首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isotopic variations in melting snow are poorly understood. We made weekly measurements at the Central Sierra Snow Laboratory, California, of snow temperature, density, water equivalent and liquid water volume to examine how physical changes within the snowpack govern meltwater δ18O. Snowpack samples were extracted at 0.1 m intervals from ground level to the top of the snowpack profile between December 1991 and April 1992. Approximately 800 mm of precipitation fell during the study period with δ18O values between −21.35 and −4.25‰. Corresponding snowpack δ18O ranged from −22.25 to −6.25‰. The coefficient of variation of δ18O in snowpack levels decreased from −0.37 to −0.07 from winter to spring, indicating isotopic snowpack homogenization. Meltwater δ18O ranged from −15.30 to −8.05‰, with variations of up to 2.95‰ observed within a single snowmelt episode, highlighting the need for frequent sampling. Early snowmelt originated in the lower snowpack with higher δ18O through ground heat flux and rainfall. After the snowpack became isothermal, infiltrating snowmelt displaced the higher δ18O liquid in the lower snowpack through a piston flow process. Fractionation analysis using a two-component mixing model on the isothermal snowpack indicated that δ18O in the initial and final half of major snowmelt was 1.30‰ lower and 1.45‰ higher, respectively, than the value from simple mixing. Mean snowpack δ18O on individual profiling days showed a steady increase from −15.15 to −12.05‰ due to removal of lower δ18O snowmelt and addition of higher δ18O rainfall. Results suggest that direct sampling of snowmelt and snow cores should be undertaken to quantify tracer input compositions adequately. The snowmelt sequence also suggests that regimes of early lower δ18O and later higher δ18O melt may be modeled and used in catchment tracing studies.  相似文献   

2.
The response of a climate proxy against measured temperature, rainfall and atmospheric circulation patterns at sub-annual resolution is the ultimate test of proxy fidelity but very few data exist showing the level of correspondence between speleothem climate proxies and the instrumental climate record. Cave sites on the Gibraltar peninsula provide a unique opportunity to calibrate speleothem climate proxies with the longest known available precipitation isotopes and instrumental records. An actively growing speleothem sampled from New St. Michaels Cave in 2004 is composed of paired laminae consisting of light columnar calcite and a darker microsparitic calcite. Stable isotope analysis of samples micromilled in 100 μm steps at the equivalent of bi-monthly intervals reveals fabric-correlated annual cycles in carbon isotopes, oxygen isotopes and trace elements responding to seasonal changes in cave microclimate, hydrology and ventilation patterns. Calcite δ13C values reach a minimum in the light columnar fabric and evidence from trace element behaviour and cave monitoring indicates that this grows under cave ‘winter’ conditions of highest pCO2, whereas the dark microsparitic calcite, characterised by elevated δ13C and δ18O values grows under low ‘summer’ pCO2 conditions. Drip water δ13CDIC reaches a minimum in March–April, at which time the attenuated δ18O signal becomes most representative of winter precipitation. An age model based on cycle counting and the position of the 14C bomb carbon spike yields a precisely dated winter oxygen isotope proxy of cave seepage water for comparison with the GNIP and instrumental climate record for Gibraltar. The δ18O characteristics of calcite deposited from drip water representing winter precipitation for each year can be derived from the seasonally resolved record and allows reconstruction of the δ18O drip water representing winter precipitation for each year from 1951–2004. These data show an encouraging level of correspondence (r2 = 0.47) with the δ18O of rainfall falling each year between October and March and on a decadal scale the δ18O of reconstructed winter drip water mirrors secular change in mean winter temperatures.  相似文献   

3.
Oxygen and carbon data from eight stalagmites from northwest South Island are combined to produce composite records of δ18O and δ13C from 23.4 ka to the present. The chronology is anchored by 43 thermal ionization mass spectrometry (TIMS) uranium series ages. Delta 18O values are interpreted as having a first order positive relationship to temperature, but also to be influenced by precipitation in a complex manner. Delta 13C is interpreted as responding negatively to increases in atmospheric CO2 concentration, biological activity and precipitation amount.

Six climatic phases are recognized. After adjustment of 1.2‰ for the ice volume effect, the δ18O record between 23 and 18 ka varies around −3.72‰ compared to the Holocene average of −3.17‰. Late-glacial warming commenced between 18.2 and 17.8 ka and accelerated after 16.7 ka, culminating in a positive excursion between 14.70 and 13.53 ka. This was followed by a significant negative excursion between 13.53 and 11.14 ka of up to 0.55‰ depth that overlapped the Antarctic Cold Reversal (ACR) and spanned the Younger Dryas (YD). Positive δ18O excursions at 11.14 ka and 6.91–6.47 ka represent the warmest parts of the Holocene. The mid-Holocene from 6 to 2 ka was marked by negative excursions that coincide with increased glacial activity in the South Island. A short positive excursion from 0.71 to 0.57 ka was slightly later than the Medieval Warm Period of Europe.

Delta 13C values were high until 17.79 ka after which there was an abrupt decrease to 17.19 ka followed by a steady decline to a minimum at 10.97 ka. Then followed a general increase, suggesting a drying trend, to 3.23 ka followed by a further general decline. The abrupt decrease in δ-values after 17.79 ka probably corresponds to an increase in atmospheric CO2 concentration, biological activity and wetness at the end of the Last Glaciation, but the reversal identified in the δ18O record from 13.53 to 11.14 ka was not reflected in δ13C changes. The lowest δ13C values coincided with the early Holocene climatic suboptimum when conditions were relatively wet as well as mild.

Major trends in the δ18Oc record are similar to the Northern Hemisphere, but second order detail is often distinctly different. Consequently, at the millennial scale, a more convincing case can be made for asymmetric climatic response between the two hemispheres rather than synchronicity.  相似文献   


4.
High-precision in-situ ion microprobe (SIMS) oxygen isotope analysis of zircons from two diorite intrusions associated with the late Caledonian Lochnagar pluton in Scotland has revealed large differences in the degree of heterogeneity in zircon δ18O between the diorites. Zircon crystals from the Cul nan Gad diorite (CnG) show a unimodal distribution of oxygen isotope values (δ18O = 6.0 ± 0.6‰ (2σ)) and no or only minor grain-scale variation. Those from the Allt Darrarie diorite (AD1) show a large range in δ18O and an apparent bimodal distribution with modes of 6.6 ± 0.4‰ and 7.3 ± 0.4‰. Variations of up to 1.2‰ occur between and within grains; both an increase and decrease in δ18O with zircon growth has been observed. The δ18O composition of growing zircon can only change if open-system processes affect the magma composition, i.e. if material of contrasting δ18O composition is added to the magma. The variability in AD1 is interpreted to represent a cryptic record of magma mixing. A ‘deep crustal hot zone’ is a likely site for generation of the dioritic magmas which developed by mixing of residual melts and crustal partial melts or by melting of mafic lower crustal rocks. The overall small number of zircons with mantle-like δ18O values (5.3 ± 0.6‰ (2σ)) in the Lochnagar diorites is largely the product of crustal differentiation rather than crustal growth.

The δ18O of quartz from the CnG and AD1 diorites shows only minor variation (CnG: 10.9 ± 0.5‰ (2σ), AD1: 11.7 ± 0.6‰ (2σ)) within single populations, with no evidence of mixing. Quartz–zircon isotopic disequilibrium is consistent with later crystallisation of quartz from late magmatic fluids, and in case of the AD1 diorite after the inferred magma mixing from a homogenised, higher δ18O melt.

High-precision SIMS oxygen isotope analysis of zircon provides a new approach to identifying and resolving previously undetected early-stage magma mixing and constraining the compositions and origins of the component magmas. A combination of zircon, quartz and whole-rock data has proven to be a powerful tool in reconstructing the petrogenetic evolution of diorite from early crystallisation to late alteration.  相似文献   


5.
Stable isotope values of Costa Rican surface waters   总被引:3,自引:0,他引:3  
Stable isotope data of surface waters from the humid tropics in general, and Costa Rica in particular, are scarce. To improve our understanding of the spatial distribution of stable isotopes in surface waters, we measured δ18O and δD in river and lake (n=63) and precipitation (n=3) samples from Costa Rica. We also present data from the IAEA/WMO isotopes in precipitation network as context for our study. Surface water isotope values do not strongly correlate with elevation, stream head elevation, stream length, distance from Caribbean Sea, or estimated mean annual precipitation for the country as a whole. However, the data show distinct regional trends. The δ18O and δD values downwind of mountain ranges are inversely related to the altitude of the ranges the air masses traverse. In the lee of the high Talamanca Range, δ18O values are 6–8‰ lower, while in the lee of the lower Tilarán Range δ18O values are 2–3‰ lower than upwind sites along the Caribbean Slope. An altitude effect of −1.4‰ δ18O/km is present on the Pacific slope of southern Costa Rica, equivalent to a temperature effect of −0.3‰/°C. The Nicoya and Osa Peninsulas have higher values than upwind sites, suggesting input of Pacific-sourced moisture, evaporative enrichment, or decreased condensation temperatures. Elevated and increasing d-excess values inland along the Nicaragua Trough suggest a recycled component may be an important contributor to the water budget. These data provide preliminary stable isotope information for Costa Rica, and will benefit paleoclimatic research in the region. More detailed studies would be beneficial to our understanding of the controls on stable isotope composition of tropical waters.  相似文献   

6.
This paper presents new O and Sr isotope data for lavas from the northern part of the Roman perpotassic province. The samples comprise the tephritic leucititic to leucite phonolitic lavas and the saturated lavas from the Vulsinian District, the olivine leucite melilitite of San Venanzo, and the kalsilite diopside melilitite of Cupaello. Previous oxygen isotope work on the lavas of the Vulsinian District suggested crustal contamination of “normal” mantle-derived magmas. The new data cover the ranges previously found. O and Sr isotope ratios of evolved lavas of the undersaturated suite indicate assimilation in variable amounts of up to ca. 10% of continental crustal material. The saturated lavas probably assimilated large amounts (up to ca. 50%) of crust. Lavas chemically identified as corresponding to little modified mantle-derived liquids are high in both87Sr/86Sr andδ18O: 0.7103−0.7107, +7.8 to +9.4 (Vulsini), 0.7104, +12.3 (San Venanzo) and 0.7112, +14.4 (Cupaello). These high values are interpreted to have been inherited from a metasomatized parental mantle. Hydrous fluids enriched in large-ion lithophile elements and high inδ18O and87Sr/86Sr are thought to have mixed with mantle of “normal”δ18O and87Sr/86Sr. The fluids probably origi dehydration of continent-derived sediments, which were subducted beneath a mantle wedge in the continent-continent collision of the Corsica-Sardinia block and the Adriatic (Italian) plate. This hypothesis is supported by Pb and Nd isotopic evidence and is probably valid for the entire Roman Province.  相似文献   

7.
Groundwater flow-paths through shallow-perch and deep-regional basaltic aquifers at the Golan Heights, Israel, are reconstructed by using groundwater chemical and isotopic compositions. Groundwater chemical composition, which changes gradually along flow-paths due to mineral dissolution and water–rock interaction, is used to distinguish between shallow-perched and deep-regional aquifers. Groundwater replenishment areas of several springs are identified based on the regional depletion in rainwater δ18O values as a function of elevation (−0.25‰ per 100 m). Tritium concentrations assist in distinguishing between pre-bomb and post-bomb recharged rainwater.

It was found that waters emerging through the larger springs are lower in δ18O than surrounding meteoric water and poor in tritium; thus, they are inferred to originate in high-elevation regions up to 20 km away from their discharge points and at least several decades ago. These results verify the numerically simulated groundwater flow field proposed in a previous study, which considered the geological configuration, water mass balance and hydraulic head spatial distribution.  相似文献   


8.
58 samples of fossil mammoth and reindeer teeth and bones of various ages and coming from different locations were studied for the oxygen isotopic composition of their phosphate. Samples from Siberia have interstadial (Marine Isotope Stage 3), stadial (MIS 2), late-glacial and post-glacial ages. Russian and Ukrainian samples refer to the late-glacial and transitional (between the interstadial and glacial stages) time. The δ18O of palaeoenvironmental waters were calculated from the δ18Op obtained from fossil samples by means of the isotope equations calibrated on modern specimens of elephants and deer respectively. The δ18Ow obtained are generally lighter than those measured nowadays in the same areas and not far from those measured on ice cores of Holocene age, the isotopic differences being not greater than a few δ units. The calculated values are also in fairly good agreement with some isotopic values obtained from Siberian permafrost samples. According to the results obtained it seems that the elephant and deer equations can be reasonably used respectively in the case of fossil mammoth and deer skeletons to evaluate environmental palaeowaters.  相似文献   

9.
High resolution time series data of hydrogen (δD) and oxygen (δ18O) isotope values of precipitation have been generated for the first time at Kolkata, eastern India where the summer monsoon clouds from Bay of Bengal (BOB) commence their journey over India. Use of a Rayleigh cum two component mixing model and comparison of Kolkata data with the International Atomic Energy Agency (IAEA)–Global Network of Isotopes in Precipitation (GNIP) data base of New Delhi suggest that the precipitation at New Delhi cannot be explained by simple continental effect of a BOB vapour source alone, traveling and raining successively along Kolkata–New Delhi route. It is necessary to invoke an admixture of  20% vapour originating from the Arabian sea with the vapour coming from BOB and finally causing summer monsoon rains at New Delhi. The findings have major implications to the regional water vapour budget over India.  相似文献   

10.
The meteorite ALH84001, a sample of the ancient martian crust, contains small quantities (1%) of strongly chemically zoned carbonate. High spatial resolution (10 μm) ion microprobe analyses show that the chemical zoning is strongly correlated with variations in oxygen isotope ratios. Early formed Ca,Fe-rich cores have δ18O 7‰ increasing to 22‰ SMOW in the more Mg-rich outer cores and magnesite rims. Isolated areas of ankerite appear to be isotopically lighter with δ18O 1‰. The large range in δ18O requires a significant range in either fluid isotopic composition, or temperature, or both, in the course of the deposition sequence. Our data are inconsistent with formation of the zoned carbonates by closed system Rayleigh fractionation. There is no unique interpretation of the oxygen data, but the recent observation of existence of Δ17O excesses in the carbonate appears to rule out models which involve high temperature isotopic exchange with silicate. Comparison with terrestrial analogues suggests that ALH84001 carbonates formed in a hydrothermal system with T<400°C, and which, at least in the early stages of formation, may have involved water with δ18O < 0‰ SMOW. The later stages of deposition probably occurred at temperatures below 150°C, a conclusion which does not preclude the co-existence of thermophilic bacteria; temperatures during earlier stages of deposition are less likely to have been hospitable to bacteria.  相似文献   

11.
New oxygen isotope data are presented for submarine lavas erupted close to the transition between the oceanic Kermadec island arc and the continental Taupo Volcanic Zone, New Zealand. Volcanic glasses display δ18O values ranging from +5.65‰ to +5.83‰, clinopyroxenes range from +5.23‰ to +5.78‰ and olivines range from +4.83‰ to +5.47‰. Coexisting glass and phenocrysts in the lavas are in isotopic equilibrium, with one exception. Oxygen isotope ratios of back-arc lavas erupted through oceanic crust are indistinguishable from mid-ocean ridge basalts or lavas erupted in nearby back-arc settings. Although lavas from the arc front display elevated oxygen isotope ratios, the magnitude of 18O-enrichment is too great to result from recycling of subducted material alone. A single back-arc lava erupted through continental crust is also relatively 18O-rich suggesting that the most likely origin for the high δ18O signature is limited amounts of interaction between continental crust and melts derived from a mantle wedge that has been variably fluxed by recycled oxygen. The results of modelling open system behaviour in this volcanic system highlight the need for strong controls on the composition of local contaminants. Application of ‘average' crustal lithologies, as in other volcanic provinces, may lead to erroneous conclusions regarding the involvement of local basement.  相似文献   

12.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   

13.
Results are presented of a study of stable hydrogen and oxygen isotopes in rainfall and streamwaters for the Montseny and Prades areas in northeastern Spain: results cover the full year of 1991. The isotopic pattern for rainfall is similar for both areas: there is a wide range in isotopic contents and the results show a strong, near-linear trend, δ2H = 7.9 × δ18O + 9.8 (N = 59; r2 = 0.952), the ‘local meteoric line’. There is slight curvature to the data which may be related to the sources of water vapour forming the rainfall. Within the streams, the isotopic variability is much less than that of the rainfall although the data lie on, or very near to, the meteoric line. Data for detailed collections during storm events show more scatter than those collected regularly on a fortnightly basis. The event data show a linear feature that conforms to the local meteoric line. These results indicate that: (1) the main supply of water to the stream stormflow comes from water stored in the catchment prior to the event; (2) waters of more than one isotopic composition reside within the catchment and are transferable to the stream during storm events; (3) the main process of water transfer from the catchment back to the atmosphere comes from transpiration by the trees and (possibly) complete evaporation from the near-surface soil horizons and the tree canopy; (4) the isotopic technique cannot be used for quantitative hydrograph separation in this instance — at least two water types can be present within the catchment at any given time.  相似文献   

14.
The stable isotopic composition of materials such as glacial ice, tree rings, lake sediments, and speleothems from low-to-mid latitudes contains information about past changes in temperature (T) and precipitation amount (P). However, the transfer functions which link δ18Op to changes in T or P, dδ18Op/dT and dδ18Op/dP, can exhibit significant temporal and spatial variability in these regions. In areas affected by the Southeast Asian monsoon, past variations in δ18O and δD of precipitation have been attributed to variations in monsoon intensity, storm tracks, and/or variations in temperature. Proper interpretation of past δ18Op variations here requires an understanding of these complicated stable isotope systematics. Since temperature and precipitation are positively correlated in China and have opposite effects on δ18Op, it is necessary to determine which of these effects is dominant for a specific region in order to perform even qualitative paleoclimate reconstructions. Here, we evaluate the value of the transfer functions in modern precipitation to more accurately interpret the paleorecord. The strength of these transfer functions in China is investigated using multiple regression analysis of data from 10 sites within the Global Network for Isotopes in Precipitation (GNIP). δ18Op is modeled as a function of both temperature and precipitation. The magnitude and signs of the transfer functions at any given site are closely related to the degree of summer monsoon influence. δ18Op values at sites with intense summer monsoon precipitation are more dependent on the amount of precipitation than on temperature, and therefore exhibit more negative values in the summer. In contrast, δ18Op values at sites that are unaffected by summer monsoon precipitation exhibit strong relationships between δ18Op and temperature. The sites that are near the northern limit of the summer monsoon exhibit dependence on both temperature and amount of precipitation. Comparison with simple linear models (δ18Op as a function of T or P) and a geographic model (δ18Op as a function of latitude and altitude) shows that the multiple regression model is more successful at reproducing δ18Op values at sites that are strongly influenced by the summer monsoon. The fact that the transfer function values are highly spatially variable and closely related to the degree of summer monsoon influence suggests that these values may also vary temporally. Since the Southeast Asian monsoon intensity is known to exhibit large variations on a number of timescales (annual to glacial–interglacial), and the magnitude and sign of the transfer functions is related to monsoon intensity, we suggest that as monsoon intensity changes, the magnitude and possibly even the sign of the transfer functions may vary. Therefore, quantitative paleoclimate reconstructions based on δ18Op variations may not be valid.  相似文献   

15.
Hanford Loam, from Richland, Washington, was used as a test soil to determine the precision, accuracy and nature of two methods to extract soil water for stable isotopic analysis: azeotropic distillation using toluene, and simple heating under vacuum. The soil was oven dried, rehydrated with water of known stable isotopic compositions, and the introduced water was then extracted.

Compared with the introduced water, initial aliquots of evolved water taken during a toluene extraction were as much as 30 ‰ more depleted in D and 2.7 ‰ more depleted in 18O, whereas final aliquots were as much as 40 ‰ more enriched in D and 14.3 ‰ more enriched in 18O. Initial aliquots collected during the vacuum/heat extraction were as much as 64 ‰ more depleted in D and 8.4 ‰ more depleted in 18O than was the introduced water, whereas the final aliquots were as much as 139 ‰ more enriched in D, and 20.8 ‰ more enriched in 18O. Neither method appears quantitative; however, the difference in stable isotopic composition between the first and last aliquots of water extracted by the toluene method is less than that from the vacuum/heat method. This is attributed to the smaller fractionation factors involved with the higher average temperatures of distillation of the toluene. The average stable isotopic compositions of the extracted water varied from that of the introduced water by up to 1.4 ‰ in δD and 4.2 ‰ in δ18O with the toluene method, and by 11.0 ‰ in δD and 1.8 ‰ in δ18O for the vacuum/heat method.

The lack of accuracy of the extraction methods is thought to be due to isotopic fractionation associated with water being weakly bound (not released below 110°C) in the soil. The isotopic effect of this heat-labile water is larger at low water contents (3.6 and 5.2% water by weight) as the water bound in the soil is a commensurately larger fraction of the total. With larger soilwater contents the small volume of water bound with an associated fractionation is not enough to affect the remaining unbound introduced soil water. Pretreatment of the soil to equilibrate the heat-labile water to the test water produced good results for the toluene distillation but not the vacuum/heat extraction method.

Vapors collected over the soils also show stable isotopic variations related to soilwater content. These vapors also appear to be in closer equilibrium with the free water, as extracted by the toluene method, than with the originally introduced water; thus, the soil vapors do not appear to be isotopically affected by the heat-labile water.

The toluene method appears to be better for extracting soil water for stable isotopic analysis because it allows more precise temperature control and excludes the extraction of heat-labile water which is isotopically fractionated. The bound nature of this heat-labile water limits association with the hydrologically active soil water; thus, the exclusion of this water from the soil water attained by toluene distillation may be advantageous. However, the azeotropic nature of toluene distillation affords no benefit and the extraction procedure must continue to completion.  相似文献   


16.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

17.
We investigated the distribution of naturally occurring geochemical tracers (222Rn, 223Ra, 224Ra, 226Ra, CH4, δ18O, and δ2H) in the water column and adjacent groundwater of Mangueira Lagoon as proxies of groundwater discharge. Mangueira Lagoon is a large (90 km long), shallow (4–5 m deep), fresh, and non-tidal coastal lagoon in southern Brazil surrounded by extensively irrigated rice plantations and numerous irrigation canals. We hypothesized that the annual, intense irrigation for rice agriculture creates extreme conditions that seasonally change groundwater discharge patterns in the adjacent lagoon. We further supposed that dredging of irrigation canals alters groundwater fluxes.

While the activities of 222Rn in shallow groundwater were 2–3 orders of magnitude higher than in surface water, CH4 and radium isotopes were only 1 order of magnitude higher. Therefore, 222Rn appears to be the preferred groundwater tracer in this system. Radon concentrations and conductivities were dramatically higher near the pump house of rice irrigation canals, consistent with a groundwater source. Modeling of radon inventories accounting for total inputs (groundwater advection, diffusion from sediments, and decay of 226Ra) and losses (atmospheric evasion, horizontal mixing and decay) indicated that groundwater advection rates in the irrigation canals (25 cm/d) are over 2 orders of magnitude higher than along the shoreline (0.1 cm/d). Nearly 75% of the total area of the canals is found in the southern half of the lagoon, where groundwater inputs seem to be higher as also indicated by methane and stable isotope trends. In spite of the relatively small area of the canals, we estimate that they contribute nearly 70% of the total (57,000 m3/d) groundwater input into the entire Mangueira Lagoon. We suggest that the dredging of these canals cut through aquitards which previously restricted upward advection from the underlying permeable strata. The irrigation channels may therefore represent an important but previously overlooked source of nutrients and other dissolved chemicals derived from agricultural practices into the lagoon.  相似文献   


18.
In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ18O and δ2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l−1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50–60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ18O less than −7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ18O about −7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.  相似文献   

19.
Magmatic iron meteorites are considered to be remnants of the metallic cores of differentiated asteroids, and may be used as analogues of planetary core formation. The Fe isotope compositions (δ57/54Fe) of metal fractions separated from magmatic and non-magmatic iron meteorites span a total range of 0.39‰, with the δ57/54Fe values of metal fractions separated from the IIAB irons (δ57/54Fe 0.12 to 0.32‰) being significantly heavier than those from the IIIAB (δ57/54Fe 0.01 to 0.15‰), IVA (δ57/54Fe − 0.07 to 0.17‰) and IVB groups (δ57/54Fe 0.06 to 0.14‰). The δ57/54Fe values of troilites (FeS) separated from magmatic and non-magmatic irons range from − 0.60 to − 0.12‰, and are isotopically lighter than coexisting metal phases. No systematic relationships exist between metal-sulphide fractionation factor (Δ57/54FeM-FeS = δ57/54Femetal − δ57/54FeFeS) metal composition or meteorite group, however the greatest Δ57/54FeM-FeS values recorded for each group are strikingly similar: 0.79, 0.63, 0.76 and 0.74‰ for the IIAB, IIIAB, IAB and IIICD irons, respectively. Δ57/54FeM-FeS values display a positive correlation with kamacite bandwidth, i.e. the most slowly-cooled meteorites, which should be closest to diffusive equilibrium, have the greatest Δ57/54FeM-FeS values. These observations provide suggestive evidence that Fe isotopic fractionation between metal and troilite is dominated by equilibrium processes and that the maximum Δ57/54FeM-FeS value recorded (0.79 ± 0.09‰) is the best estimate of the equilibrium metal-sulphide Fe isotope fractionation factor. Mass balance models using this fractionation factor in conjunction with metal δ57/54Fe values and published Fe isotope data for pallasites can explain the relatively heavy δ57/54Fe values of IIAB metals as a function of large amounts of S in the core of the IIAB parent body, in agreement with published experimental work. However, sequestering of isotopically light Fe into the S-bearing parts of planetary cores cannot explain published differences in the average δ57/54Fe values of mafic rocks and meteorites derived from the Earth, Moon and Mars and 4-Vesta. The heavy δ57/54Fe value of the Earth's mantle relative to that of Mars and 4-Vesta may reflect isotopic fractionation due to disproportionation of ferrous iron present in the proto-Earth mantle into isotopically heavy ferric iron hosted in perovskite, which is released into the magma ocean, and isotopically light native iron, which partitions into the core. This process cannot take place at significant levels on smaller planets, such as Mars, as perovskite is only stable at pressures > 23 GPa. Interestingly, the average δ57/54Fe values of mafic terrestrial and lunar samples are very similar if the High-Ti mare basalts are excluded from the latter. If the Moon's mantle is largely derived from the impactor planet then the isotopically heavy signature of the Moon's mantle requires that the impacting planet also had a mantle with a δ57/54Fe value heavier than that of Mars or 4-Vesta, which then implies that the impactor planet must have been greater in size than Mars.  相似文献   

20.
Benthic foraminiferal magnesium/calcium ratios were determined on one hundred and forty core-top samples from the Atlantic Ocean, the Norwegian Sea, the Indian Ocean, the Arabian Sea and the Pacific Ocean, mostly at sites with bottom water temperatures below 5 °C. Mg/Ca ratios are consistently lower, by  0.2 mmol/mol, in samples cleaned using oxidative and reductive steps than using oxidative cleaning. Differences between Cibicidoides species have been identified: Mg/Ca of Cibicidoides robertsonianus > Cibicidoides kullenbergi > Cibicidoides wuellerstorfi. Comparison with bottom water temperatures support observations of lowered Mg/Ca of C. wuellerstorfi at temperature below  3 °C compared with values predicted by published calibrations and from other Cibicidoides species. Hydrographic data shows that carbonate ion saturation (Δ[CO32−]) decreases rapidly below this temperature. An empirical sensitivity of Δ[CO32−] on Mg/Ca has been established for C. wuellerstorfi of 0.0086 ± 0.0006 mmol/mol/μmol/kg. A novel application using modern temperatures and Last Glacial Maximum temperatures derived via pore fluid modelling supports a carbonate ion saturation state effect on Mg incorporation. This may significantly affect calculated δ18Oseawater obtained from foraminiferal δ18O and Mg/Ca temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号