首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We use 130 years data for studying correlative effects due to solar cycle and activity phenomena on the occurrence of rainfall over India. For the period of different solar cycles, we compute the correlation coefficients and significance of correlation coefficients for the seasonal months of Jan–Feb (JF), Mar–May (MAM), June–Sept (JJAS) and Oct–Dec (OND) and,annual mean data. We find that: (i) with a moderate-to-high significance, Indian rainfall is correlated with the sunspot activity and, (ii) there is an overall trend that during the period of low sunspot activity, occurrence of rainfall is high compared to the period of high sunspot activity. We speculate in this study a possible physical connection between the occurrence of the rainfall and the sunspot activities and, the flux of galactic cosmic rays. Some of the negative correlations between the occurrences of the sunspot and rainfall activities obtained for different solar cycle periods are interpreted as effects of aerosols on the rain forming clouds due to either intermittent volcanic eruptions or due to intrusion of interstellar dust particles in the Earth’s atmosphere.  相似文献   

2.
Optical photometric observations at the I and R wavebands were carried out towards Mkn501 using the 1.56 meter optical telescope of Shanghai Astronomical Observatory at Sheshan. Combining our new observations with the published historical data, we have obtained the light curves of Mkn501 at the optical, infrared and radio wavebands with a time coverage of nearly 80 years. The relationship between the light variability and the color index is discussed, it is found that a strong correlation exists between the color indices (BV) and (BR), with the correlation coefficient reaching r = 0.73. The correlations of multi-band light variabilities are analyzed by the DCF method, it is found that certain positive correlations of B-band light variability with the 4.8 GHz and infrared light variabilities exist. And the spectral analysis on the B-band light curve with the CLEANest method indicates that the light curve of Mkn501 contains probably two periodical components of (10.06 ± 0.04) yr and (21.60 ± 0.17) yr.  相似文献   

3.
There is strong statistical evidence that solar activity influences the Indian summer monsoon rainfall. To search for a physical link between the two, we consider the coupled cloud hydrodynamic equations, and derive an equation for the rate of precipitation that is similar to the equation of a forced harmonic oscillator, with cloud and rain water mixing ratios as forcing variables. Those internal forcing variables are parameterized in terms of the combined effect of external forcing as measured by sunspot and coronal hole activities with several well known solar periods (9, 13 and 27 days; 1.3, 5, 11 and 22 years). The equation is then numerically solved and the results show that the variability of the simulated rate of precipitation captures very well the actual variability of the Indian monsoon rainfall, yielding vital clues for a physical understanding that has so far eluded analyses based on statistical correlations alone. We also solved the precipitation equation by allowing for the effects of long-term variation of aerosols. We tentatively conclude that the net effects of aerosols variation are small, when compared to the solar factors, in terms of explaining the observed rainfall variability covering the full Indian monsoonal geographical domains.  相似文献   

4.
Statistical behavior of sunspot groups on the solar disk   总被引:1,自引:0,他引:1  
K.J. Li  H.F. Liang  H.S. Yun  X.M. Gu 《Solar physics》2002,205(2):361-370
In the present study we have produced a diagram of the latitude distribution of sunspot groups from the year 1874 through 1999 and examined statistical characteristics of the mean latitude of sunspot groups. The reliability of the observed data set prior to solar cycle 19 is found quite low as compared with that of the data set observed after cycle 19. A correlation is found between maximum latitude at which first sunspot groups of a new cycle appear and the maximum solar activity of the cycle. It is inferred that solar magnetic activity during the early part of an extended solar cycle may contain some information about the strength of forthcoming solar cycle. A formula is given to describe latitude change of sunspot groups with time during an extended solar cycle. The latitude-migration velocity is found to be largest at the beginning of solar cycle and decreases with time as the cycle progresses with a mean migration velocity of about 1.61° per year.  相似文献   

5.
Data of sunspot groups at high latitude (35°), from the year 1874 to the present (2000 January), are collected to show their evolutional behaviour and to investigate features of the yearly number of sunspot groups at high latitude. Subsequently, an evolutional pattern of sunspot group number at high latitude is given in this paper. Results obtained show that the number of sunspot groups of a solar cycle at high latitude rises to a maximum value about 1 yr earlier than the time of the maximum of sunspot relative numbers of the solar cycle, and then falls to zero more rapidly. The results also show that, at the moment, solar activity described by the sunspot relative numbers has not yet reached its minimum. In general, sunspot groups at high latitude have not appeared on the solar disc during the last 3 yr of a Wolf solar cycle. The asymmetry of the high latitude sunspot group number of a Wolf solar cycle can reflect the asymmetry of solar activity in the Wolf solar cycle, and it is suggested that one could further use the high latitude sunspot group number during the rising time of a Wolf solar cycle, maximum year included, to judge the asymmetry of solar activity over the whole solar cycle.  相似文献   

6.
A long-term variability of visual sporadic meteor hourly rates is studied in the period between 1984 and 2006. The present analysis involves four particular periods of visual sporadic meteor activity in January, March, July and September over two solar cycles, and the results reveal that the observed visual sporadic meteor rates vary periodically in the course of the solar cycle. It is found that the highest sporadic meteor rates are observed in the years near solar activity maxima, and their variability directly correlates with solar activity expressed by International sunspot numbers.  相似文献   

7.
Wolff (Astrophys. J. 193, 721, 1974) introduced the concept of g-mode coupling within the solar interior. Subsequently, Wolff developed a more quantitative model invoking a reciprocal interaction between coupled g modes and burning in the solar core. Coupling is proposed to occur for constant values of the spherical harmonic degree [] creating rigidly rotating structures denoted as sets(). Power would be concentrated near the core and the top of radiative zone [RZ] in narrow intervals of longitude on opposite sides of the Sun. Sets() would migrate retrograde in the RZ as function of and their intersections would deposit extra energy at the top of the RZ. It is proposed that this enhances sunspot eruptions at particular longitudes and at regular time intervals. Juckett and Wolff (Solar Phys. 252, 247, 2008) detected this enhancement by viewing selected spherical harmonics of sunspot patterns within stackplots twisted into the relative rotational frames of various sets(). In subsequent work, the timings of the set() intersections were compared to the sub-decadal variability of the sunspot cycle. Seventeen sub-decadal intersection frequencies (0.63 – 7.0 year) were synchronous with 17 frequencies in the sunspot time-series with a mean correlation of 0.96. Six additional non-11-year frequencies (periods of 8.0 to 28.7 year) are now shown to be nearly synchronous between sunspot variability and the model. Two additional intersections have the same frequency as the solar cycle itself and peak during the rising phase of the solar cycle. This may be partly responsible for cycle asymmetry. These results are evidence that some of the solar-cycle variability may be attributable to deterministic components that are intermixed with a broad-spectrum stochastic and long-term chaotic background.  相似文献   

8.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   

9.
Ogurtsov  M.G.  Nagovitsyn  Yu.A.  Kocharov  G.E.  Jungner  H. 《Solar physics》2002,211(1-2):371-394
Different records of solar activity (Wolf and group sunspot number, data on cosmogenic isotopes, historic data) were analyzed by means of modern statistical methods, including one especially developed for this purpose. It was confirmed that two long-term variations in solar activity – the cycles of Gleissberg and Suess – can be distinguished at least during the last millennium. The results also show that the century-type cycle of Gleissberg has a wide frequency band with a double structure consisting of 50–80 years and 90–140 year periodicities. The structure of the Suess cycle is less complex showing a variation with a period of 170–260 years. Strong variability in Gleissberg and Suess frequency bands was found in northern hemisphere temperature multiproxy that confirms the existence of a long-term relationship between solar activity and terrestial climate.  相似文献   

10.
The monthly median virtual height (hF) of the F-region was studied for a period of 6 years (1980–1985) from sunspot maximum to minimum, using data from 11 ionosonde stations in the Japanese-Australian longitudinal sector, in an invariant latitude range: 37°N to 54°S. The night-time maximum in the median height progressively decreases equatorwards, particularly in the local winter and spring, while a reverse weak tendency is observed in summer. The median height reaches peak in both hemispheres from 1 to 2 years after sunspot maximum then decreases towards sunspot minimum. A second diurnal maximum in hF, preceded by a well-defined minimum, was consistently observed over the solar cycle close to the sunrise time at the F-region, mainly at low invariant latitudes (9–20°). The second maximum has a distinct seasonal variation, being most pronounced in winter and diminishing in summer. It is envisaged that the second peak in hF is associated with the wave disturbance generated by the supersonic motion of the sunrise terminator. Possible effects of the background height variations on the propagation of the magnetic storm-induced travelling ionospheric disturbances are discussed.  相似文献   

11.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

12.
The long-term modulation of cosmic ray intensity (CRI) by different solar activity (SA) parameters and an inverse correlation between individual SA parameter and CRI is well known. Earlier, it has been suggested that the concept of multi-parametric modulation of CRI may play an important role in the study of long-term modulation of CRI. In the present study, we have tried to investigate the combined effect of a set of two SA parameters in the long-term modulation of CRI. For this purpose, we have used a new statistical technique called “Running multiple correlation method”, based on the “Running cross correlation method”. The running multiple correlation functions among different sets of two SA parameters (e.g., sunspot numbers and solar flux, sunspot numbers and coronal index, sunspot numbers and grouped solar flares, etc.) and CRI have been correlated separately. It is found that the strength of multiple correlation (among two SA parameters and CRI) and cross correlation (between individual SA parameter and CRI) is almost similar throughout the period of investigation (1955–2005). It is also found that the multiple correlations among various SA parameters and CRI is stronger during ascending and descending phases of the solar cycles and it becomes weaker during maxima and minima of the solar cycles, which is in accordance with the linear relationship between SA parameters and CRI. The values of multiple correlation functions among different sets of SA parameters and CRI fall well within the 95% confidence interval. In the view of odd-even hypothesis of solar cycles, the strange behaviour of present cycle 23 (odd cycle), as this is characterized by many peculiarities with double peaks and many quiet periods (Gnevyshev gaps) interrupted the solar activity (for example April 2001, October–November 2003 and January 2005), leads us to speculate that the solar cycle 24 (even cycle) might be of exceptional nature.  相似文献   

13.
Total solar irradiance (TSI) is the primary quantity of energy that is provided to the Earth. The properties of the TSI variability are critical for understanding the cause of the irradiation variability and its expected influence on climate variations. A deterministic property of TSI variability can provide information about future irradiation variability and expected long-term climate variation, whereas a non-deterministic variability can only explain the past.This study of solar variability is based on an analysis of two TSI data series, one since 1700 A.D. and one since 1000 A.D.; a sunspot data series since 1610 A.D.; and a solar orbit data series from 1000 A.D. The study is based on a wavelet spectrum analysis. First, the TSI data series are transformed into a wavelet spectrum. Then, the wavelet spectrum is transformed into an autocorrelation spectrum to identify stationary, subharmonic and coincidence periods in the TSI variability.The results indicate that the TSI and sunspot data series have periodic cycles that are correlated with the oscillations of the solar position relative to the barycenter of the solar system, which is controlled by gravity force variations from the large planets Jupiter, Saturn, Uranus and Neptune. A possible explanation for solar activity variations is forced oscillations between the large planets and the solar dynamo.We find that a stationary component of the solar variability is controlled by the 12-year Jupiter period and the 84-year Uranus period with subharmonics. For TSI and sunspot variations, we find stationary periods related to the 84-year Uranus period. Deterministic models based on the stationary periods confirm the results through a close relation to known long solar minima since 1000 A.D. and suggest a modern maximum period from 1940 to 2015. The model computes a new Dalton-type sunspot minimum from approximately 2025 to 2050 and a new Dalton-type period TSI minimum from approximately 2040 to 2065.  相似文献   

14.
Analysis of long-term solar data from different observatories is required to compare and confirm the various level of solar activity in depth. In this paper, we study the north–south asymmetry of monthly mean sunspot area distribution during the cycle-23 and rising phase of cycle-24 using the data from Kodaikanal Observatory (KO), Michelson Doppler Imager (MDI) and Solar Optical Observing Network (SOON). Our analysis confirmed the double peak behavior of solar cycle-23 and the dominance of southern hemisphere in all the sunspot area data obtained from three different resources. The analysis also showed that there is a 5–6 months time delay in the activity levels of two hemispheres. Furthermore, the wavelet analysis carried on the same data sets showed several known periodicities (e.g., 170–180 days, 2.1 year) in the north–south difference of sunspot area data. The temporal occurrence of these periods is also the same in all the three data sets. These results could help in understanding the underlying mechanism of north–south asymmetry of solar activity.  相似文献   

15.
Long-term changes in the cosmic-ray diurnal anisotropy   总被引:1,自引:0,他引:1  
A detailed study has been conducted on the long-term changes in diurnal anisotropy of cosmic rays for the two solar cycles (20 and 21) during the period 1965–1990; this shows that the amplitude of the anisotropy is related to the characteristics of high and low amplitude days. The occurrence of high amplitude days are found to be positively correlated with the sunspot cycle while the low amplitude days are correlated negatively with the sunspot cycle. Further, the variability of the time of maximum of the aniotropy indicates that it essentially is composed of two components; one in the 1800 hours (corotation) direction and the other, an additional component in the 1500 hours direction (45° east of the S-N line) apparently caused by the reversal of the solar polar magnetic field. Our observations also suggest that the direction of the anisotropy of high- and low-amplitude days contribute significantly to the long-term behaviour of the diurnal anisotropy as it produces an additional component of cosmic rays in the radial (1200 hours) direction.  相似文献   

16.
The morphological features of Pc5 pulsations during a solar cycle are studied using Fort Churchill data for the years 1962–1972. Some of the characteristics noted are as follows: (1) Increasing sunspot numbers show little influence on the diurnal variation of the occurrence, amplitude and the period except perhaps some noticeable change in the absolute magnitude of these parameters during different hours of the day. (2) The morning occurrence peak dominates during all phases of the solar cycle. (3) As noted earlier (Gupta 1973a), with increasing magnetic activity the day side region(s) of generation of Pc5 is found to shift closer to the subsolar point and in the midnight sector, the occurrence region (presumably the region of open and closed field lines) seemed to shift towards earlier hours with increasing magnetic activity and towards later hours with increasing sunspot numbers. (4) Despite the smaller number of data points for high magnetic activity levels the analysis indicates that the amplitude of Pc5 pulsations is directly related to all the levels of magnetic activity. (5) The periods of Pc5 pulsations show strong correlation with increasing sunspot numbers and the amplitude and occurrences are found to vary in accordance with the magnetic activity all through the cycle. (6) The annual and semi-annual variations of Pc5 parameters have been demonstrated especially for the pulsations occurring in the morning close to 8 ± 1 h LT and for those occurring near the midnight hours. (7) A suspected 27-day recurrence tendency has been clearly noticed for the occurrence, amplitude and period of Pc5 pulsations.  相似文献   

17.
Recurrence of solar activity: Evidence for active longitudes   总被引:1,自引:0,他引:1  
The autocorrelation coefficients of the daily Wolf sunspot numbers over a period of 128 years reveal a number of interesting features of the variability of solar activity. In addition to establishing periodicities for the solar rotation, the solar activity cycle, and perhaps the Gleissberg Cycle, they suggest that active longitudes do exist, but with much greater strength and persistence in some solar cycles than in others. There is evidence for a variation in the solar rotation period, as measured by sunspot number, of as much as two days between different solar cycles.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of α = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).  相似文献   

19.
The series of directly observed sunspot numbers is nearly 400 years long. We stress that the recently compiled group sunspot number series is an upgrade of the old Wolf series and should always be used before 1850. The behavior of solar activity on longer time scales can be studied only using indirect proxies. Such proxies as aurorae occurrence or naked-eye sunspot observations are qualitative indicators of solar activity but can be hardly quantitatively interpreted. Cosmogenic isotope records provide a basis for quantitative estimate of the past solar activity. Here we overview the main methods of the long-term solar activity reconstruction on the centennial to multimillennia time scale. We discuss that regression-based reconstructions of solar activity lead to very uncertain results, while recently developed physics-based models raise solar activity reconstruction to a new level and allow studying its behavior on a multimillennia time scale. In particular, the reconstructions show that the recent episode of high solar activity is quite unusual in the multimillennia time scale.  相似文献   

20.
Forecasting solar and geomagnetic levels of activity is essential to help plan missions and to design satellites that will survive for their useful lifetimes. Therefore, amplitudes of the upcoming solar cycles and the geomagnetic activity were forecasted using the neuro-fuzzy approach. Results of this work allow us to draw the following conclusions: Two moderate cycles are estimated to approach their maximum sunspot numbers, 110 and 116 in 2011 and 2021, respectively. However, the predicted geomagnetic activity shown to be in phase with the peak of the 24th sunspot cycle will reach its minimum three years earlier, then it will rise sharply to reach the 25th maximum a year earlier (i.e., 2020). Our analysis of the three-century long sunspot number data-set suggests that the quasi-periodic variation of the long-term evolution of solar activity could explain the irregularity of the short-term cycles seen during the past decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号