首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
朱斌  冯凌云  柴能斌  郭小青 《岩土力学》2016,37(11):3317-3323
软土地基上海堤的沉降及稳定性是围垦海堤工程的关键问题。针对海堤工程开展离心机模型试验,分别通过变加速度法及恒加速度法模拟海堤填筑过程和竣工后稳定运行过程,得到了海堤施工期及工后沉降变化规律,并通过PIV技术观察海堤的破坏模式;在此基础上,采用GeoStudio软件分别基于总应力及有效应力分析法,分析了海堤施工期及竣工后稳定运行期海堤的整体稳定性随时间变化规律。物理和数值模拟结果表明,离心模型试验能一定程度上模拟海堤的变形及失稳情况,且与数值分析结果吻合较好。海堤施工期瞬时失稳的滑裂面贯穿软土地基,并使海堤滑体发生了超过1 m的瞬时沉降。海堤填筑完成后地基超静孔隙水压力逐渐消散、海堤稳定性安全系数随时间不断提高。海堤竖向和水平位移最大值分别位于堤轴线处及坡脚处。  相似文献   

2.
在分析泡沫混凝土用于高速公路路基拓宽模式的基础上,建立了泡沫混凝土拓宽路基的附加应力计算模型;推导了新老路基差异沉降计算公式,并结合绍(兴)诸(暨)高速上三段拓宽工程的建设,分析了泡沫混凝土拓宽路基的地基附加应力分布规律和沉降特性以及拓宽参数对新老路基不均匀沉降的影响.研究表明,随拓宽宽度增加,老路受影响范围越大,不均匀沉降增大,最大差异沉降率非线性增大;零征地拓宽时,拓宽对老路沉降基本没有影响;随开挖宽度增加,泡沫混凝土的“应力置换”效果增强,路基的不均匀沉降减小,最大差异沉降率减小.  相似文献   

3.
软土地基桩板结构路基离心模型试验研究   总被引:1,自引:0,他引:1  
黄龙  王炳龙  周顺华 《岩土力学》2013,34(Z1):192-196
为研究和分析软土地区桩板结构路基的沉降特性,采用离心模型试验方法对不同预压时间(6/12个月)下的桩板结构路基进行了模拟试验。试验结果表明,桩板结构路基沉降主要发生在施工期,预压时间超过16个月后,沉降比例超过80%;预压土卸载期间路基回弹与否与土层性质和预压时间有关;超载预压可以显著降低工后沉降,预压12个月后路基工后沉降相比预压6个月沉降减小了71%;在桩板结构路基施工过程中,桩基存在负摩阻力,中性点位置的变化是一个动态的过程,其与桩长的比例在0.47~0.70之间。  相似文献   

4.
为研究深厚淤泥质软土地基中开挖基坑时桩土间的作用机制,以江苏省长江沿岸某电厂锅炉房基坑开挖为背景,按1:50的相似比设计了室内离心模型试验,从桩身应变、桩身位移、桩顶位移、地表沉降、土体变形影响范围、桩身弯矩和孔隙水压力等方面,分析了基坑开挖对坑内已有基桩和周围土体的影响,并与现场基坑开挖出现的问题进行了对比分析。结果表明:对上部为淤泥质土,下伏较好土层的地基,当淤泥质土的抗剪强度相对较高时,开挖时基桩受力较大,容易出现断桩事故;开挖过程中基桩应变出现两处极值,深度分别在开挖深度附近和淤泥质土与下伏土层交界面附近;由于基桩的存在,靠近开挖面一侧的土体孔隙水压力变化平稳,而桩后土体孔隙水压力随着开挖的进行变化剧烈;基坑开挖后桩土之间的相互作用主要发生在开挖后48h内,之后趋于稳定。试验结果与现场实测数据基本吻合,为深厚软土内基坑设计和施工过程提供了可借鉴的依据。  相似文献   

5.
采用大型土工离心机对某工程近海软土地基上堤坝施工期及运行期进行了模拟。试验中采用停机加载法模拟分级施工加载过程, 原型中采用塑料排水板固结法处理软土地基, 模型中则根据固结过程相似的原理, 换算成等效圆截面排水体, 在模型制作中采用等效透水滤芯进行模拟。根据激光位移传感器和孔隙水压力传感器数据可以得出相应原型软土地基的沉降特性和孔隙水压力变化情况。根据试验得到的沉降曲线, 采用"经验双曲线法"推算出了地基最终沉降, 然后得出按沉降推算的分层地基平均固结度随时间的变化。对比试验模拟得到的软土地基固结度和理论计算结果, 二者基本接近, 表明塑料排水板模拟方法用于离心模型试验是可行的。   相似文献   

6.
郭锡斌 《福建地质》2011,30(4):352-356
福清新厝公路拓宽海堤段海堤内侧采用分级加载进行路基施工填筑软基加例处理,通过3个断面监测数据分析,最大水平位移日变量为2.28mm/d,最大沉降速率为5.97nm/d,各测点的沉降速率和水平位移均在安全控制范围之内。至监测末期最大总沉降量占淤泥层厚度7%,海堤地基固结度76.3%~85.0%,但尚有10.9~15.8m...  相似文献   

7.
路基差异沉降控制是软土地区高速拓宽工程中的关键性技术问题之一,本文以北方某高速拓宽工程的试验段为例,运用ABAQUS软件进行了拓宽软土路基变形的有限元数值计算,并与路基现场变形监测数据进行对比分析,数值计算与实测结果基本吻合,结论一致地反映了路堤填筑初始阶段新路基的沉降速率较大,旧路基在填筑后期才产生较明显的附加沉降变形; 路基变形在拓宽侧呈现明显的\  相似文献   

8.
程嵩  张嘎  郑瑞华  孙振岳 《岩土力学》2011,32(6):1781-1786
地下水开采是导致地面不均匀沉降的重要因素之一,而地面不均匀沉降又会对桥梁结构造成较大的危害。通过离心模型试验研究了离心场中地基抽水对桥梁结构物的影响。在自主研制的离心场中地基抽水对结构物影响的模拟和测量系统基础上,测量了抽水过程中粉土地基中沉降的变化以及桥梁结构的变形分布规律,探讨了地面不均匀沉降对刚性桥梁、简支桥梁以及简支连续桥梁的影响规律。试验结果表明,水井抽水的初期非稳定渗流期是桥梁变形发展最快的阶段;减小桥垮长度以及桥面桥墩改用铰连接都可以使得桥面轴向应变减小;地基的水平位移会给刚性桥梁中部带来较大的变形  相似文献   

9.
路基拓宽工程的基本特性分析   总被引:2,自引:1,他引:2  
刘金龙  张勇  陈陆望  王吉利 《岩土力学》2010,31(7):2159-2163
基于非线性有限元方法, 对路基拓宽工程的基本特性进行探讨。对比分析表明: 拓宽部分竖向沉降与侧向位移的数值明显大于旧路基的相应值,且侧向位移在新旧路基结合处取得最大值,这必然导致新旧路基结合处容易出现拉应力区,从而形成常见的纵向裂缝。对于指定的拓宽宽度来说,在路基两侧进行拓宽比仅在某一单侧拓宽更容易减小新旧路基的沉降差,工程实际中应尽量在旧路基两侧同时进行拓宽。路面竖向沉降的峰值随着土体变形模量的增大而减小,随着土体重度的增大而增大。路基的稳定性随着土体黏聚力或内摩擦角的增大而增大,随着填土重度及车辆等效均布荷载的增大而减小。工程实际中应尽量选用重度小、变形模量大且强度高的土体作为路基拓宽部分的填料。  相似文献   

10.
张良  罗强  陈虎  张敏静  裴富营 《岩土力学》2010,31(9):2772-2779
为掌握垫层结构性能对基底压力和垫层筋带拉力的影响,设计了3种不同垫层结构的软土地基路堤离心模型试验,测试了在路堤荷载作用下的基底压力和垫层筋带拉力等数据。试验数据及分析表明,(1)随垫层结构性增强,路堤中心处的基底压力逐渐减小,路基面范围的基底压力分布由“中大边小”的凸型曲线逐渐变为“中小边大”的凹型曲线;(2)随垫层结构性的降低垫层筋带拉力减小,路堤土体也由静止稳定状态变为主动极限状态;(3)随路堤荷载增加,地基土体状态由弹性进入弹塑性直至塑性屈服,垫层筋带拉力的分布也逐渐由双峰的马鞍型向单峰的抛物线型转变。  相似文献   

11.
吕鹏  庞巍  杨广庆  张保俭  赵玉 《岩土力学》2006,27(Z2):171-175
为适应坝内水位升高变化及提高防洪标准、对堤坝进行加宽改造,新加宽部分会引发堤坝的工后不均匀沉降和地基侧向位移、对其稳定性产生影响。采用有限元方法,分析了加宽宽度、地基处理、土工格栅性能及铺设方式对加宽堤坝工程性能的影响。由计算结果可见通过上述方法可提高加宽堤坝的稳定性、减小工后沉降和侧向位移。相应结论可供类似工程参考。  相似文献   

12.
Xie  Mingxing  Li  Li  Cao  Wenzhao  Zheng  Junjie  Dong  Xiaoqiang 《Acta Geotechnica》2023,18(2):829-841
Acta Geotechnica - More and more expressways built on soft soil foundations need to widen their embankments because they cannot fulfill the demand for the traffic volume. Geosynthetic-reinforced...  相似文献   

13.
徐鹏  蒋关鲁  王宁  雷涛  王智猛 《岩土力学》2018,39(11):4010-4016
自加筋土出现以来,由面板、筋材、填土组成的加筋土挡墙被广泛研究并应于道路、铁路等土建工程中。填土的压实对加筋土挡墙的变形、土压力及筋材拉力等影响显著。为研究填土相对密实度对加筋土挡墙的影响,进行了3组不同相对密实度的离心模型试验,通过试验数据分析得到以下结论:相对密实度越大,墙体变形越小,特别是加载期变形量;压实可增大面板附近土体约束,使水平土压力大于设计值;试验挡墙设计较保守,筋材填土界面摩擦系数小于设计值;筋材面板之间连接拉力分析表明,连接拉力实测值小于测试土压力。  相似文献   

14.
刘春原  朱楠  赵献辉  王文静 《岩土力学》2015,36(Z1):310-314
依托高速公路试验段真空堆载联合预压加固软土路基的现场试验,根据实际路基情况建立离心模型,对真空堆载联合预压加固湖泊相软土地基进行离心机试验,分析了在真空预压和堆载预压联合作用下软土路基的沉降规律,并将试验结果与现场监测结果进行对比,研究了两者沉降的关系。通过对比分析可知,采用真空堆载联合预压加固湖泊相软土路基,地基土在工期内的沉降占总沉降87%以上,加固效果明显;用该方法加固后软基的工后沉降发展缓慢,两年内工后沉降最多为2.5 cm,路堤断面沉降差不超过5 mm,不会影响公路正常使用;试验结果与现场实测值沉降趋势基本相同,但由于现场试验条件及离心试验误差影响,导致两者沉降值存在差异。  相似文献   

15.
格形地连墙与软土相互作用的离心试验研究   总被引:2,自引:1,他引:2  
周广柱  徐伟  陈宇 《岩土力学》2011,32(Z1):134-140
格形地下连续墙(GCRW)是一种常用于软土地区的基坑开挖的新型支护结构,该结构与软土的相互作用是必须深入研究的关键问题。结合背景工程,首先进行了格形地连墙模型的设计和试验方案的制定,通过离心模型试验模拟了分步开挖基坑时格形地连墙和软土的相互作用,并把测定结果与朗肯土压力进行了比较。试验结果表明,土压力基本上呈现线性变化特征,格形地连墙因基坑开挖引起的前墙内侧土压力而产生变形和位移;格形地连墙和格子内的土体作为一个整体在土压力的作用下保持平衡,受力特征与重力式支护结构相似。支护结构处于最不利状态时,主动区土压力介于朗肯静止土压力和主动土压力之间,而被动区土压力大于朗肯被动土压力,前墙没有倾覆是因为受到了隔墙拉力  相似文献   

16.
软土结构性的试验研究及其对工程特性的影响   总被引:8,自引:2,他引:8  
结构性是土最为内在的根本特性之一.通过对天津地区软土进行的结构性试验研究表明,结构性对土工特性有很大的影响.表现为压密特性、孔隙水压力的变化和剪切应力应变关系均与应力水平有密切联系.通过SEM图像分析表明,微观结构为絮凝结构的土粒间力(其宏观表现为结构屈服应力)小于外力时就发生破坏,而一旦进入团粒结构,土体的变形发展缓慢.  相似文献   

17.
土钉加固黏性土坡加载的离心模型试验研究   总被引:1,自引:0,他引:1  
曹洁  张嘎  王丽萍 《岩土力学》2012,33(6):1696-1702
进行了不同坡度土钉加固边坡坡顶加载的离心模型试验,观测了土坡的破坏过程并测量土坡的位移场,研究了土钉加固黏性土坡的承载力、变形和破坏规律以及坡角对其破坏规律的影响。试验结果表明,坡顶荷载的增加引起土坡变形的增加,变形的集中产生和发展导致滑裂面的形成并使土坡发生破坏。土钉变形规律受加载阶段和加载底板的综合影响,坡顶荷载越大,接近坡顶的土钉弯曲挠度越大,钉土间的相互作用越强。土坡的坡角越大,承载力越低,土体呈现出更显著的向坡面位移的趋势。  相似文献   

18.
王年香  章为民  顾行文  张丹 《岩土力学》2013,34(10):2769-2773
高土石坝在施工期心墙会产生超静孔隙水压力,且难以有效消散,蓄水后心墙从非稳定渗流状态到稳定渗流状态,因此,渗流特性异常复杂。目前,有限元方法进行渗流计算不能考虑施工期引起的孔隙水压力,因而不能完全了解土石坝的渗流特性。长河坝为砾石土心墙堆石坝,最大坝高为240 m。利用离心模型试验技术,通过分析长河坝施工期和运行期心墙的孔隙水压力的产生和消散变化规律研究大坝心墙的渗流特性。试验结果表明,心墙孔隙水压力经历施工时的增长期、竣工后的消散期、非稳定渗流时的增长期和消散期、稳定渗流时的稳定期5个阶段。心墙高程不同、填筑含水率不同,各阶段的孔隙水压力和历时也不同。心墙位置越高或填筑含水率越大,施工期孔隙水压力系数越大,形成稳定渗流所需时间越短。心墙位置越高或填筑含水率越小,心墙位势越大,非稳定渗流期心墙位势大于稳定渗流期。研究成果对高心墙堆石坝设计和施工具有指导意义。  相似文献   

19.
通过大量对比试验系统研究了广东典型软土的蠕变固结特性和计算模型。试验结果表明:软土的固结和次固结在变形中所占比例和发生受多种因素影响,包括初始荷载、加荷比、土体固结度、含水率、孔隙比;次固结系数与土体的应力历史、当前固结状态及加荷比有关,在预压荷载下会明显减小;次固结系数与压缩指数之比一般为常数,其值在0.025?0.10之间;剪切蠕变特性与土体所承受的固结压力有关,土样蠕变规律呈应变硬化特征;三轴蠕变特性与排水条件关系密切,固结作用可以削弱蠕变效应;同等加荷条件下,偏应力-轴向应变关系在排水剪切中呈线性关系。而在不排水剪切中呈非线性,并有明显的屈服特征;不排水剪切条件下持续加荷的加荷方式可以适当提高不排水强度。根据上述试验成果分别从考虑非线性本构关系和考虑排水条件分析了蠕变固结模型的建立路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号