首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Introduction The unexpected December 26, 2004, off the west coast of northern Sumatra, Indonesia, MW=9.0 earthquake, which caused devastating tsunami around the Indian Ocean, reminds seis-mologists of the difficulty of earthquake forecast and/or prediction. For seismologists this earth-quake is almost completely unexpected, because there was neither forecasting (which means the estimation of the future earthquake rate as a function of location, time, and magnitude) nor predic-tion (forecasti…  相似文献   

2.
3.
The Hori’s inverse method based on spectral decomposition was applied to estimate coseismic slip distribution on the rupture plane of the 14 November 2001 MS8.1 Kunlun earthquake based on GPS survey results.The inversion result shows that the six sliding models can be constrained by the coseismic GPS data.The established slips mainly concentrated along the eastern segment of the fault rupture,and the maximum magnitude is about 7 m.Slip on the eastern segment of the fault rupture represents as purely left-la...  相似文献   

4.
New generation superconducting gravimeters (SGs), which have been demonstrated to be better than the best seismometers STS-1 at frequencies below 1 mHz, can be accepted as the quietest vertical seismometers for observation of long-period earth free oscillations. Wavelet filtering with narrow band-pass frequency response as shown in this paper is very helpful in removing at- mospheric pressure effects from on gravity records in long-period seismic mode frequency bands. The processing of high quality SG records after the great Sumatra earthquake (Dec. 26, 2004) with wavelet filtering leads to clear observations of all coupled toroidal modes below 1.5 mHz except these for 0T5, 0T7 and 1T1; moreover 1T2 and 1T3 are, for the first time, unambiguously revealed in the vertical components of the free oscillations. The three well-resolved splitting singlets of overtones 2S1 are observed from a single SG record for the first time.  相似文献   

5.
Introduction As we well know, the hazard of earthquake is very wide especially in cities. The conventionalmethods to investigate the damage are difficult to meet the requirements in applications. In recentyears, with the rapid development of remote sensing, especially the successful launch and applica-tion of high-resolution commercial remote sensing satellite, it has become possible to recognize andextract damage information by using remote sensing. The researchers at home and abroad hav…  相似文献   

6.
Records of the coastal mareographs during the December 26, 2004, tsunami are used to study the fine structure of the tsunami wave power spectra. It is shown that a series of maxima is observed in their spectra near the source in a range of internal gravity wave frequencies of 0.2–1.2 mHz, which coincides with the frequencies of the natural oscillations of the Earth. This experimental finding enables us to propose a possible physical mechanism for the formation of tsunami waves as a result of oscillations in the sea bottom at these frequencies. Internal gravity waves in the Earth’s atmosphere excited in this way are found in the variations of the total electron content that resulted from this powerful earthquake.  相似文献   

7.
The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the Matese seismic sequence in southern Italy for the period of December 2013–January 2014. We estimate the focal mechanisms of 31 earthquakes with local magnitudes related to the Matese earthquake seismic sequence (December 2013–January 2014) in Southern-Central Italy which are recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in agreement with the local faults mapped out in the area. Comparisons with already published solutions and with seismological and geological information available allowed us to properly interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. The results are compatible with the major tectonic domain of the area.  相似文献   

8.
The Krafla rifting episode, which occurred in North Iceland in 1975–1984, was followed by inflation of a shallow magma chamber until 1989. At that time, gradual subsidence began above the magma chamber and has continued to the present at a declining rate. Pressure decrease in a shallow magma chamber is not the only source of deformation at Krafla, as other deformation processes are driven by exploitation of two geothermal fields, together with plate spreading. In addition, deep-seated magma accumulation appears to take place, with its centre ∼ 10 km north of the Krafla caldera. The relative strength of these sources has varied with time. New results from a levelling survey and GPS measurements in 2005 allow an updated view on the deformation field. Deformation rates spanning 2000–2005 are the lowest recorded in the 30-year history of geodetic studies at the volcano. The inferred rate of 2000–2005 subsidence related to processes in the shallow magma chamber is less than 0.3 cm/yr whereas it was ∼ 5 cm/yr in 1989–1992. Currently, the highest rate of subsidence takes place in the Leirbotnar area, within the Krafla caldera, and appears to be a result of geothermal exploitation.  相似文献   

9.
10.
The coexistence of stationary mantle plumes with plate-scale flow is problematic in geodynamics. We present results from laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high Rayleigh number (106≤Ra≤109) in a fluid with a temperature-dependent viscosity. In a large tank, a layer of corn syrup is heated from below while being stirred by large-scale flow due to the opposing motions of a pair of conveyor belts immersed in the syrup at the top of the tank. Three regimes are observed, depending on the ratio V of the imposed horizontal flow velocity to the rise velocity of plumes ascending from the hot boundary, and on the ratio λ of the viscosity of the interior fluid to the viscosity of the hottest fluid in contact with the bottom boundary. When V≪1 and λ≥1, large-scale circulation has a negligible effect on convection and the heat flux is due to the formation and rise of randomly spaced plumes. When V>10 and λ>100, plume formation is suppressed entirely, and the heat flux is carried by a sheet-like upwelling located in the center of the tank. At intermediate V, and depending on λ, established plume conduits are advected along the bottom boundary and ascending plumes are focused towards the central upwelling. Heat transfer across the layer occurs through a combination of ascending plumes and large-scale flow. Scaling analyses show that the bottom boundary layer thickness and, in turn, the basal heat flux q depend on the Peclet number, Pe, and λ. When λ>10, q∝Pe1/2 and when λ→1, q∝(Peλ)1/3, consistent with classical scalings. When applied to the Earth, our results suggest that plate-driven mantle flow focuses ascending plumes towards upwellings in the central Pacific and Africa as well as into mid-ocean ridges. Furthermore, plumes may be captured by strong upwelling flow beneath fast-spreading ridges. This behavior may explain why hotspots are more abundant near slow-spreading ridges than fast-spreading ridges and may also explain some observed variations of mid-ocean ridge basalt (MORB) geochemistry with spreading rate. Moreover, our results suggest that a potentially significant fraction of the core heat flux is due to plumes that are drawn into upwelling flows beneath ridges and not observed as hotspots.  相似文献   

11.
The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17–18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russia are shown for the first time. The results of analysis of ground-based and space-borne GPS observations, as well as satellite, in situ measurements, revealed large-scale ionospheric plasma irregularities observed over the territory of Russia in the latitude range of 50°–85° N during the main phase of the geomagnetic storm. The most intense ionospheric irregularities were detected in the auroral zone and in the region of the main ionospheric trough (MIT). It has been found that sharp changes in the phase of the carrier frequency of the navigation signal from all tracked satellites were recorded at all GPS stations located to the North from 55° MLAT. The development of a deep MIT was related to dynamic processes in the subauroral ionosphere, in particular, with electric fields of the intense subauroral polarization stream. Analysis of the electron and ion density values obtained by instruments on board of the Swarm and DMSP satellites showed that the zone of highly structured auroral ionosphere extended at least to heights of 850–900 km.  相似文献   

12.
We carried out a study of the seismicity and ground deformation occurring on Mt. Etna volcano after the end of the 2002–2003 eruption and before the onset of the 2004–2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania and by geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most earthquakes were grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. The areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions, and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms in the northeastern sector show clear left-lateral kinematics along an E-W fault plane, consistent with events occurring along the Pernicana Fault system. The fault plane solutions in the southeastern sector show mainly right-lateral kinematics along a NNE and ENE fault plane and left lateral-kinematics along NW fault planes that together suggest roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results show mainly ENE-WSW extension coupled with WNW-ESE contraction, indicating right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity in the southeastern sector of volcano is located between 3 and 8 km b.s.l. and can be associated with a very strong additional E-W compression induced by a pressurizing source just westwards and at the same depth, located by inverting GPS data. Ground deformation, in contrast, is mainly affected by the shallower dynamics of the fast moving eastern flank which produces a shallower opposing E-W extension. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km b.s.l. and could represent the décollement surface for the mobile flank.  相似文献   

13.
14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号