首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a total of 115,246 ground motions recorded during earthquakes of Moment magnitudes ranging from M_w 5.0 to M_w 9.0 are analyzed statistically. A total of 21 ground motion parameters characterising the recorded acceleration time histories are used in the analysis. Classification of these parameters through statistical correlation is reported and a parameter called "distance from zero-amplitude axis," or dZ-A, is formulated in the principal component space. The ability for dZ-A to rate the damage potentials of strong motion records is evaluated through correlation of dZ-A with Japan Meteorological Agency(JMA) instrumental seismic intensities. This parameter can be used to rate damage potential of any strong motion record irrespective of the magnitude and location of the earthquake. It can also be used in selecting ground motion records of appropriate damage potential in seismic design and probabilistic analysis.  相似文献   

2.
Attenuation modeling of recent earthquakes in Turkey   总被引:1,自引:0,他引:1  
This paper deals with the derivation of a consistent set of empiricalattenuation relationships for predicting free-field horizontal components ofpeak ground acceleration (PGA) and 5 percent damped pseudoacceleration response spectra (PSA) from 47 strong ground motion recordsrecorded in Turkey. The relationships for Turkey were derived in similarform to those previously developed by Boore et al. (1997) for shallowearthquakes in western North America. The used database was compiledfor earthquakes in Turkey with moment magnitudes (Mw) = 5 thatoccurred between 1976–1999, and consisted of horizontal peak groundacceleration and 5 percent damped response spectra of accelerogramsrecorded on three different site conditions classified as rock, soil and softsoil. The empirical equations for predicting strong ground motion weretypically fit to the strong motion data set by applying nonlinear regressionanalysis according to both random horizontal components and maximumhorizontal components. Comparisons of the results show that groundmotion relations for earthquakes in one region cannot be simply modifiedfor use in engineering analyses in another region. Our results, patternedafter the Boore et al. expressions and dominated by the Kocaeli andDüzce events in 1999, appear to underestimate predictions based ontheir curves for up to about 15 km. For larger distances the reverse holds.  相似文献   

3.
While many cases of structural damage in past earthquakes have been attributed to strong vertical ground shaking, our understanding of vertical seismic load effects and their influence on collapse mechanisms of buildings is limited. This study quantifies ground motion parameters that are capable of predicting trends in building collapse because of vertical shaking, identifies the types of buildings that are most likely affected by strong vertical ground motions, and investigates the relationship between element level responses and structural collapse under multi‐directional shaking. To do so, two sets of incremental dynamic analyses (IDA) are run on five nonlinear building models of varying height, geometry, and design era. The first IDA is run using the horizontal component alone; the second IDA applies the vertical and horizontal motions simultaneously. When ground motion parameters are considered independently, acceleration‐based measures of the vertical shaking best predict trends in building collapse associated with vertical shaking. When multiple parameters are considered, Housner intensity (SI), computed as a ratio between vertical and horizontal components of a record (SIV/SIH), predicts the significance of vertical shaking for collapse. The building with extensive structural cantilevered members is the most influenced by vertical ground shaking, but all frame structures (with either flexural and shear critical columns) are impacted. In addition, the load effect from vertical ground motions is found to be significantly larger than the nominal value used in US building design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
2008年汶川地震近断层竖向与水平向地震动特征   总被引:12,自引:0,他引:12       下载免费PDF全文
选取分布在北川-映秀中央断裂两侧断层距120 km以内的40个强震动台站的记录,对汶川地震近断层地震动竖向和水平向加速度峰值、速度峰值、竖向和水平向加速度反应谱及谱比值进行了统计分析.研究表明:(1)地震动加速度峰值有显著的上盘效应,经验衰减模型的结果表明,在距地表破裂3~60 km的范围内,龙门山发震断层上盘一侧竖向与水平向的加速度峰值要比衰减模型得到的平均值大30%~40%.上盘的加速度峰值残差大部分是正值,而断层下盘残差大部分为负;水平地震动的东西分量幅值总体要大于南北分量,东西分量衰减相对较慢.(2)地震动长周期成分较弱,加速度反应谱值随周期增大而迅速减小,在周期1.0 s 时,即使在靠近中央断裂的最大加速度反应谱值也只有0.5 g;地震动加速度反应谱谱比值(竖向/水平向)沿龙门山断层周围的分布,在较长周期(T=0.2 s, 0.5 s, 1.0 s)与短周期(T=0.05 s, 0.1 s)有明显的不同.(3)近断层竖向地震动显著,地震动加速度峰值比在(竖向/水平向)可达1.4.在龙门山发震断层的上盘,地震动加速度峰值比整体上比下盘要大,竖向地震动尤为剧烈.部分近断层记录的地震动谱比值(竖向/水平向)在短周期(< 0.1 s)甚至超过1.5,统计分析还表明谱比值在短周期段(< 0.1 s)随断层距的增大而减小.  相似文献   

5.
The 23 October 2011 Van (Mw 7.1) earthquake that occurred in Eastern Turkey resulted in heavy damage particularly in the city of Van and town of Ercis. This paper presents ground motion simulations of Van earthquake by using stochastic finite fault method (EXSIM, Motazedian and Atkinson in Bull Seismol Soc Am 95:995–1010, 2005; Boore in Bull Seismol Soc Am 99:3202–3216, 2009) that provides a simple and effective tool to generate high frequency strong motion. The input parameters related to source, path, and site effects are calibrated on the basis of minimizing the error functions between simulations and observations both in time and frequency domain. Validated model parameters are used to produce synthetics in regional extent with the aim of understanding the level and distribution of the ground shaking particularly in the near fault region where no recordings are available within the 40 km of the epicenter. This paper evaluates the effect of two different slip models on ground motion intensity measures over the area of interest and addresses the variability in the near fault region associated with the source effect. The synthetics are compared with the corresponding estimations of ground motion prediction equations by Boore and Atkinson (Earthq Spectra 24:99–138, 2008), Akkar and Bommer (Seismol Res Lett 81:195–206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100:2978–2995, 2010). Our results indicate that despite the limitation of the method for incorporating the directivity effect and inadequate representation of the soil conditions at the individual stations, a satisfactory match between synthetics and observations are obtained both in time and frequency domain. Spatial distributions of the synthetics in regional level also show reasonable correlation with ground motion prediction equations and damage observations.  相似文献   

6.
The relationship between the amplification ratio of earthquake ground motion and geologic conditions at Japan Meteorological Agency (JMA) stations nationwide was examined to propose an estimation method of the amplification ratio that is applicable to entire Japan. The amplification ratios for the instrumental JMA intensity, as well as for the peak ground acceleration and velocity, were obtained from the station coefficients of the attenuation relationships using strong motion records measured at 77 JMA stations over a period of more than 8 years. A combined use of geomorphological land classification and subsurface geology was found to yield the best estimate of the site amplification ratio. This result suggests that these data, and hence the Digital National Land Information, which is a nationwide GIS database, may be conveniently used for the estimation of strong motion distribution over large areas in Japan.  相似文献   

7.
Response of pendulums to complex input ground motion   总被引:1,自引:0,他引:1  
Dynamic response of most seismological instruments and many engineering structures to ground shaking can be represented via response of a pendulum (single-degree-of-freedom oscillator). In most studies, pendulum response is simplified by considering the input from uni-axial translational motion alone. Complete ground motion however, includes not only translational components but also rotations (tilt and torsion). In this paper, complete equations of motion for three following types of pendulum are described: (i) conventional (mass-on-rod), (ii) mass-on-spring type, and (iii) inverted (astatic), then their response sensitivities to each component of complex ground motion are examined. The results of this study show that a horizontal pendulum similar to an accelerometer used in strong motion measurements is practically sensitive to translational motion and tilt only, while inverted pendulum commonly utilized to idealize multi-degree-of-freedom systems is sensitive not only to translational components, but also to angular accelerations and tilt. For better understanding of the inverted pendulum's dynamic behavior under complex ground excitation, relative contribution of each component of motion on response variants is carefully isolated. The systematically applied loading protocols indicate that vertical component of motion may create time-dependent variations on pendulum's oscillation period; yet most dramatic impact on response is produced by the tilting (rocking) component.  相似文献   

8.
9.21台湾集集地震中场地类别对地震动若干特性的影响   总被引:2,自引:1,他引:2  
对9.21台湾集集地震主震的404组强震记录按照不同震中距和场地类别进行分组,然后对加速度水平分量和垂直分量的持时、峰值加速度、包络线、反应谱及其均方差作了,统计分析。结果表明,场地条件对不同分量加速度某些特征的影响较为显著,断层方向对地震动水平特性也有一定的影响。该结果对地震危险性分析以及结构抗震验算有一定参考价值。此外,对地震动三分量包络线的研究为三维地震动模拟提供了一定参考。  相似文献   

9.
The Japan Meteorological Agency (JMA) seismic intensity (IJMA) has been used as a measure of strong shaking for many years in Japan, and it necessitates to know the correlation between the JMA seismic intensity and other strong motion indices, e.g. Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and Spectrum Intensity (SI). In this study, two strong motion data sets were selected; in which, the first set consists of 879 three‐components non‐liquefied records selected from 13 major earthquake events that occurred in Japan, the United States, and Taiwan, and the second set consists of 17 liquefied records selected from 7 major earthquake events that occurred in Japan and the United States. The JMA seismic intensity and other ground motion indices were calculated using the selected data sets. The relationships between the JMA seismic intensity and PGA, PGV, and SI were then derived performing a two‐stage linear regression analysis. Results from the analysis show that the JMA instrumental seismic intensity shows higher correlation with SI than PGA or PGV, and it shows the highest correlation with the parameters such as the combination of PGA and SI or the product of PGA and SI. The obtained relationships are also compared with the ones obtained by other studies, which may be useful for the disaster management agencies in Japan and deployment of new SI‐sensors that monitor both PGA and SI. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
P-alert台网实时数据对地震预警及烈度速报和工程地震研究都是重要的补充,处理分析这些数据对客观衡量P-alert台网数据质量和数据用途有重要意义。对2016年2月6日台湾美浓ML6.4地震P-alert台网获取的记录进行了处理和初步分析,统计分析显示100gal以上加速度记录有112条,200gal以上加速度记录有33条,400gal以上加速度记录有7条,东西向最大峰值加速度为466.4gal,南北向最大峰值加速度为498.4gal,竖直向最大峰值加速度为258.6gal,最大仪器地震烈度为9.5度。竖直向峰值加速度和峰值速度比水平向峰值加速度和峰值速度衰减快。峰值加速度比峰值速度衰减快,观测峰值加速度和峰值速度与台湾西南地区峰值加速度和峰值速度衰减公式比较一致。计算得到了近场台站的永久位移,显示P-alert台网绝大多数永久位移在1cm到5cm之间,最大永久位移达8cm。  相似文献   

11.
La Coste地震计的原理及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
本文讨论了旋转型La coste地震计的原理和各种悬挂方式及其周期表达式。指出消除“拐腿”效应和振幅效应的最好办法是采用零长弹簧(l=0)并使绞链簧片的弹率c1=-M′(0)否则,地震计将表现为正“拐腿”效应、正振幅效应或反效应,它们严重地阻碍着固有周期的增长。绞链簧片弹率c1固定后,地震计只能工作在对应的周期。列举了满足La coste悬挂条件时各种因素变化对周期和零点的影响。  相似文献   

12.
刘甲美  高孟潭  陈鲲 《地震学报》2015,37(5):865-874
地形对地震动的影响比较复杂, 考虑地形放大效应的地震滑坡稳定性分析需要选择合适的地震动参数. 本文使用自贡地形影响台阵记录到的2008年汶川MS8.0地震主震加速度记录, 分析了地震动峰值加速度、 阿里亚斯烈度以及90%能量持时随地形高度的变化, 探讨了地形效应作用下峰值加速度和阿里亚斯烈度与地震动作用下斜坡稳定性的相关性. 结果表明: ① 地形场地对峰值加速度和阿里亚斯烈度均有显著的放大效应. 地形放大效应较为复杂, 其整体上随台站高度的增加而增大, 水平向的放大效应大于竖直向. 水平向峰值加速度的放大系数为1.1—1.8, 阿里亚斯烈度的放大系数为1.2—3.3; 竖直向相应放大系数分别为1.1—1.3和1.2—1.7. ② 地形对地震动持时也有一定的放大效应, 但不同高度、 不同分量的放大效应没有显著差异, 其放大系数均约为1.3. ③ 阿里亚斯烈度和峰值加速度均能很好地表征地形对地震动的影响, 与地震动对斜坡稳定性的影响具有很强的相关性. 与峰值加速度相比, 阿里亚斯烈度综合了地震动的多方面特征, 可以更好地表征地形对地震动的影响, 与地震动作用下斜坡稳定性的相关性更强.   相似文献   

13.
The 2008 MS8 Wenchuan earthquake occurs on a high angle listric thrust fault. It is the first time that the near and far field strong ground motion was observed for such special type thrust earthquake. This paper jointly interprets the distribution of peak acceleration of ground motion data with seismogenic structure and slip propagating process to investigate how high angle listric thrust fault controls the pattern of strong ground motion. We found that the distribution of peak acceleration of strong ground motion during the Wenchuan earthquake has four distinctive features: 1)The peak acceleration of ground motion inside the Longmenshan fault zone is large, that is, nearly twice as strong as that outside the fault zone; 2)This earthquake produces significant vertical ground motion, prevailing against horizontal components in the near field; 3)The far field records show that the peak acceleration is generally higher and attenuates slower versus station-fault distance in the hanging wall. It is doubtful that the attenuation of horizontal components also has the hanging wall effect since no evidence yet proving that the unexpected high value at long distance need be omitted; 4)As to the attenuation in directions parallel to the source fault(Yingxiu-Beichuan Fault), the far field records also exhibit azimuthal heterogeneity that the peak acceleration of horizontal components decreases slower in the north-northeastern direction in which the co-seismic slip propagates than that in the backward way. However, the attenuation of vertical component displays very weak heterogeneity of this kind. Synthetically considered with shallow dislocation, high dip angle, and prevailing vertical deformation during co-seismic process of the Wenchuan earthquake, our near and far field ground motion records reflect the truth that the magnitude of ground motion is principally determined by slip type of earthquake and actual distance between the slipping source patches and stations. As a further interpretation, the uniqueness of high angle listric thrust results in that the ground motion effects of the Wenchuan earthquake are similar to that due to a common thrust earthquake in some components while differ in the others.  相似文献   

14.
强震动记录的使用通常不考虑观测方向对于水平地震动参数计算的影响。文中以2008年汶川Ms8.0级地震中绵竹清平台获取的强震动记录为研究对象,对记录进行水平向旋转以模拟观测方向的变化,分析水平向峰值加速度PGA、峰值速度PGV、相对持时DR、绝对持时DA及谱加速度PSA随观测方向的变化情况。结果表明,PGA、PGV及PSA的计算较大依赖于观测方向,而DR和DA则受观测方向影响较小。为此文中提出了一种与观测方向无关的水平地震动参数计算方法,对于计算诸如PGA、PGV等与周期无关的地震动参数时不考虑周期独立;而对于计算诸如PSA等与周期有关的地震动参数时考虑周期独立。  相似文献   

15.
<正>Ground motion records are often used to develop ground motion prediction equations(GMPEs) for a randomly oriented horizontal component,and to assess the principal directions of ground motions based on the Arias intensity tensor or the orientation of the major response axis.The former is needed for seismic hazard assessment,whereas the latter can be important for assessing structural responses under multi-directional excitations.However,a comprehensive investigation of the pseudo-spectral acceleration(PSA) and of GMPEs conditioned on different axes is currently lacking.This study investigates the principal directions of strong ground motions and their relation to the orientation of the major response axis, statistics of the PSA along the principal directions on the horizontal plane,and correlation of the PSA along the principal directions on the horizontal plane.For these,three sets of strong ground motion records,including intraplate California earthquakes,inslab Mexican earthquakes,and interface Mexican earthquakes,are used.The results indicate that one of the principal directions could be considered as quasi-vertical.By focusing on seismic excitations on the horizontal plane,the statistics of the angles between the major response axis and the major principal axis are obtained;GMPEs along the principal axes are provided and compared with those obtained for a randomly oriented horizontal component;and statistical analysis of residuals associated with GMPEs along the principal directions is carried out.  相似文献   

16.
Hydrodynamic pressures and structural response of concrete gravity dams, including dam-reservoir interaction, due to the vertical component of earthquake ground motions are investigated. The response of the dam is approximated by the deformations in the fundamental mode of vibration, and the effects of deformability of bed rock on hydrodynamic pressures are recognized in the analysis. Expressions for the complex frequency response functions for the dam displacement, dam acceleration and lateral hydrodynamic force are derived. These results along with the Fast Fourier Transform algorithm are utilized to compute the time-history of responses of dams of 100, 300 and 600 ft height, with full reservoir, for different values of elastic modulus of mass concrete: 3.0, 3.5, 4.0, 4.5 and 5.0 million psi, to the vertical component of El Centro, 1940, and Taft, 1952, ground motions. It is concluded that the hydrodynamic forces caused by vertical ground motion are affected substantially by damreservoir interaction and depend strongly on the modulus of elasticity of the dam. The dam response to the vertical component of ground motion is compared with that due to the horizontal component. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.  相似文献   

17.
The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of seawater on incident plane P and SV waves at ocean bottom indicate that on one hand, the affected frequency range of vertical ground motions is prominent due to P wave resonance in the water layer if the impedance ratio between the seawater and the underlying medium is large, but it is greatly suppressed if the impedance ratio is small; on the other hand, for the ocean bottom interface model selected herein, vertical ground motions consisting of mostly P waves are more easily affected by seawater than those dominated by SV waves. The statistical analysis of engineering parameters of offshore ground motion records indicate that:(1) Under the infl uence of softer surface soil at the seafl oor, both horizontal and vertical spectral accelerations of offshore motions are exaggerated at long period components, which leads to the peak spectral values moving to a longer period.(2) The spectral ratios(V/H) of offshore ground motions are much smaller than onshore ground motions near the P wave resonant frequencies in the water layer; and as the period becomes larger, the effect of seawater becomes smaller, which leads to a similar V/H at intermediate periods(near 2 s). These results are consistent with the conclusions of Boore and Smith(1999), but the V/H of offshore motion may be smaller than the onshore ground motions at longer periods(more than 5 s).  相似文献   

18.
Nakamura's method, which uses a horizontal-to-vertical Fourier spectrum ratio of microtremor, has become popular to determine the predominant period and amplification of a site. In this study, this method is extended for earthquake ground motion recordings using new strong motion data recorded by JMA-87-type accelerometers. From the analysis of these accelerograms, horizontal-to-vertical Fourier spectrum ratios of a site for different earthquakes are also found to be stable irrespective of magnitude, distance and depth. To establish this fact, attenuation relations of velocity response spectra for horizontal and vertical components are derived for three damping ratios (0, 2 and 5 per cent) using the JMA data. Then the horizontal-to-vertical ratios of the velocity response spectra are obtained. The results show that the horizontal and vertical velocity response spectra are dependent on magnitude, distance and depth, but that their ratios are almost independent of magnitude, distance and depth. However, since the current data set consists of mostly intermediate to far field data, this observation should be limited to records of these distance ranges. Introducing station coefficients, representing site amplification, to this relation yields the value comparable to the horizontal-to-vertical Fourier spectrum ratio at a specific site. The stability of the spectrum ratio is explained by the transfer function between the ground surface and stiff-soil outcrop due to S-wave propagation. These results suggest that site amplification characteristics can be evaluated by one-point two-component surface recordings of earthquake ground motion, in a similar manner as proposed by Nakamura for microtremor. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
Statistical modeling of ground motion relations for seismic hazard analysis   总被引:1,自引:0,他引:1  
We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area equivalence, wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(ε 0) of Joyner and Boore, Bull Seism Soc Am 83(2):469–487, 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions, which indicate the appropriate modeling of the GMR by an anisotropic point source model. The constructed distances like the Joyner–Boore distance do not work well for event-specific GMRs. We discover also a strong relation between magnitude and the squared expectation of the PGAs being integrated in the geo-space for the event-specific GMRs. One of our secondary contributions is the simple modeling of anisotropy for a point source model.  相似文献   

20.
地震动输入能量衰减规律的研究   总被引:6,自引:1,他引:6  
对所收集到的266条强震记录,将其按场地条件分类,计算了不同场地条件、不同延性系数下的“绝对”和“相对”输入能量反应谱,然后利用两步回归法,得出了不同场地条件下地震动“绝对”和“相对”两种输入能量的衰减规律,分析了场地条件、延性系数、震级及距离等参数对地震动能量谱的影响,并对两种输入能量衰减规律进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号