首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

2.
3.
The salinity intrusion in the Fraser estuary, Canada, migrates landward during the rising tide and is flushed downstream on the falling tide. Suspended sediment concentrations are higher during unstratified flows than during stratified conditions. Mixing between the upper layer and the salinity intrusion is restricted by a strong density interface on the rising tide but enhanced mixing occurs across a weak salinity gradient on the falling tide. A weakly-developed estuarine turbidity maximum (ETM) and positive internal waves occur at the tip of the salinity intrusion as it migrates seaward. Spectral analyses of optical backscatter probe time series indicate that sediment movement from the upper layer is restricted by the density interface on the rising tide. During the falling tide, sediment mixing is enhanced by internal waves at the surface of the ETM. Internal waves generated at the density interface have a higher frequency during the rising tide than the falling tide.  相似文献   

4.
This study examines flow, turbulence and sand suspension over large dunes in Canoe Pass, a distributary channel of the Fraser River delta, Canada. Dune morphology is characterized by a symmetrical shape and steep leeside slopes over 30°. Velocity was measured with an electromagnetic current meter and suspended sand concentration with four optical backscatter (OBS) probes. The general patterns of time-averaged velocity and sand suspension are consistent with previous studies, including an increase in mean velocity and decrease in turbulence intensity and sand concentration with height above the bed, reversed flow with high turbulence intensity and high sand concentrations in the leeside flow separation zone and an increase in near-bed velocity and sand concentration along the stoss side of the dune. Frequency spectra of near-bed velocity and OBS records from leeside separation zones are composed of two distinct frequencies, providing field confirmation of scale relations based on flume experiments. The low-frequency spectral signal probably results from wake flapping and the high-frequency signal from vortex shedding. The wake-flapping frequency predominates outside the separation zone and is linked to turbulent structures that suspend sand. Predictions from a depth-scale Strouhal Law show good agreement with measured wake-flapping frequencies. Cross-correlations of OBS records reveal that turbulent sand suspension structures advect downstream at 23–25° above the horizontal. These advection angles are similar to coherent flow structures measured in flumes and to sand suspension structures visualized over large dunes in the field.  相似文献   

5.
Detailed measurements of flow velocity and its turbulent fluctuation were obtained over fixed, two-dimensional dunes in a laboratory channel. Laser Doppler anemometry was used to measure the downstream and vertical components of velocity at more than 1800 points over one dune wavelength. The density of the sampling grid allowed construction of a unique set of contour maps for all mean flow and turbulence parameters, which are assessed using higher moment measures and quadrant analysis. These flow field maps illustrate that: (1) the time-averaged downstream and vertical velocities agree well with previous studies of quasi-equilibrium flow over fixed and mobile bedforms and show a remarkable symmetry from crest to crest; (2) the maximum root-mean-square (RMS) of the downstream velocity values occur at and just downstream of flow reattachment and within the flow separation cell; (3) the maximum vertical RMS values occur within and above the zone of flow separation along the shear layer and this zone advects and diffuses downstream, extending almost to the next crest; (4) positive downstream skewness values occur within the separation cell, whereas positive vertical skewness values are restricted to the shear layer; (5) the highest Reynolds stresses are located within the zone of flow separation and along the shear layer; (6) high-magnitude, high-frequency quadrant-2 events (‘ejections’) are concentrated along the shear layer (Kelvin-Helmholtz instabilities) and dominate the contribution to the local Reynolds stress; and (7) high-magnitude, high-frequency quadrant-4 events occur bounding the separation zone, near reattachment and close to the dune crest, and are significant contributors to the local Reynolds stress at each location. These data demonstrate that the turbulence structure associated with dunes is controlled intrinsically by the formation, magnitude and downstream extent of the flow separation zone and resultant shear layer. Furthermore, the origin of dune-related macroturbulence lies in the dynamics of the shear layer rather than classical turbulent boundary layer bursting. The fluid dynamic distinction between dunes and ripples is reasoned to be linked to the velocity differential across the shear layer and hence the magnitude of the Kelvin-Helmholtz instabilities, which are both greater for dunes than ripples. These instabilities control the local flow and turbulence structure and dictate the modes of sediment entrainment and their transport rates.  相似文献   

6.
7.
Plane beds that replace small bedforms (e.g. ripples) on the backs of subaqueous dunes are dynamically similar to upper-stage plane beds. Local bed shear stresses at the position on dunes where plane beds develop may be two to three times larger than on a completely plane bed under the same general hydraulic conditions. These observations help explain the transition from dunes to a wholly upper-stage plane bed.  相似文献   

8.
Preliminary results are reported from an experimental study of the interaction between turbulence, sediment transport and bedform dynamics over the transition from dunes to upper stage plane beds. Over the transition, typical dunes changed to humpback dunes (mean velocity 0–8 ms-1, depth 01 m, mean grain size 0.3 mm) to nominally plane beds with low relief bed waves up to a few mm high. All bedforms had a mean length of 0.7–0.8 m. Hot film anemometry and flow visualization clearly show that horizontal and vertical turbulent motions in dune troughs decrease progressively through the transition while horizontal turbulence intensities increase near the bed on dune backs through to a plane bed. Average bedload and suspended load concentrations increase progressively over the transition, and the near-bed transport rate immediately downstream of flow reattachment increases markedly relative to that near dune crests. This relative increase in sediment transport near reattachment appears to be due to suppression of upward directed turbulence by increased sediment concentration, such that velocity close to the bed can increase more quickly downstream of reattachment. Low-relief bedwaves on upper-stage plane beds are ubiquitous and give rise to laterally extensive, mm-thick planar laminae; however, within such laminae are laminae of more limited lateral extent and thickness, related to the turbulent bursting process over the downstream depositional surface of the bedwaves.  相似文献   

9.
10.
Bi-weekly multi-track sonar surveys collected along a 2-km reach of the estuarine South Arm of the Fraser River, British Columbia, Canada, during seasonal high flows document the initiation, development and interaction of dune and bar morphologies. Bedforms of several scales developed in well-delineated fields. Bedforms that appear to fit accepted equilibrium depth-scaling developed in the main channel during rising discharge when there was little local aggradation. During the rising stage, a bar also formed along the tidal shelf of the channel, migrated downstream and expanded into the main channel. Dunes that formed along the bar crest, a region of rapid deposition, lagged flow conditions and were larger than expected based on depth-scaling relations. The larger dunes developed simultaneously, although bar growth lagged dune development and was initially partially obscured by the more rapidly developing dune field. It appears that rapid deposition enhances dune development along the channel tidal shelf to dimensions larger than would be expected by simple depth-scaling rules. Smaller dunes that fit equilibrium depth-scaling relations re-established themselves throughout the study area during falling discharge when there was again little or no aggradation. Bed-material transport rates estimated from the migration rates of the large dunes suggest that, at high flows, the dunes transport the majority of the material found within the bar.  相似文献   

11.
The Fraser River Delta exhibits distinct asymmetry in the sedimentological and neoichnological characteristics of the updrift (south) and downdrift (north) sides of the main distributary channel in water depths below storm‐wave base. The asymmetry is the result of net northward tidal flow. Tides erode sediments across the updrift delta front, whereas the downdrift delta front is an area of net deposition. A submarine channel prevents sand eroded from the updrift delta front from reaching the downdrift delta. The updrift delta front and updrift upper prodelta are composed of sand or heterolithic sand and mud that show a low density of burrowing (Bioturbation Index 0 to 3) and are dominated by simple traces. The downdrift delta front and prodelta, and the updrift lower prodelta are composed of homogeneous muds with significantly higher bioturbation intensities (Bioturbation Index 3 to 6), and a more diverse suite of traces akin to Cruziana Ichnofacies. Using the Fraser River Delta as an archetype and comparing the Fraser to the Amazon River Delta, a preliminary model for deep‐water (below storm‐wave base: ca 20 m) asymmetrical deltas is proposed. Firstly, deep‐water asymmetrical deltas are recognized from sediments deposited below storm‐wave base. At these depths, tidal and ocean currents are more likely to impact sediment transport, but wave processes are less effective as a sediment transport mechanism. Sediments deposited below storm‐wave base in deep‐water asymmetrical deltas will display the following: (i) the updrift delta front will be coarser‐grained (for example, sand‐dominated or heterolithic sand and mud), than the downdrift delta front (for example, mud‐dominated); and (ii) the updrift delta front should show low‐diversity suites of simple burrows. Depending on sedimentation rates, the downdrift delta front and prodelta may show either high diversity suites of traces that are dominated by both complex and simple burrows (low sedimentation rates) or low density and diversity suites akin to the updrift delta front (high sedimentation rates).  相似文献   

12.
The dynamic behaviour of sediment-laden underflows was examined in Peyto Lake, Alberta, Canada, which contains a midlake sill 7 m high. Sediment-laden underflows are driven by the downslope component of negative buoyant gravity multiplied by the current's thickness. Our measurements of wind, lake currents and water properties indicate that underflows pass over the sill due to the active storage of turbid suspension near the bottom in the deepest proximal region. Sill overflows occurred only when a hydrological threshold of the inflowing river was exceeded, causing quasicontinuous underflow and associated sedimentation in the distal region of the lake basin.  相似文献   

13.
14.
Cross-bedded, cool-water, bioclastic limestones of the Te Kuiti Group on the North Island of New Zealand are composed primarily of bryozoans, echinoderms, and benthic foraminifers. Their prominent, large-scale, unidirectional cross-stratification is interpreted as produced by migrating subaqueous dunes on the floor of a 50–100 km wide, north-east-trending seaway in water depths of 40–60 m. These dunes are thought to have developed in response to strong, seaway-parallel, tidal currents combined with a north-east-directed, set-up or oceanic current. Cross-stratification is organized into four hierarchical levels: (1) cross-lamination; (2) first-order sets; (3) second-order sets; and (4) cross-stratified successions. The levels are based on increasing degrees of internal complexity. Distinct attributes such as internal organization, cross-set thickness, foreset shape, and lower bounding-surface shape are used to describe and interpret the cross-stratification. All these attributes are here integrated in a new and expanded classification of unidirectional cross-stratification that emphasizes flow and bedform dynamics rather than overall set shape. Individual cross-stratified successions are interpreted to have formed by dunes with varying sinuosity, superposition, and flow history, under conditions of different current strength but constant sediment production. Horizontally bedded successions are the result of robust, active dune fields that grew during times of vigorous sediment transport. Formset successions were produced from large compound dunes and are the expression of languid and decaying dune fields that developed during times of decreasing sediment transport. These decaying dunes were gradually smothered by continuously and locally produced bioclastic sediment. Formset cross-stratified successions are most likely to develop in carbonates, where the sediment is produced in place, than in terrigenous clastics where the sediment is imported.  相似文献   

15.
The Drummond Basin represents a major, backarc extensional system located at the inboard margin of the northern New England Orogen. Its synrift (cycle 1) infill is distinctively volcanic and volcani‐clastic in character and displays complex facies relationships and considerable variations in thickness controlled by the history and fabric of extensional faulting and the distribution of coeval volcanic centres. Subtle inheritance signatures in the age spectra obtained by SHRIMP (II) Pb‐U dating of zircons from volcanic units have impeded age assignment. New geochronologic data indicate that basinal subsidence was initiated in the north in latest Devonian (Famennian) time but was delayed until the Early Carboniferous (Tournaisian) in the south. Northern successions are dominated by volcaniclastic strata that accumulated distal to the loci of contemporary volcanism, whereas southern successions are dominated by silicic flows and ash‐flow tuffs and associated hypabyssal intrusive suites proximal to, or coincident with, volcanic loci. The Burdekin, Clarke River and Bundock Creek Basins located north of the Drummond Basin are broadly coeval features with comparable Infill. They likewise represent backarc basins developed inboard of the northern New England Orogen which trends offshore at latitude 20°S and appears to be represented in basement cores recovered from the Coral Sea. Calc‐alkaline magmatism of Late Devonian‐Early Carboniferous age extended at least 400 km inboard of the Gondwanan plate margin now represented in Queensland and related to an acute angle of subduction along the active margin at that time.  相似文献   

16.
Northcote TG 《GeoJournal》1996,40(1-2):127-133
Perhaps nowhere in Canada, if indeed in North America, could two adjacent watershed basins be selected which show such remarkable differences in their historical and recent response to human population growth effects. One — the Fraser — covers some 234,000 km2 (about one quarter of the province of British Columbia) and houses nearly two-thirds of its total population. The other — the Okanagan — forms a small part (some 14,000 km2) of the upper Columbia River drainage in Canada. Native Indian populations at maximum before European contact in the late 1700s were about 50,000 in the Fraser basin and probably less than a fifth of that in the Okanagan. Present total resident populations of the Fraser and Okanagan basins, about 2 million and 1\4 million respectively, have greatly different distributions and thereby effects within the watersheds they occupy. In addition seasonal tourist populations have important and differential impacts within the two watersheds. Expression of these effects on water, fisheries and other aquatic resources of the two basins are explored along with possibilities and suggestions for their sustainable development. The latter, despite some glimmers of hope, will not be tenable without major changes in public attitude, in government policy at all levels, and in other measures which to many may seem impossible.  相似文献   

17.
18.
G. F. Hartman 《GeoJournal》1996,40(1-2):147-164
Hydroelectric development, forest exploitation, agricultural land use and related human population numbers have increased rapidly during the last 40 years, in the basin of the Nechako River, a major tributary system of the Fraser River. The Kemano project of the Aluminum Company of Canada Ltd. begun in 1950, was the largest industrial scheme in the area. A key feature of the first stage of it was a dam which diverted about 40% of flow of the south branch of the Nechako River, through a tunnel in the mountains, to the Pacific Ocean. In 1987 an agreement for the Kemano Completion Project (KCP), which would have diverted 87% of the flow, was signed. This final phase of the project would have put important fisheries resources of the upper Fraser River at high risk. Mitigation for fisheries protection were inadequate or untested in the system at the time. Potential cumulative impacts of water abstraction, elevated pollution levels, increased water temperature and natural sediment were not addressed. In January 1995 KCP was cancelled but there remain at present no adequate measures to protect the fish and the river ecosystem. These measures are to be negotiated in the future. Future management of the whole Kemano development must provide biologically realistic flow and temperature regimes in the Nechako River, and must deal with cumulative impacts of population and industrial growth. To achieve sustainability of fisheries in the Nechako River and upper Fraser watershed the present approach to the Kemano development must be changed fundamentally. The future of the Kemano development must be set in the context of the whole future of the upper Fraser system. Continued growth and development, as has occurred in the upper Fraser and total basin, can not go on without inimical changes to ecosystem conditions and loss of fisheries resources.  相似文献   

19.
This experimental investigation examined the controls on the geometry of cross‐sets formed by subaqueous dunes. A range of steady, unidirectional flow conditions spanning the field of dune existence was investigated, and aggradation rate ranged from 0 mm s?1 to 0·014 mm s?1. Data from an ultrasonic depth profiler consist of high‐resolution temporal and spatial series of bed profiles from which dune height and length, migration rate and the depth of trough scour were measured. Cross‐set thickness and length were measured from sediment peels. The size and shape of dunes from an equilibrium assemblage change continuously. Individual dunes commonly increase in height by trough scouring and, occasionally, by being caught‐up by the upstream dune. Both types of behaviour occur suddenly and irregularly in time and, hence, do not appear to depend on dunes further upstream. However, dune climbing or flattening is a typical response of dunes that disappear under the influence of the upstream dune. All types of behaviour occur at any flow velocity or aggradation rate. Successive dune‐trough trajectories, defined by dunes showing various behaviours, affect the geometry of the preserved cross‐sets. Mean cross‐set thickness/mean dune height averages 0·33 (±0·7), and mean cross‐set length/mean dune length averages 0·49 (±0·08), and both show no systematic variation with aggradation rate or flow velocity. Mean cross‐set thickness/mean cross‐set length tends to decrease with increasing flow velocity and Froude number, therefore allowing a qualitative estimation of flow conditions. Quantitative analysis of the temporal changes in the geometry and migration rate of individual dunes allows the development of a two‐dimensional stochastic model of dune migration and formation of cross‐sets. Computer realizations produced stacks of cross‐sets of comparable shape and thickness to laboratory flume observations, indicating a good empirical understanding of the variability of dune‐trough trajectories. However, interactions among dunes and aggradation rates of the order of 10?2 mm s?1 should be considered in future improved models.  相似文献   

20.
Electrical conductivity (EC) and geochemical data were interpreted to determine the nature, origin and distribution of salinity in pore waters of sediments in a deltaic environment. The role of diffusion as a mechanism for transporting saline water within lower permeability prodelta and delta slope sediments is specifically investigated. Characteristic vertical salinity profiles at several different regions of the Fraser River Delta, British Columbia (Canada) are identified, including relatively shallow salinity zones in areas currently and historically near main river channels, and deeper salinity zones reaching up to 300 m depth in delta-front and inland areas. Comparison of salinity profiles with the results of a simple salt transport model suggests that diffusion may be a significant mechanism controlling the observed distribution of salinity in current or former estuarine areas of the delta.Density-effects were found not to be significant given the low permeability of the silt through which the salt is diffusing; however, in similar environments with higher permeability sediments, density effects may be significant. In inland and delta front areas, salinity extends to a considerable depth in the silts, beyond what would appear to be possible by diffusion alone, and points to a connate origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号