首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The numerical model of mantle diapirism and active rifting is developed. The model describes the possibility of extension and thinning of the Earth’s crust under the action of a local 100-km long heat source in the sublithospheric mantle, which causes melting and rising of the magmatic diapir through the cratonic lithosphere. The model combines the mechanisms of the uplifting of the anomalously hot material due to its gravitational instability, underplating of magma beneath the continental crust, and its extension by the forces of the convective flows at the base of the plate. The obtained results shed light on some geological features of the joint formation of the large Vilyui igneous province and Vilyui sedimentary basin.  相似文献   

3.
The mountains of north-eastern Inner Asia comprise the Mongolia-Siberian orogenic belt which has a complex structure. The southern flank of the belt consists of a chain of large domal uplifts. The Baikal rift zone is located on the northern flank. The central segment is composed of zones of linear warping. The tectonic landforms rest on a large domal basement uplift. The morphology of the latter is paragenetically connected with the shape of the asthenolith underlying the belt. The neotectonic zones are also connected with the deep structure elements.The Mongolia-Siberian mountain belt is a group of orogenic forms typical of intracontinental mountain areas.  相似文献   

4.
Closed depressions (CDs) are lower lying areas where the sediment eroded from the surrounding soil surfaces draining towards the CD is trapped in the system. CDs have been reported in several regions of the European loess belt and are attributed either to natural processes (e.g. dissolution of subsurface horizons) or to human intervention (e.g. quarrying). Previous studies focussed mainly on cropland areas where, however, only few and largely filled in CDs remain. The objectives of this study were to i) assess the spatial distribution of CDs under forest and cropland, ii) to determine and compare the morphology of CDs under forest and under cropland, and iii) to determine the origin and age of these CDs under forest. In a study area located partly in ancient forest (13 km2) and partly in cropland (29 km2), a systematic survey revealed the presence of 71 CDs under forest (5·3 CD.km?2) and 30 CDs under cropland (1 CD.km?2). Comparison of their morphology showed that CDs under forest were significantly deeper, with steeper sidewalls and a smaller surface area because of the erosion and deposition processes acting on the CDs under cropland. By comparing CDs that had been under cropland for different time intervals, the rate of this morphological evolution could be reconstructed. Analysis of the soil stratigraphy of two representative CDs in the ancient forest area confirmed their origin as quarries. Most probably, calcareous loess was excavated since this soil horizon, about two to five meters thick, was completely absent within the CDs. Dating of the infilling of one CD by optically stimulated luminescence (OSL) shows that the CD filled in between the first century BC and the fourth century AD. This dating corresponds to the dating of sediment deposits in nearby, human‐induced gullies that were attributed to an agricultural land use phase between the 18th century BC and the third century AD.  相似文献   

5.
Landscape evolution is the window to the link between deep earth and surface processes. One of the key issues in landscape evolution is to characterize the topographic steady state of mountain belts. The Taiwan mountain belt is an extraordinary case due to its extremely high uplift and denudation rates. The uplift of Taiwan Island is caused by the oblique collision between the Luzon Arc and the East Asian continent. In this case, the mountain building process in the north always occurs earlier than that in the south,which causes the spatial distribution of steady-state regions.The East Central Range receives much research attention with the presence of river basins that mainly distribute along the trajectory of the collision propagation. Normally, based on analyses of geomorphic parameters, the whole Central Range, or at least part of it, should be at a topographic steady state. However, the balance between uplift rates and denudation rates that exist in these regions is seldomly tested. In this contribution, we make a comprehensive literature review on the uplift and denudation rates derived from various approaches, including sediment yields, in-situ cosmogenic nuclide ~(10) Be, incision of river channels,thermochronology, and GPS observations. This literature review reveals that the topographic steady state may prevail in the northern and middle parts of the East Central Range.However, an obvious inconsistency in denudation rates calculated by different methods prevents us from better constraining the topographic steady state in some regions of this mountain range.  相似文献   

6.
Analysis of seismic anisotropy in the crust and mantle wedge above subduction zones gives much information about the dynamic processes inside the Earth. For this reason, we measure shear wave polarization anisotropy in the crust and upper mantle beneath central and southwestern Japan from local shallow, intermediate, and deep earthquakes occurring in the subducting Pacific slab. We analyze S phases from 198 earthquakes recorded at 42 Japanese F-net broadband seismic stations. This data set yields a total of 980 splitting parameter pairs for central and southwestern Japan. Dominant fast polarization directions of shear waves obtained at most stations in the Kanto–Izu–Tokai areas are oriented WNW–ESE, which are sub-parallel to the subduction direction of the Pacific plate. However, minor fast polarization directions are oriented in NNE–SSW directions being parallel to the strike of the Japan Trench, especially in the north of Izu Peninsula and the northern Tokai district. Generally, fast directions obtained at stations located in Kii Peninsula and the Chubu district are oriented ENE–WSW, almost parallel to the Nankai Trough, although some fast directions have NW–SE trends. The fast directions obtained at stations in northern central Honshu are oriented N–S. Delay times vary considerably and range from 0.1 to 1.25 s depending on the source depth and the degree of anisotropy along the ray path. These lateral variations in splitting character suggest that the nature of anisotropy is quite different between the studied areas. Beneath Kanto–Tokai, the observed WNW–ESE fast directions are probably caused by the olivine A-fabric induced by the corner flow. However, the slab morphology in this region is relatively complicated as the Philippine Sea slab is overriding the Pacific slab. This complex tectonic setting may induce lateral heterogeneity in the flow and stress state of the mantle wedge, and may have produced NNE–SSW orientations of fast directions. The ENE–WSW fast directions in Kii Peninsula and the Chubu district are more coherent and may be partly induced by the subduction of the Philippine Sea plate. The N–S fast directions in northern central Honshu might be produced by the trench-parallel stretching of the wedge due to the curved slab at the arc–arc junction.  相似文献   

7.
Science China Earth Sciences - In order to better understand the role of post-collisional mafic magmatism at convergent plate boundaries in revealing the earth’s evolution, this paper has...  相似文献   

8.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   

9.
南北构造带南段上地幔各向异性特征   总被引:7,自引:6,他引:7       下载免费PDF全文
对布设在南北构造带南段的中国地震科学探测台阵项目一期350个宽频带流动台站和中国地震台网90个宽频带固定台站记录的远震XKS(SKS、SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和"叠加"分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,获得了南北构造带南段上地幔各向异性图像.结果显示研究区的各向异性具有明显的南北分区特征,北部的快波方向为近N-S方向,而南部主要表现为近E-W方向,且北部的平均时间延迟小于南部.分析表明,具有厚岩石圈的北部的各向异性主要由岩石圈变形引起,是一种垂直连贯变形模式;具有薄岩石圈的南部的各向异性主要由软流圈地幔流引起,缅甸和巽达板片的后撤/回转作用产生了指向西南的软流圈地幔流,在岩石圈底部和软流圈之间产生了一个水平差异运动,产生了一个与简单剪切一致的软流圈变形结构,从而产生了南部观测的各向异性.  相似文献   

10.
南北构造带北段上地幔各向异性特征   总被引:4,自引:5,他引:4       下载免费PDF全文
对布设在南北构造带北段的中国地震科学探测台阵项目二期674个宽频带流动台站和鄂尔多斯台阵21个宽频带流动台站记录的远震XKS(SKS、SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和“叠加”分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,并结合该区域出版的122个固定台站的分裂结果,获得了南北构造带北段上地幔各向异性图像.快波方向分布显示青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘的快波方向主要表现为NW-SE方向,秦岭造山带的快波方向为近E-W方向,鄂尔多斯块体内部的快波方向在北部为近N-S方向,南部表现为近E-W方向.时间延迟分布来看,鄂尔多斯块体的时间延迟不仅明显小于其周缘地区,而且小于其他构造单元,特别是在高原东北缘、阿拉善块体和鄂尔多斯块体的交汇地区的时间延迟很大,反映了构造稳定单元的时间延迟小于构造活跃单元.通过比较快波方向的横波分裂测量值与地表变形场模拟的预测值,并结合研究区地质构造和岩石圈结构特征分析表明,在青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘各向异性主要由岩石圈变形引起,地表变形与地幔变形一致,地壳耦合于地幔,是一种垂直连贯变形模式;秦岭造山带的各向异性不仅来自于岩石圈,而且其岩石圈板块驱动的软流圈地幔流作用不可忽视;鄂尔多斯块体内部深浅变形不一致,具有弱的各向异性、厚的岩石圈和构造稳定的特征,我们认为其各向异性可能保留了古老克拉通的“化石”各向异性.  相似文献   

11.
本文对中非铜矿带造山带基本地质构造特征进行了分析,阐述了其大地构造演化模式,认为造山带的加丹加超群标准地层剖面由4个群组成,分别为罗安群、木瓦夏群、下昆代隆古群和上昆代隆古群,底部沉积岩时代为8.8亿年,其中以5.5~5.6亿年的卢菲利造山运动产生大规模北东向逆推作用为主要造山事件,并认为裂谷拉张与陆陆碰撞为本区大地构造演化的基本模式。  相似文献   

12.
From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain, the splicing of adjacent blocks and the fast uplift of the Tianshan Mountains.  相似文献   

13.
From April,2003 to September,2004,a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration.Among them,51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa.The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the receiver function method (Liu et al.1996,2000).The main results can be summarized as follows:(1) A clear mountain root does not exist beneath the Tianshan Mountains,and the crust-mantle boundaries underneath the stations mostly have transitional structures.This implies that the material differentiation between the crust and mantle is not yet accomplished and the orogenic process is still going on.(2)The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike,and the crust-mantle boundary has a clear dislocation structure.Both of them correspond to each other.(3)The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km.This manifests that large vertical divergent movement took place between different blocks.This supports the discontinuous model of the Tianshan orogeny,and the Tarim block subduction is restricted only to the southern side of the South Tianshan.(4)Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the mountain-basin jointures on both sides of the mountain and between different blocks,and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain.This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain,the splicing of adjacent blocks and the fast uplift of the Tianshan Mountains.  相似文献   

14.
In an attempt to quantify the extent of geochemical heterogeneity within a restricted and well dated portion of the upper mantle, 27 chromite separates from the 90 My old chromite deposits in the Mayarí–Baracoa ophiolite belt in eastern Cuba have been investigated for platinum group element (PGE) concentrations and Re–Os isotopic systematics. The samples are characterized by systematically subchondritic initial 187Os/188Os ratios and substantial heterogeneity. The initial 187Os/188Os ratios vary with chromite chemistry and with geographical distribution, reflecting differences in the Os isotopic evolution for the different upper mantle sections represented by the ophiolite. Accordingly, the Os isotope data might be divided into three groups. In the Moa–Baracoa district, where the chromite bodies are located in the mantle–crust transition zone, the calculated initial γOs values average − 0.97 ± 0.69 (n = 13). In the Sagua de Tanamo district, where chromite chemistry is highly variable and their location in relation the mantle sequence is less clear, the initial γOs values are intermediate, with an average of − 1.77 ± 0.80 (n = 7). In the Mayarí district, where the chromite bodies are located in the lower part of the mantle sequence, initial γOs values average − 2.66 ± 0.29 (n = 7). These subchondritic (i.e. negative) initial γOs values are most simply explained by Re depletion during ancient partial melting and/or melt percolation events.The Os isotope heterogeneity documented here indicates a high degree of geochemical complexity on small to intermediate length scales in the upper mantle. Our results, in combination with data on chromites from the literature, show that an “average present-day Os isotopic composition” for the hypothetical depleted MORB mantle (DMM) reservoir cannot be precisely established beyond the statement that it is “broadly chondritic”. Indeed, the upper mantle cannot be considered a sufficiently homogeneous geochemical “reservoir” to serve meaningfully as a baseline against which geochemical “anomalies” are evaluated. On the other hand, our findings are consistent with the “Statistical Upper Mantle Assemblage” or “SUMA”-concept, according to which a high level of geochemical heterogeneity is maintained in the upper mantle at all relevant length scales, as a result of the plate-tectonic cycle and intra-mantle processes such as melt-migration and metasomatism.  相似文献   

15.
张智  田小波 《地球物理学报》2011,54(11):2761-2768
对布设于青藏高原中部INDEPTH-III宽频带数字地震台阵的41个台站记录的远震体波资料所提取出的P波接收函数和SKS波形资料做偏振分析,并采用以误差为权的叠加分析方法求得每一个台站的Pms和SKS快波偏振方向和快慢波的时间延迟,获得了从拉萨块体中部,经喀喇昆仑—嘉黎断裂系和班公湖—怒江缝合带,到羌塘块体中部的地壳和岩石圈地幔的地震波各向异性图像.从各向异性分析结果可以看到:Pms快慢波的时间延迟为0.3~0.5 s,在拉萨块体,快波方向主要为NE-SW向,在羌塘块体,快波方向为近E-W向.SKS快慢波的时间延迟为1~2 s,主要分布在拉萨块体的北端和羌塘块体,并且向靠近班公湖—怒江缝合带和昆仑—嘉黎断裂带的方向时差增大,快波方向基本与Pms快波方向一致.在喀喇昆仑—嘉黎断裂带以南的拉萨块体中部没有测量到明显的SKS分裂,这可能与该区存在双层快轴方向近垂直的各向异性层有关.结合研究区已有的研究成果可以推测:拉萨块体地壳各向异性层的快轴方向与印度—欧亚板块汇聚方向一致,可能与地壳较强刚性有关,其在板块汇聚过程中不易发生流展变形;而羌塘块体地壳和岩石圈中各向异性层的快轴方向与青藏高原物质逃逸方向一致,表明这一块体流变性均较强,在板块汇聚挤压力的作用下发生了侧向流变变形.  相似文献   

16.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

17.
秦岭—桐柏—大别复合造山带(以下称为秦岭大别造山带)属于中国中央造山带的一部分,由华北克拉通与扬子克拉通汇聚形成.对于秦岭大别造山带及其周缘地区的研究,可以为这一大陆碰撞造山带的形成与演化过程提供重要信息.本文整合研究区域的接收函数与背景噪声数据,采用H-κ叠加分析、接收函数与背景噪声联合反演、克希霍夫偏移成像等方法,...  相似文献   

18.

新生代以来,印度板块和欧亚板块发生碰撞形成了喜马拉雅造山带和青藏高原,印度板片在喜马拉雅东构造结处缅甸弧俯冲带进入深部地幔.开展缅甸弧俯冲带下方地幔间断面的研究有助于认识印度大陆岩石圈的碰撞-俯冲过程及其对上地幔结构的影响.本文选用了发生于缅甸弧地区的3个中源地震事件,获取了欧洲和美国阿拉斯加地区多个密集地震台网/台阵记录的高质量宽频带波形,利用N次根倾斜叠加方法(N=1,4)提取了缅甸弧中部俯冲带下方地幔间断面处产生的次生SdP转换震相.通过研究我们发现:(1)410-km间断面的深度范围为392~407 km,平均深度为400 km;相比于IASP91模型,410-km间断面的平均抬升幅度为10 km.我们推测印度板片在缅甸弧中部俯冲带下方已经穿过410-km间断面并进入到地幔转换带,410-km间断面的抬升与冷俯冲板片的影响有关;(2)X间断面深度在289~314 km之间,平均深度为306 km,推测该间断面可能与大陆地壳深俯冲背景下形成的超高压变质岩中柯石英(coesite)到斯石英(stishovite)的相变有关.

  相似文献   

19.
Volcanic eruptions in central Mongolia during the latest Pleistocene and Holocene time preceded an initial Holocene volcanic event of 8740 ± 400 years ago in Northeast China and terminated simultaneously with that event as inferred from 14C datings. Alkali basaltoid magmatic material from a partially melted (1.5–3%) mantle source was erupted in the Taryat Basin of central Mongolia, at first along a nearly east-west line of volcanoes, and afterwards material of higher melting (up to 5%) was discharged along the north-northeast line of Khorgo edifices. A material of similar composition was erupted in the Jingpohu area, Northeast China during the period from 5430–4400 BP. Initial liquids of ~2% beneath the Frog Pool volcanic center and ~5% beneath Crater Forest were expressed varying liquids beneath the latter area, yielding final melts of ~5%. The action of the decompressional and the fluid mechanism was followed by in eruptions of, respectively, isotope-homogeneous magmas in central Mongolia and isotope-heterogeneous magmas depleted in high field strength elements (Nb, Ta, Ti) in Northeast China.  相似文献   

20.
Landsliding usually occurs on specific hillslope aspect, which may reflect the control of specific geo-environmental factors, triggering factors, or their interaction. To explore this notion, this study used island-wide landslide inventories of the Chi-Chi earthquake in 1999 (MW = 7.6) and Typhoon Morakot in 2009 in Taiwan to investigate the preferential orientation of landslides and the controls of landslide triggers and geological settings. The results showed two patterns. The orientations of earthquake-triggered landslides were toward the aspect facing away from the epicenter in areas with peak ground acceleration (PGA) ≥ 0.6 g and landslide ratio ≥ 1%, suggesting that the orientations were controlled by seismic wave propagation. Rainfall-triggered landslides tended to occur on dip slopes, instead of the windward slopes, suggesting that geological settings were a more effective control of the mass wasting processes on hillslope scale than the rainfall condition. This study highlights the importance of the endogenic processes, namely seismic wave and geological settings, on the predesigned orientation of landslides triggered by either earthquake or rainfall, which can in turn improve our knowledge of landscape evolution and landslide prediction. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号