共查询到20条相似文献,搜索用时 15 毫秒
1.
Kirchhoff–Helmholtz (KH) theory is extended to synthesize two-way elastic wave propagation in 3D laterally heterogeneous, anisotropic media. I have developed and tested numerically a specialized algorithm for the generation of three-component synthetic seismograms in multi-layered isotropic and transversely isotropic (TI) media with dipping interfaces and tilted axes of symmetry. This algorithm can be applied to vertical seismic profile (VSP) geometries and works well when the receiver is located near the reflector interface. It is superior to ray methods in predicting elliptical polarization effects observed on radial and transverse components. The algorithm is used to study converted-wave propagation for determining fracture-related shear-wave anisotropy in realistic reservoir models. Results show that all wavefront attributes are strongly affected by the anisotropy. However, it is necessary to resolve a trade-off between the effects of fractures and formation dip prior to converted-wave interpretation. These results provide some assurance that the present scheme is sufficiently versatile to handle shear wave behaviour due to various generalized rays propagating in complex geological models. 相似文献
2.
2.5D modelling approximates 3D wave propagation in the dip‐direction of a 2D geological model. Attention is restricted to raypaths for waves propagating in a plane. In this way, fast inversion or migration can be performed. For velocity analysis, this reduction of the problem is particularly useful. We review 2.5D modelling for Born volume scattering and Born–Helmholtz surface scattering. The amplitudes are corrected for 3D wave propagation, taking into account both in‐plane and out‐of‐plane geometrical spreading. We also derive some new inversion/migration results. An AVA‐compensated migration routine is presented that is simplified compared with earlier results. This formula can be used to create common‐image gathers for use in velocity analysis by studying the residual moveout. We also give a migration formula for the energy‐flux‐normalized plane‐wave reflection coefficient that models large contrast in the medium parameters not treated by the Born and the Born–Helmholtz equation results. All results are derived using the generalized Radon transform (GRT) directly in the natural coordinate system characterized by scattering angle and migration dip. Consequently, no Jacobians are needed in their calculation. Inversion and migration in an orthorhombic medium or a transversely isotropic (TI) medium with tilted symmetry axis are the lowest symmetries for practical purposes (symmetry axis is in the plane). We give an analysis, using derived methods, of the parameters for these two types of media used in velocity analysis, inversion and migration. The kinematics of the two media involve the same parameters, hence there is no distinction when carrying out velocity analysis. The in‐plane scattering coefficient, used in the inversion and migration, also depends on the same parameters for both media. The out‐of‐plane geometrical spreading, necessary for amplitude‐preserving computations, for the TI medium is dependent on the same parameters that govern in‐plane kinematics. For orthorhombic media, information on additional parameters is required that is not needed for in‐plane kinematics and the scattering coefficients. Resolution analysis of the scattering coefficient suggests that direct inversion by GRT yields unreliable parameter estimates. A more practical approach to inversion is amplitude‐preserving migration followed by AVA analysis. SYMBOLS AND NOTATION A list of symbols and notation is given in Appendix D . 相似文献
3.
To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems. 相似文献
4.
工程实际勘探对象如土壤、岩石等多为色散介质,雷达波在其中传播时易发生衰减与畸变,应用常规有限单元法(Finite Element Method,FEM)方法进行数值模拟时,存在数值频散现象.为此,作者以色散介质为研究对象,开展最优系数有限单元法探地雷达(Ground Penetrating Radar,GPR)频率域正演.首先,分析了有限元质量、刚度矩阵的约束条件对有限元求解精度的影响,基于归一化相速度与1的误差最小策略,利用最小二乘法,仅需三个优化参数求取最优的有限元刚度矩阵与质量矩阵.四种不同方法的频散曲线分析及精度对比实验结果表明,优化矩阵在单位波长仅需4.8个网格点下便可达到误差小于0.2%的精度;而一致、集中和折衷矩阵不仅需要更多的网格点,且误差较大.然后,将精确完全匹配层(Exact Perfectly Matched Layer,EPML)吸收边界条件引入最优系数频域有限单元(Finite Element Frequency Domain,FEFD)算法中,简化了吸收参数优化过程,取5层即可达到常规完全匹配层(Perfectly Matched Layer,PML)的10层的吸收效果,能够有效提升正演效率.并将基于EPML的最优系数有限单元法算法引入到城市道路病害模型正演中,实验表明:本文算法能有效压制频散并实现实际色散介质高精度模拟,模拟结果更接近波在地下介质中的实际传播特性. 相似文献
5.
True-amplitude (TA) migration, which is a Kirchhoff-type modified weighted diffraction stack, recovers (possibly) complex angle-dependent reflection coefficients which are important for amplitude-versus-offset (AVO) inversion. The method can be implemented using existing prestack or post-stack Kirchhoff migration and fast Green's function computation programs. Here, it is applied to synthetic single-shot and constant-offset seismic data that include post-critical reflections (complex reflection coefficients) and caustics. Comparisons of the amplitudes of the TA migration image with theoretical reflection coefficients show that the (possibly complex) angle-dependent reflection coefficients are correctly estimated. 相似文献
6.
The migration of contaminants in heterogeneous aquifers involves dispersive processes that act at different scales. The interaction of these processes as a plume evolves can be studied by micro-scale modelling whereby two scales, a local- or micro-scale and an aquifer- or macro-scale, are covered simultaneously. Local-scale dispersive processes are represented through the local dispersion coefficient in the transport equation, while large-scale dispersion due to heterogeneities is represented through the resolution of the flow field and the diffusive exchange between streamtubes. The micro-scale model provides both the high degree of resolution compatible with local-scale processes, and the extent required for the approach to asymptotic conditions, using grids of up to a million nodal points. The model is based on the dual potential-streamfunction formulation for flow, and the transport problem is formulated in a natural coordinate system provided by the flownet. Simulations can be used to verify stochastic theories of dispersion, without the restrictive assumptions inherent in the theory. For the two-dimensional case, results indicate convergence of the effective dispersivity to the theoretical macrodispersivity value. Convergence takes place within a travel distance of about 50 correlation lengths of the hydraulic conductivity field. However, the approach taken to asymptotic conditions, as well as the macrodispersivity value, may differ for different realizations of the same medium. The influence of early-time events such as plume splitting on the asymptotic convergence remains to be investigated. 相似文献
7.
The velocity-stress formulation for propagation of elastic seismic waves through 2D heterogeneous transversely isotropic media of arbitrary orientation is presented. The equations are recast into a finite-difference scheme and solved numerically using fourth-order spatial operators and a second-order temporal operator on a staggered grid. Absorbing, free-surface and symmetry boundary conditions have been implemented. Test cases compare well with other published solutions. Synthetic seismograms are calculated over two idealized models: (i) vertical fractures in granite with a dolerite sill reflector and (ii) a dipping anisotropic shale. Comparisons with the isotropic counterparts show significant differences which may have to be accounted for in seismic processing in the future. 相似文献
8.
针对Cole-Cole频散介质中的复介电常数是jω的分数次幂函数,传统的时域有限元法难以离散及计算时间域分数阶导数,本文采用Pade逼近算法将含有时间分数阶导数的Cole-Cole频散介质电磁波方程推导为一组整数阶辅助微分方程,提出了一种适用于Cole-Cole频散介质的GPR有限元正演模拟算法.在复数伸展坐标系下,通过在频率域Cole-Cole频散介质电磁波方程中引入2个中间变量,并将其变换到时间域,从而以变分形式将PML边界条件加载到Cole-Cole频散介质GPR有限元方程组中,并给出了详细的求解公式.在此基础上,编制了基于Pade逼近的Cole-Cole频散介质GPR有限元正演程序,利用该程序对均匀模型进行计算,并与解析解进行对比,验证了本文构建的GPR有限元正演算法的正确性和有效性.设计了一个复杂Cole-Cole频散介质GPR模型,利用本文构建的GPR有限元正演算法进行模拟并与非频散介质模型的模拟结果进行对比,分析了电磁波在Cole-Cole频散介质中传播衰减增强、子波延伸,分辨率降低等传播规律,有助于实测雷达资料更可靠、更准确的解释.模拟结果表明,基于Pade逼近的GPR有限元正演算法可用于复杂Cole-Cole频散介质结构模拟,且具有较高的计算精度. 相似文献
9.
Introduction Ready and Renkin (1971) were the first to make the research on anisotropy problems in magnetotellurics (MT). The progress in the research is not evident because it is more complex and difficult than isotropic problems. Now, the one-dimensional (1D) anisotropy problems in MT have been well solved, while for the two-dimensional (2D) cases, the numerical solutions have only been obtained for some particular conditions (Ready and Renkin, 1975). As to the three-dimensional (3D) ani… 相似文献
10.
本文提出了地下流体渗流问题的三维解粗化算法,在粗网格内流体压强分布用直接解法求解三维渗流方程,用这些解计算粗网格的等效渗透率,在流体流速大的区域仍采用精细网格的计算方法.用所得等效渗透率计算了粗化网格的渗流场的压强分布,结果表明渗流方程的三维粗化解非常逼近采用精细网格的解,但计算的速度比采用精细网格提高了100多倍. 相似文献
11.
Storage–discharge curves are widely used in several hydrological applications concerning flow and solute transport in small catchments. This article analyzes the relation Q( S) (where Q is the discharge and S is the saturated storage in the hillslope), as a function of some simple structural parameters. The relation Q( S) is evaluated through two‐dimensional numerical simulations and makes use of dimensionless quantities. The method lies in between simple analytical approaches, like those based on the Boussinesq formulation, and more complex distributed models. After the numerical solution of the dimensionless Richards equation, simple analytical relations for Q( S) are determined in dimensionless form, as a function of a few relevant physical parameters. It was found that the storage–discharge curve can be well approximated by a power law function Q/( LKs) = a( S/( L2( ? ? θr))) b, where L is the length of the hillslope, Ks the saturated conductivity, ? ? θr the effective porosity, and a, b two coefficients which mainly depend on the slope. The results confirm the validity of the widely used power law assumption for Q( S). Similar relations can be obtained by performing a standard recession curve analysis. Although simplified, the results obtained in the present work may serve as a preliminary tool for assessing the storage–discharge relation in hillslopes. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Recent improvements in the local wavenumber approach have made it possible to estimate both the depth and model type of buried bodies from magnetic data. However, these improvements require calculation of third‐order derivatives of the magnetic field, which greatly enhances noise. As a result, the improvements are restricted to data of high quality. We present an alternative method to estimate both the depth and model type using the first‐order local wavenumber approach without the need for third‐order derivatives of the field. Our method is based on normalization of the first‐order local wavenumber anomalies and provides a generalized equation to estimate the depth of some 2D magnetic sources regardless of the source structure. Information about the nature of the sources is obtained after the source location has been estimated. The method was tested using synthetic magnetic anomaly data with random noise and using three field examples. 相似文献
13.
Most modern seismic imaging methods separate input data into parts (shot gathers). We develop a formulation that is able to incorporate all available data at once while numerically propagating the recorded multidimensional wavefield forward or backward in time. This approach has the potential for generating accurate images free of artiefacts associated with conventional approaches. We derive novel high‐order partial differential equations in the source–receiver time domain. The fourth‐order nature of the extrapolation in time leads to four solutions, two of which correspond to the incoming and outgoing P‐waves and reduce to the zero‐offset exploding‐reflector solutions when the source coincides with the receiver. A challenge for implementing two‐way time extrapolation is an essential singularity for horizontally travelling waves. This singularity can be avoided by limiting the range of wavenumbers treated in a spectral‐based extrapolation. Using spectral methods based on the low‐rank approximation of the propagation symbol, we extrapolate only the desired solutions in an accurate and efficient manner with reduced dispersion artiefacts. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. 相似文献
14.
The reflectivity method plays an important role in seismic modelling. It has been used to model different types of waves propagating in elastic and anelastic media. The diffusive–viscous wave equation was proposed to investigate the relationship between frequency dependence of reflections and fluid saturation. It is also used to describe the attenuation property of seismic wave in a fluid‐saturated medium. The attenuation of diffusive–viscous wave is mainly characterised by the effective attenuation parameters in the equation. Thus, it is essential to obtain those parameters and further characterise the features of the diffusive–viscous wave. In this work, we use inversion method to obtain the effective attenuation parameters through quality factor to investigate the characteristics of diffusive–viscous wave by comparing with those of the viscoacoustic wave. Then, the reflection/transmission coefficients in a dip plane‐layered medium are studied through coordinate transform and plane‐wave theory. Consequently, the reflectivity method is extended to compute seismograms of diffusive–viscous wave in a dip plane multi‐layered medium. Finally, we present two models to simulate the propagation of diffusive–viscous wave in a dip plane multi‐layered medium by comparing the results with those in a viscoacoustic medium. The numerical results demonstrate the validity of our extension of reflectivity method to the diffusive–viscous medium. The numerical examples in both time domain and time–frequency domain show that the reflections from a dip plane interface have significant phase shift and amplitude change compared with the results of horizontal plane interface due to the differences in reflection/transmission coefficients. Moreover, the modelling results show strong attenuation and phase shift in the diffusive–viscous wave compared to those of the viscoacoustic wave. 相似文献
15.
We formulate the Kirchhoff‐Helmholtz representation theory for the combination of seismic interferometry signals synthesized by cross‐correlation and by cross‐convolution in acoustic media. The approach estimates the phase of the virtual reflections from the boundary encompassing a volume of interest and subtracts these virtual reflections from the total seismic‐interferometry wavefield. The reliability of the combination result, relevant for seismic exploration, depends on the stationary‐phase and local completeness in partial coverage regions. The analysis shows the differences in the phase of the corresponding seismic interferometry (by cross‐correlation) and virtual reflector (by cross‐convolution) signals obtained by 2D and 3D formulations, with synthetic examples performed to remove water layer multiples in ocean bottom seismic (OBS) acoustic data. 相似文献
16.
A space–frequency domain 2D depth-migration scheme is generalized for imaging in the presence of anisotropy. The anisotropy model used is that of a transversely isotropic (TI) medium with a symmetry axis that can be either vertical or tilted. In the proposed scheme the anisotropy is described in terms of Thomsen parameters; however, the scheme can accommodate a wide range of anisotropy rather than only weak anisotropy. Short spatial convolution operators are used to extrapolate the wavefields recursively in the space–frequency domain for both qP- and qSV-waves. The weighted least-squares method for designing isotropic optimum operators is extended to asymmetric optimum explicit extrapolation operators in the presence of TI media with a tilted symmetry axis. Additionally, an efficient weighted quadratic-programming design method is developed. The short spatial length of the derived operators makes it possible for the proposed scheme to handle lateral inhomogeneities. The performance of the operators, designed by combining the weighted least-squares and weighted quadratic-programming methods, is demonstrated by migration impulse responses of qP and qSV propagation modes for the weak and strong TI models with both vertical and tilted symmetry axes. Finally, a table-driven shot-record depth-migration scheme is proposed, which is illustrated for finite-difference modelled shot records in TI media. 相似文献
17.
A novel, fast, and approximate forward modelling routine for time‐domain electromagnetic responses is presented. It is based on the separation of the forward problem into a configuration‐independent part, mapping conductivity as a function of depth onto apparent conductivity as a function of time, and a configuration‐dependent part, i.e., the half‐space step response. The response of a layered model is then found as the half‐space response for a half‐space conductivity equal to the apparent conductivity. The mapping is ten times faster than traditional accurate forward modelling routines, and through stochastic modelling, it is found that the standard deviation of the modelling error is 0.7 %. The forward mapping lends itself to integration in a modern state‐of‐the‐art inversion formulation in exactly the same way as traditionally computed responses, and a field example is included where inversion results using the approximate forward response are compared with those of an accurate forward response for helicopterborne transient electromagnetic data. In addition to being used in its own right in inversion of transient data, the speed and accuracy of the approximate inversion mean that it is well suited for quality control and fast turnaround data delivery of survey results to a client. It can also be used in hybrid inversion formulations by supplying initial iterations and high‐quality derivatives in an inversion based on accurate forward modelling. 相似文献
18.
The Belvedere Spinello salt mine is located in the Catanzaro Province of Calabria in Southern Italy. An extensive mining program has caused the development of Underground cavities filled with brine and the migration of this brine has been of great environmental concern to the mine owners. This paper presents the results of a multidimensional interpretation of a two-phase resistivity and magnetotelluric (MT) survey that was performed in an attempt to determine the complex conductivity structure of the mine area and to gain information on brine development and migration pathways. Key resistivity soundings were interpreted using a 2.5D algorithm based on the Polozhii decomposition method. The MT data were interpreted using a 2D finite-element code. A conductivity model was developed, integrating available geological and drill-hole information. The interpretation of the MT data, collected five years after the acquisition of the resistivity data, shows a conductive feature of depth that is not resolved in the resistivity interpretation. This feature has been interpreted as a thick brine zone that has developed as a result of mining during the interval between the resistivity and the MT measurements. 相似文献
20.
地层宏观电性各向异性会对可控源电磁响应产生重要影响.由于海底地层电性结构常表现为电导率各向异性,若仅对海洋可控源电磁(MCSEM)数据进行常规各向同性反演,有可能无法获得准确的反演解释结果,从而削弱MCSEM技术的可靠性.本文实现了电导率垂直各向异性(VTI)条件下频率域海洋可控源电磁数据三维反演算法.其中,三维正演采用基于二次场控制方程的交错网格有限体积法,并利用直接矩阵分解技术来求解离散所得的大型线性方程组,有利于快速计算多场源的响应.反演采用具有近似二次收敛性的高斯牛顿算法对目标函数进行最优化.最后,对具有VTI电性各向异性特征的盐丘构造模型的MCSEM合成数据分别进行了电导率各向同性和垂直各向异性三维反演,结果表明:各向同性三维反演算法无法对受VTI介质影响的MCSEM数据进行正确的反演解释,而垂直各向异性三维反演能够获得更为可靠的地下电阻率结构和异常体分布,展现出对海底电性各向异性结构更为优良的反演解释能力. 相似文献
|