首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

2.
This paper studies the ionospheric and geomagnetic response to an X6.2 solar flare recorded at 14:30 UT on December 13, 2001, in quiet geomagnetic conditions which allow the variations in the geomagnetic field and ionosphere measurements to be easily related to the solar flare radiation.By using measurements from the global positioning system (GPS) and geomagnetic observatories, the temporal evolution of ionospheric total electron content variation, vTECV, and geomagnetic field variations, δB, as well as their rates of variation, were obtained around the subsolar point at different solar zenith angles. The enhancement of both parameters was recorded one to three minutes later than the Geostationary Operational Environmental Satellite (GOES) programme recording; such delay tends to depend on the latitude, longitude, and solar zenith angle of the observatory's observations.The vTECV is related to the local time and the δB to the intensity and position of the ionospheric currents.The vTECV′s maximum value is always recorded later than the maximum values reached by δB and the X-ray intensity. The maximum δB is larger in the local morning than in the afternoon.The rates of vTECV and δB have two maximum values at the same time as the maximum values recorded by Hα (for each ribbon).This work shows the quantitative and qualitative relations between a solar flare and the ionospheric and geomagnetic variations that it produces.  相似文献   

3.
Effects of fabric anisotropy on elastic shear modulus of granular soils   总被引:1,自引:1,他引:0  
The fabric anisotropy of a granular soil deposit can strongly infl uence its engineering properties and behavior. This paper presents the results of a novel experimental study designed to examine the effects of fabric anisotropy on smallstrain stiffness and its evolution with loading on the elastic shear modulus of granular materials under a K0 condition. Two primary categories of fabric anisotropy, i.e., deposition-induced and particle shape-induced, are investigated. Toyoura sand deposits with relative densities of 40% and 80% were prepared using deposition angles oriented at 0o and 90o. Piezoelectric transducers were used to obtain the elastic shear modulus in the vertical and horizontal directions(Gvh and Ghh). The measurements indicate distinct differences in the values of G with respect to the different deposition angles. Particle shapeinduced fabric anisotropy was examined using four selected sands. It was concluded that sphericity is a controlling factor dominating the small-strain stiffness of granular materials. The degree of fabric anisotropy proves to be a good indicatorin the characterization of stress-induced fabric evolution during loading and unloading stress cycles. The experimental data were used to calibrate an existing micromechanical model, which was able to represent the behavior of the granular material and the degree of fabric anisotropy reasonably well.  相似文献   

4.
We analyse experimental measurements of turbulent open-channel flow over hydraulically-smooth and transitionally-rough beds using the double-averaging methodology. Oil with a viscosity of 15×10?6 m2/s is used instead of water so that transitional-range roughness Reynolds numbers can be achieved with large (11.1 mm) roughness elements, allowing spatial variations in the mean velocity field to more easily be measured. Distributions of double-averaged velocities, turbulence intensities, form-induced intensities, and viscous, Reynolds, form-induced and total shear stresses are studied with comparisons made between distributions for hydraulically-smooth, transitionally-rough, and fully-rough boundaries. Measured streamwise turbulence intensities for all experiments peaked at a constant distance from the bed (z ++d + = 15) when elevation scale is adjusted using the zero-plane displacement d for the logarithmic velocity distribution. This collapse suggests that turbulence intensity distributions may be useful in assessing appropriate values of d for transitionally-rough and fully-rough boundaries. Form-induced normal and shear stresses above the roughness tops were found to collapse towards a common curve independent of roughness Reynolds number.  相似文献   

5.
The CO2 degassing from lakes on Pico Island (Azores archipelago) were characterized in order to estimate the total diffuse CO2 output and identify the possible sources of CO2. Two surveys have been made in each lake (Capitão, Caiado, Rosada, Peixinho, Paúl and Seca), in the winter and summer periods. These water bodies show small surface areas and are rather shallow, with depths ranging from 1.8 to 8.6 m. Water samples are cold, both in winter and summer periods, not presenting variations along the water column, with acid to neutral pH (5.26–7.06). The electrical conductivity values point out to very diluted waters (mean range between 27 and 33.4 μS cm−1), of the Na-Cl type, corresponding to meteoric waters influenced by marine salts.To measure the CO2 flux at the lakes surface the modified accumulation chamber method was used, and a total of 1632 measurements were accomplished (711 in winter surveys and 921 in summer). Two statistical analysis (GSA and sGs) were applied to the results of diffuse CO2 flux measurements, showing that the CO2 flux values measured in theses lakes are relatively low (0.60–20.47 g m−2 d−1), what seems to indicate a single source for CO2 (biogenic source), also suggested by the water δ13C isotopic signature.CO2 emissions range between 0.04 t d−1 (Rosada_1) and 0.25 t d−1 (Caiado_1) during the winter surveys, being in general similar to the values recorded during the summer surveys that vary between 0.03 t d−1 (Peixinho_2 and Seca_1) and 0.30 t d−1 (Caiado_2). Taken into account the surface area of the lakes, the highest values were estimated for both surveys made in Seca Lake (˜13 t km−2 d−1). The occurrence of a dense macrophyte mass in a few of the studied lakes, such as Caiado and Seca, seems to enhance the CO2 flux from these water bodies.  相似文献   

6.
Data from routine seismic surveys contain considerable information about the geo-acoustic properties of the seafloor. Waves are reflected at a wide range of angles of incidence from near-vertical reflections (higher multiples) to supercritical reflections (primary and lower multiples). The reflection coefficient is approximately constant for small angles of incidence (< 10°) but varies greatly for larger angles of incidence. Near-vertical reflections are used to determine the seafloor density. The P-velocity in the seafloor is determined in advance from the critical distance using the amplitude variation of the primary as well as the multiples. The Vp/VS ratio is determined by modeling the amplitude variation with the angle of incidence. The primary reflection from the seafloor and the first three multiples are included in the modeling. Seismic data obtained with both conventional and superlong airgun arrays have been modeled. Data collected from the Barents Sea show that even if the P-velocity is the same at different sites, the Vp/Vs ratio, density and Poisson's ratio vary significantly. The most extreme example shows that for a P-velocity of 2.80 km/s the Vp/Vs ratio varies between 1.9 and 6.0. The corresponding densities vary from 2.36 g/cm3 to 1.80 g/cm3 and the Poisson's ratio varies from 0.31 to 0.49. The acoustic modeling offers a method of assessing the mean geotechnical or mechanical properties of larger volumes of marine sediments in terms of incompressibility, shear modulus and Poisson's ratio.  相似文献   

7.
Consider a plane homogeneous harmonic SH wave incident upon an interface between two anelastic half-spaces. Computing the plane wave displacement and energy-flux-based reflection and transmission coefficients correctly requires determining the proper signs of the vertical slowness components of all the reflected and transmitted waves, i.e., determining which of the two values of the square root for a given vertical slowness should be chosen. For anelastic media, this can be problematic, as unphysical results can arise. Previous research has led to a specific recommendation on how to choose the signs. However, when this recommendation is employed, it is found via numerical experimentation that for certain values of the medium parameters, the energy-flux-based transmission coefficient T can be negative for certain supercritical values of the incidence angle, whereas physical reasoning suggests it should be zero. To investigate this seemingly unphysical result, an analytical determination of the mathematical conditions under which it occurs would be useful. Such a determination is performed in this article. Letting V 1 and V 2 be the wave speeds of homogeneous SH plane waves in the incidence and transmission media respectively, and Q 1 and Q 2 be the corresponding quality factors, with Q 1, Q 2 ? 1, it is found that if V 1 < V 2 and Q 1 < Q 2 (a common situation in the Earth), then T will be negative for part of the supercritical incidence angle range if 1 < Q 2/Q 1 ?? 2 ? (V 1/V 2)2 and for all of it if 2 (V 1/V 2)2 < Q 2/Q 1.  相似文献   

8.
The viscosity of natural rhyolitic melt from Lipari, Aeolian Islands and melt-bubble emulsions (30–50 vol% porosity) generated from Lipari rhyolite have been measured in a concentric cylinder rheometer at temperatures and shear rates in the range 925–1150°C and 10−3–10−1.2 s−1, respectively, in order to better understand the dependence of emulsion shear viscosity on temperature and shear rate in natural systems. Bubble-free melt exhibits Newtonian–Arrhenian behavior in the temperature range 950–1150°C with an activation energy of 395±30 kJ/mol; the shear viscosity is given by log ηm=−8.320+20624/T. Suspensions were prepared from natural rhyolite glass to which small amounts of Na2SO4 were added as a ‘foaming agent’. Reasonably homogeneous magmatic mixtures with an approximate log-normal distribution of bubbles were generated by this technique. Suspension viscosity varied from 106.1 to 108.37 Pa s and systematically correlates with temperature and porosity in the shear stress range (104.26–105.46 Pa) of the experiments. The viscosity of melt-bubble emulsions is described in terms of the relative viscosity, ηr=ηe/ηm where ηe is the emulsion viscosity and ηm is the viscosity of melt of the same composition and temperature. The dependence of relative viscosity on porosity for magmatic emulsions depends on the magnitude of the capillary number Ca≡G/(σrb−1ηm−1), the ratio of viscous forces acting to deform bubbles to interfacial forces resisting bubble deformation. For inviscid bubbles in magmatic flows three regimes may be identified. For Ca<0.1, bubbles are nearly spherical and relative viscosity is an increasing function of porosity. For dilute systems, ηr=1+φ given by the classical result of Taylor [Proc. R. Soc. London A 138 (1932) 41–48]. For Ca in the range 0.1<Ca<10, emulsions behave as power law fluids and the relative viscosity depends on shear rate (or Ca) as well as porosity. At high Ca (Ca>10) an asymptotic regime is reached in which relative viscosity decreases with increasing porosity and is independent of Ca. Our experiments were carried out for 30<Ca<925 in order to quantify the maximal effect of bubbles in reducing the viscosity of magmatic emulsions relative to single-phase melt at identical conditions of shear rate and temperature. The viscosity of a 50 vol% emulsion is a factor of five smaller than that of melt alone. Rheometric measurements obtained in this study are useful in constraining models of magma transport and volcanic eruption mechanics relevant to transport of volatile-saturated magma in the crust and upper mantle.  相似文献   

9.
To determine the relative deflections of the vertical from geodetic data and from astronomical measurements we used the method of equal altitudes, determining the time of passage by means of interrupted illumination of the field of view. The field of view of the telescope used (Zeiss Theo 010 and an astrolabe having an angle of 60°) was therefore supplied with five groups of seven horizontal fibres and during the passage of the two images the field of view was illuminated by a neon tube for a period of about 0·15 s every three seconds. The neon tube was connected either directly to an OMA 50 time signal by means of a transistor receiver or to a chronometer. The calculation was performed by means of relations (1) and (2). Apart from the corrections usually introduced, the personal-instrumental error (containing also a correction from the decimal equation) of the longitudeo λ and the correctiona η of the component η were also determined from the measurements. The correctionso λ=?0·069s ando η=?0·66″ also contain a correction from the decimal equation. Its value iso λ =?0·030s for the longitude. The lago λ?o λ in reading the interpolation was ?0·039 s. The valueo η=?0·66″ was introduced into the calculation of the vertical components η obtained from measurements in the High Tatras. The values of the corrections are given in Tab. 1. The method permits measurement of the passages of stars through the almucantar in the meridian. No conclusive proof was found for the impersonality (Tab. 1). The method was verified practically when determining the relative deflections of the vertical in the High Tatras for refining altitude measurements. The results are given in Tab. 2 and Fig. 2. The course of the quasigeoid profile in the Kriváňmeridian was also found (Fig. 3).  相似文献   

10.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

11.
Field determined hydraulic and chemical transport properties can be useful for the protection of groundwater resources from land-applied chemicals. Most field methods to determine flow and transport parameters are either time or energy consuming and/or they provide a single measurement for a given time period. In this study, we present a dripper-TDR field method that allows measurement of hydraulic conductivity and chemical transport parameters at multiple field locations within a short time period. Specifically, the dripper-TDR determines saturated hydraulic conductivity (Ks), macroscopic capillary length (λc), immobile water fraction (θim/θ), mass exchange coefficient (α) and dispersion coefficient (Dm). Multiple dripper lines were positioned over five crop rows in a field. Background and step solutions were applied through drippers to determine surface hydraulic conductivity parameters at 44 locations and surface transport properties at 38 locations. The hydraulic conductivity parameters (Ks, λc) were determined by application of three discharge rates from the drippers and measurements of the resultant steady-state flux densities at the soil surface beneath each dripper. Time domain reflectometry (TDR) was used to measure the bulk electrical conductivity of the soil during steady infiltration of a salt solution. Breakthrough curves (BTCs) for all sites were determined from the TDR measurements. The Ks and λc values were found to be lognormally distributed with average values of 31.4 cm h−1 and 6.0 cm, respectively. BTC analysis produced chemical properties, θim/θ, α, and Dm with average values of 0.23, 0.0036 h−1, and 1220 cm2 h−1, respectively. The estimated values of the flow and transport parameters were found to be within the ranges of values reported by previous studies conducted at nearby field locations. The dripper TDR method is a rapid and useful technique for in situ measurements of hydraulic conductivity and solute transport properties. The measurements reported in this study give clear evidence to the occurrence of non-equilibrium water and chemical movement in surface soil. The method allows for quantification of non-equilibrium model parameters and preferential flow. Quantifying the parameters is a necessary step toward determining the influences of surface properties on infiltration, runoff, and vadose zone transport.  相似文献   

12.
Calculationoftheparametersofgeoresistivi┐tyanisotropyandcasehistoryofearthquakeprecursorsFU-YEQIAN1)(钱复业),YU-LINZHAO1)(赵玉林)a...  相似文献   

13.
This study used realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE mission, was applied to CloudSat, CALIPSO and MODIS satellite data thus producing 3D cloudy atmospheres measuring 61 km wide by 14,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances were then computed by a Monte Carlo photon transfer model run in both full 3D and 1D independent column approximation modes. Results were averaged into 1,303 (50 km)2 domains. For domains with total cloud fractions A c  < 0.7 top-of-atmosphere (TOA) albedos tend to be largest for 3D transfer with differences increasing with solar zenith angle. Differences are largest for A c  > 0.7 and characterized by small bias yet large random errors. Regardless of A c , differences between 3D and 1D transfer rarely exceed ±30 W m?2 for net TOA and surface fluxes and ±10 W m?2 for atmospheric absorption. Horizontal fluxes through domain sides depend on A c with ~20% of cases exceeding ±30 W m?2; the largest values occur for A c  > 0.7. Conversely, heating rate differences rarely exceed ±20%. As a cursory test of TOA radiative closure, fluxes produced by the 3D model were averaged up to (20 km)2 and compared to values measured by CERES. While relatively little attention was paid to optical properties of ice crystals and surfaces, and aerosols were neglected entirely, ~30% of the differences between 3D model estimates and measurements fall within ±10 W m?2; this is the target agreement set for EarthCARE. This, coupled with the aforementioned comparison between 3D and 1D transfer, leads to the recommendation that EarthCARE employ a 3D transport model when attempting TOA radiative closure.  相似文献   

14.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
In the summer of 2005, continuous surface water measurements of fugacity of CO2 (fCO2sw), salinity and temperature were performed onboard the IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. The aim was to investigate the importance of sea ice and river runoff on the spatial variability of fCO2 and the sea–air CO2 fluxes in the Arctic Ocean. Additional data was obtained from measurements of total alkalinity (AT) by discrete surface water and water column sampling in the Canadian Arctic Archipelago (CAA), on the Mackenzie shelf, and in the Bering Strait. The linear relationship between AT and salinity was used to evaluate and calculate the relative fractions of sea ice melt water and river runoff along the cruise track. High-frequency fCO2sw data showed rapid changes, due to variable sea ice conditions, freshwater addition, physical upwelling and biological processes. The fCO2sw varied between 102 and 678 μatm. Under the sea ice in the CAA and the northern Chukchi Sea, fCO2sw were largely CO2 undersaturated of approximately 100 μatm lower than the atmospheric level. This suggested CO2 uptake by biological production and limited sea–air CO2 gas exchange due to the ice cover. In open areas, such as the relatively fresh water of the Mackenzie shelf and the Bering Strait, the fCO2sw values were close to the atmospheric CO2 level. Upwelling of saline and relatively warm water at the Cape Bathurst caused a dramatic fCO2sw increase of about 100 μatm relative to the values in the CAA. At the southern part of the Chukchi Peninsula we found the highest fCO2sw values and the water was CO2 supersaturated, likely due to upwelling. In the study area, the calculated sea–air CO2 flux varied between an oceanic CO2 sink of 140 mmol m−2 d−1 and an oceanic source of 18 mmol m−2 d−1. However, in the CAA and the northern Chukchi Sea, the sea ice cover prevented gas exchange, and the CO2 fluxes were probably negligible at this time of the year. Assuming that the water was exposed to the atmosphere by total melting and gas exchange would be the only process, the CO2 undersaturated water in the ice-covered areas will not have the time to reach the atmospheric CO2 value, before the formation of new sea ice. This study highlights the value of using high-frequency measurements to gain increased insight into the variable and complex conditions, encountered on the shelves in the Arctic Ocean.  相似文献   

16.
17.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

18.
Generalized inversion of the S-wave amplitude spectra from the strong-motion network data in the East-Central Iran has been used to estimate simultaneously source parameters, site response and the S-wave attenuation (Qs). In this regard, 190 three-component records were used corresponded to 40 earthquakes with the magnitudes M3.5–M7.3. These earthquakes were recorded at 42 stations in the hypocentral distance range from 9 to 200 km. The inverse problem was solved in 20 logarithmically equally spaced points in the frequency band from 0.4 to 15 Hz. The frequency-dependent site amplification was imposed, as a constraint, on two reference site responses in order to remove the undetermined degree of freedom in the inversion and obtain a unique inverse solution. Also, a geometrical spreading factor was assumed for removing the trade-off between geometrical spreading and anelastic attenuation. Different source parameters, such as seismic moment (M0), seismic energy (Es), corner frequency (fc) and Brune stress drop (Δσ), were estimated for each event by fitting an ω2 model to the spectra obtained from the inversion. The stress drop values of earthquakes, obtained in this research, are in good agreement with those of other studies. Also average site response values were correlated to the average shear wave velocities in the uppermost 30 m, in high and low frequency bands. The peak frequencies of site amplifications, estimated by the generalized inversion method, where in good agreement with those of horizontal to vertical (H/V) spectral ratios for the S-wave portion of records. However, no perfect matching in amplitude was obtained due to the deficiencies of the H/V ratio technique. By supposing a free shape for Q factor, a frequency dependent function was found, the logarithm of which could be approximated by a linear function, Q(f)=151f0.75. The uncertainties of model parameters have been evaluated by covariance matrix of least-square fit. The residuals were also analyzed in order to assess the validity of the model. The analysis of residuals with respect to magnitude and distance indicates that they are distributed normally with approximately zero mean. The robustness of the results has been studied concerning their sensitivities to the omission of different datasets, selected randomly from original database. The results obtained here can be used in predicting ground-motion parameters applying stochastic methods.  相似文献   

19.

Field variations in the region of the eruptive event on June 7, 2011 are studied based on vector measurements of the photospheric magnetic field by the SDO/HMI instrument. Variations of the modulus (B), the radial (Br) and the transverse (Bt) components of the magnetic induction, and the inclination angle (α) of the field lines to the radial direction from the center of the Sun are analyzed. It is found that, in the part of the flare region near the polarity inversion line (PIL) after the onset of the flare, the magnitude and the transverse component of the magnetic induction as well as the angles α abruptly increase. During the slow rise of filament near its channel, the inclination angles of the field lines decrease. It is shown that diverging flare ribbons are above the regions of the photosphere with local maxima of the field modulus and with deep minima of the inclination angles of the field lines at all stages of their existence over their entire length with the exception of small areas. It is established that the azimuth decreases after the onset of the flare near the PIL of the photospheric magnetic field, which means an increase in the shear. On the contrary, at a distance from the PIL there is a slight decrease in the shear.

  相似文献   

20.
The shallow-water hydrothermal system in Tutum Bay on the west side of Ambitle Island, Papua New Guinea provides us with an exceptional opportunity to study isotope systematics in a near shore setting. Compared to seawater, the hydrothermal fluids in Tutum Bay have lower values for δD, δ18O, δ13C, and 87Sr and higher values for 3H, δ34S(SO4) and δ18O(SO4). The δ18O and δD records for vents 1 and 4 indicate that fluid compositions remained stable over an extended period. Interpretation of isotope data clearly demonstrates the predominantly meteoric origin of Tutum Bay hydrothermal fluids, despite their location in a marine environment. δ18O and δD values are identical to mean average annual precipitation in eastern Papua New Guinea. The hypothesis that these fluids are a simple product of mixing between seawater and onshore hydrothermal fluids from the Waramung (W-1) and Kapkai (W-2) thermal areas has been rejected, because the observed δ37Cl, 3H, δ34S(SO4) and δ18O(SO4) values cannot be explained by a simple mixing model. The application of δ18O(SO4) and δ13C thermometers in combination with 3H values corroborates the three-step model of Pichler et al. [Pichler, T., Veizer, J., Hall, G.E.M., 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Marine Chemistry 64 (3) 229–252], where (1) phase separation in the deep reservoir beneath Ambitle Island produces a high temperature vapor that rises upward and subsequently reacts with cooler ground water to form a low pH, CO2-rich water of approximately 150–160 °C, (2) caused by the steep topography, this CO2-rich fluid moves laterally towards the margin of the hydrothermal system where it mixes with the marginal upflow of the deep reservoir fluid. This produces a dilute chloride water of approximately 165 °C, and (3) possibly the entrainment of minor amounts of ground or seawater during its final ascent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号