations in that algorithm are the convolutions (1) of the observed wavefield with a reference trace from the modelled data and (2) of the modelled wavefield with a reference trace from the observed data. The influence of the source signature on attenuation estimation is mitigated by defining the objective function as the ℓ2-norm of the difference between the two convolved data sets. The inversion gradients for the medium parameters are similar to those for conventional waveform-inversion techniques, with the exception of the adjoint sources computed by convolution and cross-correlation operations. To make the source-independent inversion methodology more stable in the presence of velocity errors, we combine it with the local-similarity technique. The proposed algorithm is validated using transmission tests for a homogeneous transversely isotropic model with a vertical symmetry axis that contains a Gaussian anomaly in the shear-wave vertical attenuation coefficient. Then the method is applied to the inversion of reflection data for a modified transversely isotropic model from Hess. It should be noted that due to the increased nonlinearity of the inverse problem, the source-independent algorithm requires a more accurate initial model to obtain inversion results comparable to those produced by conventional waveform inversion with the actual wavelet.  相似文献   

8.
Inverse Q-filtering (IQF) is a technique designed to correct for transmission losses due to inelastic attenuation. It is based on the constant-Q model and is derived from a Taylor series solution of a standard convolutional-trace model (primaries only). To avoid a non-causal solution, the attenuation is assumed to be minimum-phase. Band limitation is introduced to make IQF a stable process in the presence of noise. The main features of IQF are demonstrated using both synthetic and field data.  相似文献   

9.
Seismic imaging is an important step for imaging the subsurface structures of the Earth. One of the attractive domains for seismic imaging is explicit frequency–space (fx) prestack depth migration. So far, this domain focused on migrating seismic data in acoustic media, but very little work assumed visco‐acoustic media. In reality, seismic exploration data amplitudes suffer from attenuation. To tackle the problem of attenuation, new operators are required, which compensates for it. We propose the weighted L 1 ‐error minimisation technique to design visco‐acoustic f – x wavefield extrapolators. The L 1 ‐error wavenumber responses provide superior extrapolator designs as compared with the previously designed equiripple L 4 ‐norm and L‐norm extrapolation wavenumber responses. To verify the new compensating designs, prestack depth migration is performed on the challenging Marmousi model dataset. A reference migrated section is obtained using non‐compensating fx extrapolators on an acoustic dataset. Then, both compensating and non‐compensating extrapolators are applied to a visco‐acoustic dataset, and both migrated sections are then compared. The final images show that the proposed weighted L 1 ‐error method enhances the resolution and results in practically stable images.  相似文献   

10.
We estimate the quality factor (Q) from seismic reflections by using a tomographic inversion algorithm based on the frequency‐shift method. The algorithm is verified with a synthetic case and is applied to offshore data, acquired at western Svalbard, to detect the presence of bottom‐simulating reflectors (BSR) and gas hydrates. An array of 20 ocean‐bottom seismographs has been used. The combined use of traveltime and attenuation tomography provides a 3D velocity–Q cube, which can be used to map the spatial distribution of the gas‐hydrate concentration and free‐gas saturation. In general, high P‐wave velocity and quality factor indicate the presence of solid hydrates and low P‐wave velocity and quality factor correspond to free‐gas bearing sediments. The Q‐values vary between 200 and 25, with higher values (150–200) above the BSR and lower values below the BSR (25–40). These results seem to confirm that hydrates cement the grains, and attenuation decreases with increasing hydrate concentration.  相似文献   

11.
A new wave equation is derived for modelling viscoacoustic wave propagation in transversely isotropic media under acoustic transverse isotropy approximation. The formulas expressed by fractional Laplacian operators can well model the constant-Q (i.e. frequency-independent quality factor) attenuation, anisotropic attenuation, decoupled amplitude loss and velocity dispersion behaviours. The proposed viscoacoustic anisotropic equation can keep consistent velocity and attenuation anisotropy effects with that of qP-wave in the constant-Q viscoelastic anisotropic theory. For numerical simulations, the staggered-grid pseudo-spectral method is implemented to solve the velocity–stress formulation of wave equation in the time domain. The constant fractional-order Laplacian approximation method is used to cope with spatial variable-order fractional Laplacians for efficient modelling in heterogeneous velocity and Q media. Simulation results for a homogeneous model show the decoupling of velocity dispersion and amplitude loss effects of the constant-Q equation, and illustrate the influence of anisotropic attenuation on seismic wavefields. The modelling example of a layered model illustrates the accuracy of the constant fractional-order Laplacian approximation method. Finally, the Hess vertical transversely isotropic model is used to validate the applicability of the formulation and algorithm for heterogeneous media.  相似文献   

12.
We introduce the signal dependent time–frequency distribution, which is a time–frequency distribution that allows the user to optimize the tradeoff between joint time–frequency resolution and suppression of transform artefacts. The signal‐dependent time–frequency distribution, as well as the short‐time Fourier transform, Stockwell transform, and the Fourier transform are analysed for their ability to estimate the spectrum of a known wavelet used in a tuning wedge model. Next, the signal‐dependent time–frequency distribution, and fixed‐ and variable‐window transforms are used to estimate spectra from a zero‐offset synthetic seismogram. Attenuation is estimated from the associated spectral ratio curves, and the accuracy of the results is compared. The synthetic consisted of six pairs of strong reflections, based on real well‐log data, with a modeled intrinsic attenuation value of 1000/Q = 20. The signal‐dependent time–frequency distribution was the only time–frequency transform found to produce spectra that estimated consistent attenuation values, with an average of 1000/Q = 26±2; results from the fixed‐ and variable‐window transforms were 24±17 and 39±10, respectively. Finally, all three time–frequency transforms were used in a pre‐stack attenuation estimation method (the pre‐stack Q inversion algorithm) applied to a gather from a North Sea seismic dataset, to estimate attenuation between nine different strong reflections. In this case, the signal‐dependent time‐frequency distribution produced spectra more consistent with the constant‐Q model of attenuation assumed in the pre‐stack attenuation estimation algorithm: the average L1 residuals of the spectral ratio surfaces from the theoretical constant‐Q expectation for the signal‐dependent time‐frequency distribution, short‐time Fourier transform, and Stockwell transform were 0.12, 0.21, and 0.33, respectively. Based on the results shown, the signal‐dependent time‐frequency distribution is a time–frequency distribution that can provide more accurate and precise estimations of the amplitude spectrum of a reflection, due to a higher attainable time–frequency resolution.  相似文献   

13.
The conventional reverse time migration of ground-penetrating radar data is implemented with the two-way wave equation. The cross-correlation result contains low-frequency noise and false images caused by improper wave paths. To eliminate low-frequency noise and improve the quality of the migration image, we propose to separate the left-up-going, left-down-going, right-up-going and right-down-going wavefield components in the forward- and backward-propagated wavefields based on the Hilbert transform. By applying the reverse time migration of ground-penetrating radar data with full wavefield decomposition based on the Hilbert transform, we obtain the reverse time migration images of different wavefield components and combine correct imaging conditions to generate complete migration images. The proposed method is tested on the synthetic ground-penetrating radar data of a tilt-interface model and a complex model. The migration results show that the imaging condition of different wavefield components can highlight the desired structures. We further discuss the reasons for incomplete images by reverse time migration with partial wavefields. Compared with the conventional reverse time migration methods for ground-penetrating radar data, low-frequency noise can be eliminated in images generated by the reverse time migration method with full wavefield decomposition based on the Hilbert transform.  相似文献   

14.
In this paper, the background of MGF-K migration in dual domain (wavenumber-frequency K-F and space-time) in anisotropic media is presented. Algorithms for poststack (zero-offset) and prestack migration are based on downward extrapolation of acoustic wavefield by shift-phase with correction filter for lateral variability of medium’s parameters. In anisotropic media, the vertical wavenumber was determined from full elastic wavefield equations for two dimensional (2D) tilted transverse isotropy (TTI) model. The method was tested on a synthetic wavefield for TTI anticlinal model (zero-offset section) and on strongly inhomogeneous vertical transverse isotropy (VTI) Marmousi model. In both cases, the proper imaging of assumed media was obtained.  相似文献   

15.
16.
Reflection and refraction data are normally processed with tools designed to deal specifically with either near- or far-offset data. Furthermore, the refraction data normally require the picking of traveltimes prior to analysis. Here, an automatic processing algorithm has been developed to analyse wide-angle multichannel streamer data without resorting to manual picking or traveltime tomography. Time–offset gathers are transformed to the tau–p domain and the resulting wavefield is downward continued to the depth–p domain from which a velocity model and stacked section are obtained. The algorithm inputs common-depth-point (CDP) gathers and produces a depth-converted stacked section that includes velocity information. The inclusion of long-offset multichannel streamer data within the tau–p transformation enhances the signal from high-velocity refracted basalt arrivals. Downward continuation of the tau–p transformed wavefield to the depth–p domain allows the reflection and refraction components of the wavefield to be treated simultaneously. The high-slowness depth–p wavefield provides the velocity model and the low-slowness depth–p wavefield may be stacked to give structural information. The method is applied to data from the Faeroe Basin from which sub-basalt velocity images are obtained that correlate with an independently derived P-wave model from the line.  相似文献   

17.
High-frequency (≥2 Hz) Rayleigh wave phase velocities can be inverted to shear (S)-wave velocities for a layered earth model up to 30 m below the ground surface in many settings. Given S-wave velocity (VS), compressional (P)-wave velocity (VP), and Rayleigh wave phase velocities, it is feasible to solve for P-wave quality factor QP and S-wave quality factor QS in a layered earth model by inverting Rayleigh wave attenuation coefficients. Model results demonstrate the plausibility of inverting QS from Rayleigh wave attenuation coefficients. Contributions to the Rayleigh wave attenuation coefficients from QP cannot be ignored when Vs/VP reaches 0.45, which is not uncommon in near-surface settings. It is possible to invert QP from Rayleigh wave attenuation coefficients in some geological setting, a concept that differs from the common perception that Rayleigh wave attenuation coefficients are always far less sensitive to QP than to QS. Sixty-channel surface wave data were acquired in an Arizona desert. For a 10-layer model with a thickness of over 20 m, the data were first inverted to obtain S-wave velocities by the multichannel analysis of surface waves (MASW) method and then quality factors were determined by inverting attenuation coefficients.  相似文献   

18.
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to 30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the codaQ measurements coincide at 1.5 Hz (Q c =100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Q c =525) and Long Valley (Q c =2100) with the Salinian midway between (Q c =900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency codaQ measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of codaQ measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan codaQ measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the codaQ measurement is currently a matter of controversy.  相似文献   

19.
In this study, we investigate the accuracy of approximating constant‐Q wave propagation by series of Zener or standard linear solid (SLS) mechanisms. Modelling in viscoacoustic and viscoelastic media is implemented in the time domain using the finite‐difference (FD) method. The accuracy of numerical solutions is evaluated by comparison with the analytical solution in homogeneous media. We found that the FD solutions using three SLS relaxation mechanisms as well as a single SLS mechanism, with properly chosen relaxation times, are quite accurate for both weak and strong attenuation. Although the RMS errors of FD simulations using a single relaxation mechanism increase with increasing offset, especially for strong attenuation (Q = 20), the results are still acceptable for practical applications. The synthetic data of the Marmousi‐II model further illustrate that the single SLS mechanism, to model constant Q, is efficient and sufficiently accurate. Moreover, it benefits from less computational costs in computer time and memory.  相似文献   

20.
Multiples have longer propagation paths and smaller reflection angles than primaries for the same source–receiver combination, so they cover a larger illumination area. Therefore, multiples can be used to image shadow zones of primaries. Least-squares reverse-time migration of multiples can produce high-quality images with fewer artefacts, high resolution and balanced amplitudes. However, viscoelasticity exists widely in the earth, especially in the deep-sea environment, and the influence of Q attenuation on multiples is much more serious than primaries due to multiples have longer paths. To compensate for Q attenuation of multiples, Q-compensated least-squares reverse-time migration of different-order multiples is proposed by deriving viscoacoustic Born modelling operators, adjoint operators and demigration operators for different-order multiples. Based on inversion theory, this method compensates for Q attenuation along all the propagation paths of multiples. Examples of a simple four-layer model, a modified attenuating Sigsbee2B model and a field data set suggest that the proposed method can produce better imaging results than Q-compensated least-squares reverse-time migration of primaries and regular least-squares reverse-time migration of multiples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号