首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-dependent variability of the North Atlantic Oscillation is examined in an observational data set and several model data sets with greenhouse-gas-induced external forcings. The index of the North Atlantic Oscillation state is derived from the time series of mean latitudinal position and central pressure of the Icelandic Low and the Azores High considering the synchronous meridional shifting of the two pressure systems. While the North Atlantic Oscillation is characterized by intensive interannual variability, the low-pass filtered index time series shows a decadal component with a time scale of about 50 y within almost 120 y of observation. Since the late 1960s we observe a positive trend and a transition to a strong positive phase of the phenomenon indicative of a pre-dominantly zonal circulation over the North Atlantic. This trend occurs equally in the observations and all examined model data sets with increasing greenhouse-gas-concentration and atmosphere-ocean coupling. We find statistical evidence that the radiative forcing by increasing CO2 concentration has a significant influence on the simulated variability of the North Atlantic Oscillation on time scales of 60 y and longer, independent of the initial conditions and the model version. The seasonal response is strongest in late summer and winter. The interannual variability of the North Atlantic Oscillation states on time scales less than 10 y decreases synchronously with the positive trend of its decadal-mean state implying a stabilization of its present and future zonal state. Received: 4 January 1999 / Accepted: 16 June 1999  相似文献   

2.
In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.  相似文献   

3.
A new North Atlantic Oscillation index and its variability   总被引:27,自引:4,他引:27  
A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and  相似文献   

4.
This study investigates the North Atlantic Oscillation (NAO) simulated by 17 global coupled ocean-atmosphere models participating in the Coupled Model Intercomparison Project (CMIP). Robust NAO indices are defined by calculating the leading principal components of winter time mean surface temperatures (land and sea) in the North Atlantic region (120°W-60°E, 20-80°N). Encouragingly, 13 out of 17 of the models capture the NAO surface temperature quadrupole pattern with centres of action over Northwest Europe, the northwest Atlantic, the southeastern USA, and the Middle East. The northern dipole is better captured than the southern dipole which is often simulated too far eastwards over the Atlantic Ocean. Out of the 17 models, ten models produce NAO indices that vary similar to the observations as stationary "weakly red noise" with only small correlations between successive winters (r < 0.3). Another five models drift monotonically towards warmer conditions, and two models exhibit long-term stochastic trends. Several of the models significantly overestimate the teleconnection between NAO and the tropical ENSO phenomenon.  相似文献   

5.
 The realism of the Hadley Centre’s coupled climate model (HadCM2) is evaluated in terms of its simulation of the winter North Atlantic Oscillation (NAO), a major natural mode of the Northern Hemisphere atmosphere that is currently the subject of considerable scientific interest. During 1400 y of a control integration with present-day radiative forcing levels, HadCM2 exhibits a realistic NAO associated with spatial patterns of sea level pressure, synoptic activity, temperature and precipitation anomalies that are very similar to those observed. Spatially, the main model deficiency is that the simulated NAO has a teleconnection with the North Pacific that is stronger than observed. In a temporal sense the simulation is compatible with the observations if the recent observed trend (from low values in the 1960s to high values in the early 1990s) in the winter NAO index (the pressure difference between Gibraltar and Iceland) is ignored. This recent trend is, however, outside the range of variability simulated by the control integration of HadCM2, implying that either the model is deficient or that external forcing is responsible for the variation. It is shown, by analysing two ensembles, each of four HadCM2 integrations that were forced with historic and possible future changes in greenhouse gas and sulphate aerosol concentrations, that a small part of the recent observed variation may be a result of anthropogenic forcing. If so, then the HadCM2 experiments indicate that the anthropogenic effect should reverse early next century, weakening the winter pressure gradient between Gibraltar and Iceland. Even combining this anthropogenic forcing and internal variability cannot explain all of the recent observed variations, indicating either some model deficiency or that some other external forcing is partly responsible. Received: 20 August 1998 / Accepted: 12 May 1999  相似文献   

6.
7.
A numerical ensemble-mean approach was employed to solve a nonlinear barotropic model with stochastic basic flows to analyze the nonlinear effects in the formation of the North Atlantic Oscillation (NAO). The nonlinear response to external forcing was more similar to the NAO mode than the linear response was, indicating the importance of nonlinearity. With increasing external forcing and enhanced low-frequency anomalies, the effect of nonlinearity increased. Therefore, for strong NAO events, nonlinearity should be considered.  相似文献   

8.
In this study the behaviour of the North Atlantic Oscillation (NAO) and its impact on the surface air temperature in Europe 1891-1990 is analysed using statistical time series analysis techniques. For this purpose, both the NAO index (NAOI) and the surface air temperature time series from 41 European stations are split up into typical variation components. Various measures of correlation indicate that the NAOI-temperature relationships are approximately linear and most pronounced in winter. The spatial correlation patterns show a correlation decrease from North West to South East (winter) exceeding correlation coefficients of 0.6 in the Scotland-South Norwegian area. In summer, these correlations are very weak, in spring and autumn stronger but smaller than in winter. These correlations change significantly in time indicating increasing correlations in Central and North Europe and decreasing correlations in the North West. Low-frequent episodic components represented by related polynomials of different order are very outstanding in both NAO and temperatures showing up in all seasons, except summer, relative maxima roughly 1900 and in recent times, relative minima in the beginning ( ca . 1870) and roughly 1960-1970. Periodogramm analysis reveals a dominant cycle of 7.5 years (NAOI and a majority of temperature time series) whereas in case of the polynomial component one may speculate about a 80-90 year cycle.  相似文献   

9.
一个观察北极涛动与北大西洋涛动关系的典型个例   总被引:1,自引:0,他引:1  
赵南  王启祎 《气象学报》2010,68(6):847-854
北极涛动与大西洋涛动是否属同一气候变率模态一直是北极涛动动力学研究方面的一个颇具争议的话题。文中通过对"0801南方雪灾"期间及其前后北极涛动与北大西洋涛动异常及产生原因进行个例分析,对两者之间的关系进行了讨论。首先使用交叉子波变换与子波相关方法分析了两者的相位关系。发现在30—60天时间尺度上北极涛动与北大西洋涛动相位相差90°或-90°。而在10 20天这一尺度上北极涛动与北大西洋涛动具有大致相同的相位。对北极涛动及北大西洋涛动形成的动力过程及其在拉尼娜背景下各自特点的分析表明,这种不同尺度上位相关系的差异来自于波-流相互作用动力学的局域性。众所周知,北极涛动的3个活动中心的形成与分别位于北大西洋、北太平洋和北极平流层的3个波流相互作用中心有关。而北大西洋涛动则主要与位于北大西洋的波-流相互作用中心有关。拉尼娜事件的出现通过影响太平洋急流及行星尺度的准定常波从而进一步强化了30-60天时间尺度上北极涛动与北大西洋涛动的这种差异。这主要是因为太平洋急流或准定常行星波在对流层中直接影响了位于该区域的北极涛动的活动中心。同时准定常行星波冬季向上传播至平流层并与平流层极涡相互作用从而也影响了北极涛动在北极的活动中心。而在10—20天时间尺度上的北极涛动与北大西洋涛动同步关系则说明它们都是北极涛动的另一活动中心即大西洋上同一波-流相互作用现象——天气波破碎的反映。基于上述分析.文中倾向于认同将北极涛动和北大西洋涛动区别考虑的观点。  相似文献   

10.
This study investigates the response of wintertime North Atlantic Oscillation (NAO) to increasing concentrations of atmospheric carbon dioxide (CO2) as simulated by 18 global coupled general circulation models that participated in phase 2 of the Coupled Model Intercomparison Project (CMIP2). NAO has been assessed in control and transient 80-year simulations produced by each model under constant forcing, and 1% per year increasing concentrations of CO2, respectively. Although generally able to simulate the main features of NAO, the majority of models overestimate the observed mean wintertime NAO index of 8 hPa by 5–10 hPa. Furthermore, none of the models, in either the control or perturbed simulations, are able to reproduce decadal trends as strong as that seen in the observed NAO index from 1970–1995. Of the 15 models able to simulate the NAO pressure dipole, 13 predict a positive increase in NAO with increasing CO2 concentrations. The magnitude of the response is generally small and highly model-dependent, which leads to large uncertainty in multi-model estimates such as the median estimate of 0.0061±0.0036 hPa per %CO2. Although an increase of 0.61 hPa in NAO for a doubling in CO2 represents only a relatively small shift of 0.18 standard deviations in the probability distribution of winter mean NAO, this can cause large relative increases in the probabilities of extreme values of NAO associated with damaging impacts. Despite the large differences in NAO responses, the models robustly predict similar statistically significant changes in winter mean temperature (warmer over most of Europe) and precipitation (an increase over Northern Europe). Although these changes present a pattern similar to that expected due to an increase in the NAO index, linear regression is used to show that the response is much greater than can be attributed to small increases in NAO. NAO trends are not the key contributor to model-predicted climate change in wintertime mean temperature and precipitation over Europe and the Mediterranean region. However, the models’ inability to capture the observed decadal variability in NAO might also signify a major deficiency in their ability to simulate the NAO-related responses to climate change.  相似文献   

11.
The North Atlantic Oscillation (NAO) is a major winter climate mode, describing one-third of the inter-annual variability of the upper-level flow in the Atlantic European mid-latitudes. It provides a statistically well-defined pattern to study the predictability of the European winter climate. In this paper, the predictability of the NAO and the associated surface temperature variations are considered using a dynamical prediction approach. Two state-of-the-art coupled atmosphere–ocean ensemble forecast systems are used, namely the seasonal forecast system 2 from the European Centre for Medium Range Weather Forecast (ECMWF) and the multi-model system developed within the joint European project DEMETER (Development of a European Multi-Model Ensemble Prediction System for Seasonal to Inter-annual Prediction). The predictability is defined in probabilistic space using the debiased ranked probability skill score with adapted discretization (RPSSD). The potential predictability of the NAO and its impact are also investigated in a perfect model approach, where each ensemble member is used once as observation. This approach assumes that the climate system is fully represented by the model physics. Using the perfect model approach for the period 1959–2001, it is shown that the mean winter NAO index is potentially predictable with a lead time of 1 month (i.e. from 1st of November). The prediction benefit is rather small (6% skill relative to a reference climatology) but statistically significant. A similar conclusion holds for the near surface temperature variability related to the NAO. Again, the potential benefit is small (5%) but statistically significant. Using the forecast approach, the NAO skill is not statistically significant for the period 1959–2001, while for the period 1987–2001 the skill is surprisingly large (15% relative to a climate prediction). Furthermore, a weak relation is found between the strength of the NAO amplitude and the skill of the NAO. This contrasts with El Niño/Southern Oscillation (ENSO) variability, where the forecast skill is strongly amplitude dependent. In general, robust results are only achieved if the sensitivity with respect to the sample size (both the ensemble size and length of the period) is correctly taken into account.
This revised version was published online in May 2005. Some black and white figures were replaced by coloured figures.  相似文献   

12.
Eight-year daily mean output of a quasi-global eddy-resolving model is examined with a focus on the large-scale dynamical characteristics of the North Atlantic Ocean in a framework of potential vorticity (PV) and its derivatives. The model has reproduced some of the observed features of the mean potential vorticity field well. The three-dimensional structure of the mean potential vorticity supports baroclinic instability in most of the basin. Eddies are found to play important roles in the formation and maintenance of the mean potential vorticity fields. The contribution of relative vorticity to the mean potential vorticity field is found to be negligible for the most part. However, relative vorticity contribution to the source/sink of potential vorticity and eddy potential enstrophy is not negligible. We also find that eddies are not necessarily diffusive even on a basin-scale.  相似文献   

13.
Atmospheric moisture transport from the Atlantic to the Pacific basin plays an important role in regulating North Atlantic salinity and thus the strength of the thermohaline circulation. Potential changes in the strength of this moisture transport are investigated for two different climate-change scenarios: North Atlantic cooling representative of Heinrich events, and increased greenhouse gas (GHG) forcing. The effect of North Atlantic cooling is studied using a coupled regional model with comparatively high resolution that successfully simulates Central American gap winds and other important aspects of the region. Cooler North Atlantic sea surface temperature (SST) in this model leads to a regional decrease of atmospheric moisture but also to an increase in wind speed across Central America via an anomalous pressure gradient. The latter effect dominates, resulting in a 0.13 Sv (1 Sv = 106 m3 s?1) increase in overall moisture transport to the Pacific basin. In fresh water forcing simulations with four different general circulation models, the wind speed effect is also present but not strong enough to completely offset the effect of moisture decrease except in one model. The influence of GHG forcing is studied using simulations from the Intergovernmental Panel on Climate Change archive. In these simulations atmospheric moisture increases globally, resulting in an increase of moisture transport by 0.25 Sv from the Atlantic to Pacific. Thus, in both scenarios, moisture transport changes act to stabilize the thermohaline circulation. The notion that the Andes effectively block moisture transport from the Atlantic to the Pacific basin is not supported by the simulations and atmospheric reanalyses examined here. This indicates that such a blocking effect does not exist or else that higher resolution is needed to adequately represent the steep orography of the Andes.  相似文献   

14.
The relationship between winter sea ice variability and the North Atlantic Oscillation (NAO) is examined for the time period 1860–2300. This study uses model output to extend recently reported observational results to multi-century time scales. Nine ensemble members are used in two Global Climate Models with forcing evolving from pre-industrial conditions through the so-called A1B scenario in which carbon dioxide stabilizes at 720 ppm by 2100. Throughout, the NAO generates an east-west dipole pattern of sea ice concentration (SIC) anomalies with oppositely signed centers of action over the Labrador and Barents Seas. During the positive polarity of the NAO, SIC increases over the Labrador Sea due to wind-driven equatorward advection of ice, and SIC decreases over the Barents Sea due to wind-driven poleward transport of heat within the mixed layer of the ocean. Although this NAO-driven SIC variability pattern can always be detected, it accounts for a markedly varying fraction of the total sea ice variability depending on the strength of the forced sea ice extent trend. For the first half of the 20th century or 1990 control conditions, the NAO-driven SIC pattern accounts for almost a third of the total SIC variance. In the context of the long term winter sea ice retreat from 1860 to 2300, the NAO-driven SIC pattern is robustly observable, but accounts for only 2% of the total SIC variance. The NAO-driven SIC dipole retreats poleward with the retreating marginal ice zone, and its Barents Sea center of action weakens. Results presented here underscore the idea that the NAO’s influence on Arctic climate is robustly observable, but time dependent in its form and statistical importance.  相似文献   

15.
The signatories to United Nations Framework Convention on Climate Change are charged with stabilizing the concentrations of greenhouse gases in the atmosphere at a level that prevents dangerous interference with the climate system. A number of nations, organizations and scientists have suggested that global mean temperature should not rise over 2 °C above preindustrial levels. However, even a relatively moderate target of 2 °C has serious implications for the Arctic, where temperatures are predicted to increase at least 1.5 to 2 times as fast as global temperatures. High latitude vegetation plays a significant role in the lives of humans and animals, and in the global energy balance and carbon budget. These ecosystems are expected to be among the most strongly impacted by climate change over the next century. To investigate the potential impact of stabilization of global temperature at 2 °C, we performed a study using data from six Global Climate Models (GCMs) forced by four greenhouse gas emissions scenarios, the BIOME4 biogeochemistry-biogeography model, and remote sensing data. GCM data were used to predict the timing and patterns of Arctic climate change under a global mean warming of 2 °C. A unified circumpolar classification recognizing five types of tundra and six forest biomes was used to develop a map of observed Arctic vegetation. BIOME4 was used to simulate the vegetation distributions over the Arctic at the present and for a range of 2 °C global warming scenarios. The GCMs simulations indicate that the earth will have warmed by 2 °C relative to preindustrial temperatures by between 2026 and 2060, by which stage the area-mean annual temperature over the Arctic (60–90°N) will have increased by between 3.2 and 6.6 °C. Forest extent is predicted by BIOME4 to increase in the Arctic on the order of 3 × 106 km2 or 55% with a corresponding 42% reduction in tundra area. Tundra types generally also shift north with the largest reductions in the prostrate dwarf-shrub tundra, where nearly 60% of habitat is lost. Modeled shifts in the potential northern limit of trees reach up to 400 km from the present tree line, which may be limited by dispersion rates. Simulated physiological effects of the CO2 increase (to ca. 475 ppm) at high latitudes were small compared with the effects of the change in climate. The increase in forest area of the Arctic could sequester 600 Pg of additional carbon, though this effect is unlikely to be realized over next century.  相似文献   

16.
Average long-term and average annual values of meridional Ekman heat (mass) transport are estimated using the NCEP/NCAR (for 1948-2014) and 20CR (for 1871-2012) atmospheric reanalyses, and their interdecadal variability is analyzed. It was corroborated that the typical period of interdecadal variability of meridional Ekman transport in the North Atlantic coincides with that of the Atlantic Multidecadal Oscillation (AMO) and is about 60 years. The strengthening of northeastern trade winds and westerlies accompanied by the development of the negative phase of AMO occurred in the 1880s-1920s and in the 1960s-1990s. The opposite trend is observed for the 1930s-1950s and for the period from the 1990s till the beginning of the 21st century.  相似文献   

17.
With 80 % of world trade carried by sea, seaports provide crucial linkages in global supply-chains and are essential for the ability of all countries to access global markets. Seaports are likely to be affected directly and indirectly by climatic changes, with broader implications for international trade and development. Due to their coastal location, seaports are particularly vulnerable to extreme weather events associated with increasing sea levels and tropical storm activity, as illustrated by hurricane “Sandy”. In view of their strategic role as part of the globalized trading system, adapting ports in different parts of the world to the impacts of climate change is of considerable importance. Reflecting the views of a diverse group of stakeholders with expertise in climate science, engineering, economics, policy, and port management, this essay highlights the climate change challenge for ports and suggests a way forward through the adoption of some initial measures. These include both “soft” and “hard” adaptations that may be spearheaded by individual port entities, but will require collaboration and support from a broad range of public and private sector stakeholders and from society at large. In particular, the essay highlights a need to shift to more holistic planning, investment and operation.  相似文献   

18.
19.
Global climate change governance has changed substantially in the last decade, with a shift in focus from negotiating globally agreed greenhouse gas (GHG) reduction targets to nationally determined contributions, as enshrined in the 2015 Paris Agreement. This paper analyses trends in adoption of national climate legislation and strategies, GHG targets, and renewable and energy efficiency targets in almost all UNFCCC Parties, focusing on the period from 2007 to 2017. The uniqueness and added value of this paper reside in its broad sweep of countries, the more than decade-long coverage and the use of objective metrics rather than normative judgements. Key results show that national climate legislation and strategies witnessed a strong increase in the first half of the assessed decade, likely due to the political lead up to the Copenhagen Climate Conference in 2009, but have somewhat stagnated in recent years, currently covering 70% of global GHG emissions (almost 50% of countries). In comparison, the coverage of GHG targets increased considerably in the run up to adoption of the Paris Agreement and 89% of global GHG emissions are currently covered by such targets. Renewable energy targets saw a steady spread, with 79% of the global GHG emissions covered in 2017 compared to 45% in 2007, with a steep increase in developing countries.

Key policy insights

  • The number of countries that have national legislation and strategies in place increased strongly up to 2012, but the increase has levelled off in recent years, now covering 70% of global emissions by 2017 (48% of countries and 76% of global population).

  • Economy-wide GHG reduction targets witnessed a strong increase in the build up to 2015 and are adopted by countries covering 89% of global GHG emissions (76% not counting USA) and 90% of global population (86% not counting USA) in 2017.

  • Renewable energy targets saw a steady increase throughout the last decade with coverage of countries in 2017 comparable to that of GHG targets.

  • Key shifts in national measures coincide with landmark international events – an increase in legislation and strategy in the build-up to the Copenhagen Climate Conference and an increase in targets around the Paris Agreement – emphasizing the importance of the international process to maintaining national momentum.

  相似文献   

20.
东亚冬季风的年代际变化及其与全球气候变化的可能联系   总被引:13,自引:2,他引:13  
对近年来中外关于东亚冬季风(EAWM)年代际变化问题研究进展做了回顾和评述,主要包括以下3个方面内容:(1)东亚冬季风明显受到全球气候变化的影响,从20世纪50年代开始,中国冬季气温经历了一次冷期(从20世纪50年代延续到80年代初中期),一次暖期(从20世纪80年代初中后期延续到21世纪初)和近10-15年(约从1998年开始)出现的气候变暖趋缓期(也称气候变暖停顿期)。(2)东亚冬季风主要表现出强-弱-强3阶段的特征,即从1950年到1986/1987年,明显偏强;从1986/1987年冬季开始,东亚冬季风减弱;约2005年之后,东亚冬季风开始由弱转强。与东亚冬季风的年代际变化特征相对应,东亚冬季大气环流以及中国冬季气温和寒潮都表现出一致的年代际变化。(3)东亚冬季风的年代际变化与大气环流和太平洋海表温度(SST)的区域模态变化密切相关。当北半球环状模/北极涛动(NAM/AO)和太平洋年代际振荡(PDO)处于负(正)位相,东亚冬季风偏强(弱),中国冬季气温偏低(高)。此外,北大西洋年代尺度振荡(AMO)对东亚冬季风也有重要影响,在AMO负位相时,对应东亚冷期(强冬季风),正位相对应暖期(弱冬季风)。因而海洋的年代际变化是造成东亚冬季风气候脉动的主要自然原因,而全球气候变暖对东亚冬季风强度的减弱也有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号