首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T.D. Price  B.G. Ruessink   《Marine Geology》2008,251(1-2):98-109
This paper builds on the work of Masselink [Masselink, G., 1993. Simulating the effects of tides on beach morphodynamics. J. Coast. Res. SI 15, 180–197.] on the use of the residence times of shoaling waves, breaking waves and swash/backwash motions across a cross-shore profile to qualitatively understand temporal beach behaviour. We use a data set of in-situ measurements of wave parameters (height and period) and water depth, and time-exposure video images overlooking our single-barred intertidal measurement array at Egmond aan Zee (Netherlands) to derive boundaries between the shoaling zone, the surf zone and the swash zone. We find that the boundaries are functional dependencies of the local relative wave height on the local wave steepness. This contrasts with the use of constant relative wave heights or water levels in earlier work. We use the obtained boundaries and a standard cross-shore wave transformation model coupled to an inner surf zone bore model to show that large (> 5) relative tide ranges (RTR, defined as the ratio tide range–wave height) indicate shoaling wave processes across almost the entire intertidal profile, with surf processes dominating on the beach face. When the RTR is between 2 and 5, surf processes dominate over the intertidal bar and the lower part of the beach face, while swash has the largest residence times on the upper beach face. Such conditions, associated with surf zone bores propagating across the bar around low tide, were observed to cause the intertidal bar to migrate onshore slowly and the upper beach face to steepen. For RTR values less than about 2, surf zone processes dominate across the intertidal bar, while the dominance of swash processes now extends across most of the beach face. The surf zone processes were now observed to lead to offshore bar migration, while the swash eroded the upper beach face.  相似文献   

2.
The morphology, bedforms and hydrodynamics of Merlimont beach, in northern France, characterised by intertidal bars and a spring tidal range of 8.3 m, were surveyed over a 10-day experiment with variable wave conditions that included a 2-day storm with significant wave heights of up to 2.8 m. The beach exhibited two pronounced bar-trough systems located between the mean sea level and low neap tide level. Waves showed a cross-shore depth modulation, attaining maximum heights at high tide. The mean current was characterised dominantly by strong tide-induced longshore flows significantly reinforced by wind forcing during the storm, and by weaker, dominantly offshore, wave-induced flows. Vertical tidal water-level variations (tidal excursion rates) showed a bimodal distribution with a peak towards the mid-tide position and low rates near low and high water. The two bar-trough systems in the mid-tide zone remained stable in position during the experiment but showed significant local change. The absence of bar migration in spite of the relatively energetic context of this beach reflects high macro-scale bar morphological lag due to a combination of the large vertical tidal excursion rates in the mid-tide zone, the cross-shore wave structure, and the pronounced dual bar-trough system. The profile exhibited a highly variable pattern of local morphological change that showed poor correlation with wave energy levels and tidal excursion rates. Profile change reflected marked local morphodynamic feedback effects due mainly to breaks in slope associated with the bar-trough topography and with trough activity. Change was as important during low wave-energy conditions as during the storm. Strong flows in the entrenched troughs hindered cross-shore bar mobility while inducing longshore migration of medium-sized bedforms that contributed in generating short-term profile change. The large size and location of the two pronounced bars in the mid-tide zone of the beach are tentatively attributed respectively to the relatively high wave-energy levels affecting Merlimont beach, and to the cross-shore increase in wave height hinged on tidal modulation of water depths. These two large quasi-permanent bars probably originated as essentially breakpoint bars and are different from a small bar formed by swash and surf processes in the course of the experiment at the mean high water neap tide level, which is characterised by a certain degree of tidal stationarity and larger high-tide waves.  相似文献   

3.
C.F. Jago  J. Hardisty 《Marine Geology》1984,60(1-4):123-154
The foreshore of Pendine Sands forms the seaward part of an extensive, sandy coastal barrier in a shallow Carmarthen Bay, SW Wales. The sedimentological features of the macrotidal foreshore reflect a tide-induced modification of nearshore wave characteristics. As the tide ebbs, the breaker height may decrease, the surf zone widens and becomes increasingly dissipative, and swash/backwash velocities diminish. A concomitant change from plunging to spilling breakers and increasingly symmetrical swash zone flows are associated with a decreasing beach gradient.

A zero net transport model demonstrates that the beach profile is self-stabilising in the short-term, and periodic levelling has shown that the beach is in long-term equilibrium with prevailing conditions, though this does not preclude a significant dynamic response to changing tides and waves.

The flow regimes of wave-generated currents decline as the tide ebbs, and normal beach processes do not usually affect the lower foreshore. Accordingly, there is an overall seaward-fining of the primary framework component of the sands. In more detail, this framework component displays a slight seaward-coarsening across an upper foreshore dominated by high water swash and surf; a rapid seaward-fining across the mid-foreshore in response to the ebb-attenuating swash zone flow velocities; and a slight seaward-fining across the lower foreshore under the action of nearshore shoaling waves. Bedforms vary from a swash/backwash emplaced flat bed across the upper foreshore to the small ripples of nearshore asymmetric oscillatory flows across the lower foreshore.

The surface sediment veneer is not representative of the subsurface sediments which form in response partly to fairweather conditions, partly to storms. The upper foreshore is characterised by swash/backwash emplaced plane bedding in fine sands frequently disrupted by bubble cavities. The mid-foreshore is composed of coarser-grained shelly traction clogs arranged as landward- and seaward-dipping large-scale cross bedding and/or plane bedding; these are probably storm breaker/surf deposits. The lower foreshore, though partially and sometimes totally bioturbated, shows landward-dipping small-scale cross bedding in very fine sands sorted by nearshore shoaling waves.

Tide- and storm-induced modification of the nearshore flow regimes therefore produces a distinctive shore-normal array of sedimentary facies. Each facies is characterised by diagnostic textural and structural signatures. A prograding sequence of such macrotidal deposits would be similar to, but more extensive than, a comparable microtidal sequence.  相似文献   


4.
《Coastal Engineering》2005,52(6):497-511
A weakly non-linear Boussinesq model with a slot-type shoreline boundary is used to simulate swash oscillations on beaches. Numerical simulations of swash were compared with laboratory measurements and in general good agreement found (less than 15% root-mean-square error of surface elevation except in regular waves). A series of numerical experiments on shoreline movement were then performed for a range of beach slopes and incident wave conditions. The resulting swash characteristics are then discussed in terms of their physical nature and spectral properties. On steep slopes, both individual bores and infragravity waves are equally significant in driving the swash while infragravity waves alone drive them on mild slopes. Swash excursions on any given slope are found to be highest when individual bores from a partially saturated surf zone ride on top of low-frequency waves. This is confirmed by the relationship found between swash excursion and wave groupiness in the surf zone. Swash excursions increase with increasing incident wave energy, even in fully saturated surf zones. However, a poor correlation is found between swash excursion and the surf similarity parameter due to the involvement of infragravity wave energy in the swash.  相似文献   

5.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   

6.
This is the second of three papers on the modelling of various types of surf zone phenomena. In the first paper the general model was described and it was applied to study cross-shore motion of regular waves in the surf zone. In this paper, part II, we consider the cross-shore motion of wave groups and irregular waves with emphasis on shoaling, breaking and runup as well as the generation of surf beats. These phenomena are investigated numerically by using a time-domain Boussinesq type model, which resolves the primary wave motion as well as the long waves. As compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics and wave breaking is modelled by using a roller concept for spilling breakers. The swash zone is included by incorporating a moving shoreline boundary condition and radiation of short and long period waves from the offshore boundary is allowed by the use of absorbing sponge layers. Mutual interaction between short waves and long waves is inherent in the model. This allows, for example, for a general exchange of energy between triads rather than a simple one-way forcing of bound waves and for a substantial modification of bore celerities in the swash zone due to the presence of long waves. The model study is based mainly on incident bichromatic wave groups considering a range of mean frequencies, group frequencies, modulation rates, sea bed slopes and surf similarity parameters. Additionally, two cases of incident irregular waves are studied. The model results presented include transformation of surface elevations during shoaling, breaking and runup and the resulting shoreline oscillations. The low frequency motion induced by the primary-wave groups is determined at the shoreline and outside the surf zone by low-pass filtering and subsequent division into incident bound and free components and reflected free components. The model results are compared with laboratory experiments from the literature and the agreement is generally found to be very good. Finally the paper includes special details from the breaker model: time and space trajectories of surface rollers revealing the breakpoint oscillation and the speed of bores; envelopes of low-pass filtered radiation stress and surface elevation; sensitivity of surf beat to group frequency, modulation rate and bottom slope is investigated. Part III of this work (Sørensen et al., 1998) presents nearshore circulations induced by the breaking of unidirectional and multi-directional waves.  相似文献   

7.
Tidal sand bars and tidal sand ridges are extensively developed in the macrotidal Gulf of Khambhat, offshore western India. The inner and outer regions of the gulf are characterised by the development distinct tidal sand bodies with discrete geometries and dimensions. The outer gulf ridges are long, narrow, curvilinear and several metres high (∼20 m). They are asymmetric in cross-section and migratory in nature, forming ‘ribbon’ like sand bodies separated by tidal channels. Active dunes on these ridges indicate the presence of sand and their orientation parallel to palaeo-shorelines supports a tidal origin. In contrast to the outer gulf tidal sand ridges, sand bars associated with macrotidal estuaries flanking the Gulf of Khambhat typically have an elongate to diamond shape and are only hundreds of metres in width and a few kilometres length. These tidal sand bars occur in the estuary mouths and within the tidally influenced fluvial reaches of the rivers flowing into the gulf. The height of these sand bars is in the range ∼1–3 m. Due to high tidal ranges and bi-directional flow the sand bars do not develop significant height and are formed between the mutually evasive ebb and flow channels. Their bi-directional foresets and the presence of abundant mud drapes associated with the dunes within in-channel sand bars indicate a tidal origin.The Gulf of Khambhat acquired the present configuration in the last few thousand years since the Pleistocene sea-level lowstand (last glacial maximum, ∼18 ka) when the entire continental shelf was subaerially exposed and rivers down-cut into the coastal plain. With increasing sea-level rise, the exposed shelf was drowned, flooding parts of the Modern western Indian peninsula, and large tidal sand ridges formed in the outer gulf. After the fall of sea-level at 2 ka the gulf acquired the Modern configuration with multiple estuaries on both coastlines, rivers supplied the embayment with sandy sediment, and tidal sand bars formed in the Modern estuaries.Quantitative data gathered from the Modern Gulf of Khambhat indicates that for the P50 case, a vertical drill hole will encounter tidal sand bodies (ridges and bars combined) of approximate dimensions 1700 m long, 470 m wide and 1.5 m high, with a spacing of 400 m. In subsurface hydrocarbon reservoirs, where data is sparse and only limited amount of core is available, this quantitative dataset can be useful to constrain subsurface geocellular models. Also, the overall geometry, distribution and aspect ratio of the tidal sand ridges and tidal sand bars can be used to identify ancient counterparts through seismic geomorphology or in core.  相似文献   

8.
This paper describes newly obtained, high-frequency observations of beach face morphological change over numerous tidal cycles on a macrotidal sandy beach made using a large array of ultrasonic altimeters. These measurements enable the net cross-shore sediment fluxes associated with many thousands of individual swash events to be quantified. It is revealed that regardless of the direction of net morphological change on a tidal time scale, measured net fluxes per event are essentially normally distributed, with nearly equal numbers of onshore and offshore-directed events. The majority of swash events cause net cross-shore sediment fluxes smaller than ± 50 kg m− 1 and the mean sediment flux per swash event is only O(± 1 kg m− 1) leading to limited overall morphological change. However, much larger events which deposit or remove hundreds of kilograms of sand per meter width of beach occur at irregular intervals throughout the course of a tide. It was found that swash–swash interactions tend to increase the transport potential of a swash event and the majority of the swash events that cause these larger values of sediment flux include one or more interactions. The majority of the larger sediment fluxes were therefore measured in the lower swash zone, close to the surf/swash boundary where swash–swash interactions are most common. Despite the existence of individual swash events that can cause fluxes of sediment that are comparable to those observed on a tidal time scale, frequent reversals in transport direction act to limit net transport such that the beach face volume remains in a state of dynamic equilibrium and does not rapidly erode or accrete.  相似文献   

9.
The parallel, finite-volume, unstructured-grid SUNTANS model has been employed to study the interaction of the tides with complex bathymetry in the macrotidal Snohomish River estuary. The unstructured grid resolves the large-scale, O(10 km) tidal dynamics of the estuary while employing 8 m grid-resolution at a specific region of interest in the vicinity of a confluence of two channels and extensive intertidal mudflats to understand detailed local intratidal flow processes. After calibrating tidal forcing parameters to enforce a match between free surface and depth-averaged velocities at several locations throughout the domain, we analyze the complex dynamics of the confluence and show that the exposure of the intertidal mudflats during low tide induces a complex flow reversal. When coupled with the longitudinal salinity gradient, this flow reversal results in a highly variable salinity field, which has profound implications for local mixing, stratification and the occurrence of fine-scale flow structures. This complex flow is then used as a testbed from which to describe several challenges associated with high resolution modeling of macrotidal estuaries, including specification of high resolution bathymetry, specification of the bottom stress, computation of the nonhydrostatic pressure, accurate advection of momentum, and the influence of the freshwater inflow. The results indicate that with high resolution comes the added difficulty of requiring more accurate specification of boundary conditions. In particular, the bottom bathymetry plays the most important role in achieving accurate predictions when high resolution is employed.  相似文献   

10.
Process-based numerical modelling of coastal morphodynamics involves model and data reduction schemes in order to cope with computational limitations. Model reduction, on the one hand, may involve the discretisation of an interactive multidimensional, diverse natural system into a reduced set of coupled process-simulation modules. Data reduction schemes, on the other hand, are used to parameterise processes. The use of schematised open-boundary conditions, which are considered as representative in terms of their cumulative morphological effect, is based on the concept of “morphological” or “representative” boundary conditions. Recent model applications show realistic tendencies in terms of depositional and erosional areas. By contrast, the reproduction of characteristic changes in morphology such as the migration of bars, banks and channels is only occasionally achieved. Using field data on observed morphological impact of a single storm event and numerical model data, it is demonstrated that the concept of representative tides may lead to simulations of morphological development lacking natural dynamics. It is proposed that rather than being based on “representative” single tides, morphodynamic models should be applied with open-boundary conditions which take variations in longer-term tidal and meteorological forcing into account.  相似文献   

11.
Undular tidal bore dynamics in the Daly Estuary, Northern Australia   总被引:7,自引:0,他引:7  
Measurements in the macro-tidal Daly Estuary show that the presence of an undular tidal bore contributed negligibly to the dissipation of tidal energy. No recirculation bubble was observed between a trough and the following wave crest in the lee waves following the undular bore. This differs to stationary undular bores in laboratory experiments at larger Froude numbers where a recirculation bubble exists. Secondary motions and the turbulence generated by the undular bore had no measurable influence on the sediment transport. This situation contrasts with the intense sediment resuspension observed in breaking tidal bores. The tidally averaged sediment budget in the Daly Estuary was controlled by the asymmetry of tidal currents. The undular bore may widen the river by breaking along the banks that it undercuts, leading to bank slippage. A patch of river-wide macro-turbulence of 3-min duration occurred about 20 min after the passage of the bore during accelerating tidal currents.  相似文献   

12.
This is the first of three papers on the modelling of various types of surf zone phenomena. In this first paper, part I, the model is presented and its basic features are studied for the case of regular waves. The model is based on two-dimensional equations of the Boussinesq type and it features improved linear dispersion characteristics, possibility of wave breaking, and a moving boundary at the shoreline. The moving shoreline is treated numerically by replacing the solid beach by a permeable beach characterized by an extremely small porosity. Run-up of nonbreaking waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion of wave breaking is based on the surface roller concept for spilling breakers using a geometrical determination of the instantaneous roller thickness at each point and modelling the effect of wave breaking by an additional convective momentum term. This is a function of the local wave celerity, which is determined interactively. The model is applied to cross-shore motions of regular waves including various types of breaking on plane sloping beaches and over submerged bars. Model results comprise time series of surface elevations and the spatial variation of phase-averaged quantities such as the wave height, the crest and trough elevations, the mean water level, and the depth-averaged undertow. Comparisons with physical experiments are presented. The phaseaveraged balance of the individual terms in the momentum and energy equation is determined by time-integration and quantities such as the cross-sectional roller area, the radiation stress, the energy flux and the energy dissipation are studied and discussed with reference to conventional phase-averaged wave models. The companion papers present cross-shore motions of breaking irregular waves, swash oscillations and surf beats (part II) and nearshore circulations induced by breaking of unidirectional and multidirectional waves (part III).  相似文献   

13.
Time-series of nearbed horizontal flow velocities and suspended sediment concentrations obtained from a colocated electromagnetic current meter (EMCM) and optical backscatter sensor (OBS), respectively, are used to examine the relative importance of steady and fluctuating components to the total sediment transport over a full tidal cycle on a macrotidal, intermediate beach (Spurn Head, UK). Fluctuating sediment fluxes are decomposed into gravity and infragravity contributions using co-spectral techniques. The relative importance of the oscillatory (gravity and infragravity) and steady (mean) transport components to the total sediment transport is analysed throughout the tidal cycle.

A continuum of 34 discrete suspended sediment-cross-shore velocity co-spectra are computed over a full tidal cycle for the OBS and EMCM measurements 0.10 m above the bed. These net transport spectra vary greatly both with cross-shore location and tidal state. In particular, a marked asymmetry in transport processes is evident between the flood and ebb tides, with high levels of sediment resuspension and transport occurring on the ebbing tide approximately two hours after high water (just seaward of the breakpoint). At this time the dominant transport was directed offshore (co-spectral peak, 0.04 kg/m2/s) at incident wave frequency.

Typical patterns are observed in transport spectra outside the surf zone and within the inner surf zone. Outside the narrow surf zone cross-shore transport spectra show weak offshore transport (co-spectral peak = 0.002 kg/m2/s) associated with bound long waves and stronger onshore transport (co-spectral peak = 0.006 kg/m2/s) at incident wave frequencies. Conversely, co-spectra computed within the inner surf zone show the offshore sediment fluxes (spectral peak = 0.010 kg/m2/s) at infragravity frequencies to be greater in magnitude than the corresponding onshore transport (co-spectral peak = 0.008 kg/m2/s) occurring at incident wave frequencies.  相似文献   


14.
Tidal measurements and a depth-averaged 2D model are used to examine wave progression and circulation in a long, shallow, micro-tidal lagoon in Sri Lanka. Ranges and phase lags for different tidal constituents are used to calibrate the model. A single drag coefficient, Cd = 0.0032, gives almost perfect agreement with data. Current measurements are used for validation of the model. The lagoon tide consists of a combination of progressive and standing waves, where progressive waves dominate in the outer part and standing waves in the inner. A Lagrangian based particle-tracking method is developed to study tidally and wind induced residence times. If tides were the only factor affecting the residual circulation, the residence time inside the narrowest section would be approximately 100 days. Steady winds (of typical monsoon average) decrease the residence times to 60–90 days. Estuarine forcing due to net freshwater supply is not modelled (due to lack of reliable runoff data), but independent, long-term salinity observations and calculations based on volume and salt conservation during periods of negligible freshwater supply (the lagoon is seasonally hypersaline) indicate residence times ranging from 40 to 80 days. Model derived residence times based on tides alone represent a minimum exchange. Even weak forcing, through winds, excess evaporation or freshwater supply efficiently reduces residence times.  相似文献   

15.
A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high-frequency bores and low-frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.  相似文献   

16.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

17.
The Otzum ebb-tidal delta, located between Langeoog and Spiekeroog islands along the East Frisian barrier-island coast, southern North Sea, was investigated with respect to its morphological evolution, sediment distribution patterns and internal sedimentary structures. Bathymetric charts reveal that, over the last 50 years, the size of the Otzum ebb-tidal delta has slightly shrunk, while sediment has accreted on the ebb-delta lobe to the east of the main inlet channel (west of Spiekeroog). Swash bars superimposed on the eastern ebb-tidal shoal (Robben Plate) have migrated south or south-eastwards, i.e. towards the inlet throat. The main ebb-delta body is composed of fine quartz sand, whereas the superimposed swash bars and the inlet channel bed consist of medium-grained quartz sand containing high proportions of coarser bioclastic material. Internal sedimentary structures in short box-cores (up to 30 cm long) are dominated by flood-oriented cross-beds. Longer vibro-cores (up to 1.5 m long) show that, at depth, the sediment is dominated by storm-generated parallel (upper plane bed) laminations with intercalated shell layers and dune cross-bedding. The cross-bedded sands in both box-cores and vibro-cores from the ebb-delta shoal predominantly dip towards the south or southeast, indicating transport towards the inlet throat by the flood current. The observations demonstrate that, contrary to previous contentions, the sediments of the highly mobile swash bars do not bypass the inlet but are instead being continually recirculated by the combined action of tidal currents and waves. In this model, the cycle begins with both fine and medium sands, including shell hash, being transported seawards in the main ebb channel until they reach the shallow ebb-delta front. From here, the sediment is pushed onto the eastern ebb-delta shoal by the flood current assisted by waves, becoming strongly size-sorted in the process. The medium sands together with the shell hash are formed into swash bars which migrate along arcuate paths over a base of fine sand back to the main ebb channel located south of the ebb delta. By the same token, the fine sand between the swash bars is transported south-eastwards by the flood current in the form of small dunes until it cascades into the large flood channel located to the west of Spiekeroog. From here, the fine sand is fed back into the main ebb channel, thus completing the cycle. No evidence was found on the ebb delta for alongshore sediment bypassing.  相似文献   

18.
响应季节性波候作用的泥沙输运特征是研究弧形海滩地貌变化及港工建筑的重要内容。基于南湾弧形海滩实际测量的冬、夏各11条剖面高程变化资料,将其划分为低潮间带、低中潮带、中潮带、高潮间带、低冲流带、中冲流带及其海滩后滨等7带,在此基础上利用经验正交函数(EOF)方法对各个带的体积变化进行分析,结果表明:1)南湾弧形海滩的泥沙以单向输运为主,并具有季节性变化特征,其中冬季泥沙在东南浪作用下,自陆向海输运,夏季泥沙在西南浪作用下自海向陆输运;2)南湾弧形海滩的泥沙分别在高潮带与中潮带、低冲流带与中冲流带之间存在频繁的双向输运;3)南湾弧形海滩不同岸段泥沙的横向输运因岬角的遮蔽能力、地形以及波浪作用的方向而有所差异。  相似文献   

19.
A study of the East Frisian Islands has shown that the plan form of these islands can be explained by processes of inlet sediment bypassing. This island chain is located on a high wave energy, high tide range shoreline where the average deep-water significant wave height exceeds 1.0 m and the spring tidal range varies from 2.7 m at Juist to 2.9 m at Wangerooge. An abundant sediment supply and a strong eastward component of wave power (4.4 × 103 W m−1) have caused a persistent eastward growth of the barrier islands. The eastward extension of the barriers has been accommodated more by inlet narrowing, than by inlet migration.

It is estimated from morphological evidence that a minimum of 2.7 × 105 m3 of sand is delivered to the inlets each year via the easterly longshore transport system. Much of this sand ultimately bypasses the inlets in the form of large, migrating swash bars. The location where the swash bars attach to the beach is controlled by the amount of overlap of the ebb-tidal delta along the downdrift inlet shoreline. The configuration of the ebbtidal delta, in turn, is a function of inlet size and position of the main ebb channel. The swash bar welding process has caused preferential beach nourishment and historical shoreline progradation. Along the East Frisian Islands this process has produced barrier islands with humpbacked, bulbous updrift and bulbous downdrift shapes. The model of barrier island development presented in this paper not only explains well the configuration of the German barriers but also the morphology of barriers along many other mixed energy coasts.  相似文献   


20.
《Coastal Engineering》2001,43(1):25-40
Video-based swash motions from three studies (on two separate beaches) were analyzed with respect to theoretical swash trajectories assuming plane beach ballistic motions under quadratic friction. Friction coefficient values for both the uprush and backwash were estimated by comparing measured swash space–time trajectories to these theoretical expectations given an initial velocity and beach slope. Observations were made spanning high tides, and in one case, during a light rain. Analysis of over 4500 individual swash events showed that the uprush friction coefficient was nearly constant during all three studies with a mean value of roughly 0.007 and showed no trends over a tidal cycle. In contrast, backwash friction coefficient values varied over the tidal cycles ranging between 0.01 and 0.07 with minimum values corresponding to the highest tides. Although these values are close to the theoretical estimates based on a Law of the Wall formulation and values commonly referenced in the literature, these observations show a consistent tendency for backwash friction estimates to greatly exceed uprush friction estimates. The disparity between uprush and backwash friction coefficients can be partially attributed to the exclusion of a pressure gradient term in the ballistic model. However, results indicate that backwash friction coefficients adjusted to account for this effect may be three times larger than the uprush friction values during lower tides. This tidal dependence for backwash friction coefficients is attributed to a complex interaction between swash infiltration and entrained sediment loads. These findings imply that friction estimates (necessary for sediment transport calculations and hydrodynamic predictions) based solely on grain roughness may not be correct for backwash flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号