首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TOPEX/Poseidon satellite altimetry data from 1993 to 1999 were used to study mean annual variation of sea surface height anomaly (SSHA) in the South China Sea (SCS) and to reproduce its climatological monthly surface dynamic topography in conjunction with historical hydrographic data. The characters and rules of seasonal evolution of the SCS dynamic topography and its upper circulation were then discussed. Analyses indicate that annual variation of the SCS large-scale circulation could be divided into four major phases. In winter (from November to February), the SCS circulation is mainly controlled by double cyclonic gyres with domination of the northern gyre. Other corresponding features include the Kuroshio intrusion from the Luzon Strait and the northeastward off-shelf current in the area northwest off Kalimantan Island. The double gyre structure disassembled in spring (from March to April) when the northern gyre remains cyclonic, the southern gyre becomes anticyclonic, and the general circulation pattern shows a dipole. There is no obvious large-scale closed gyre inside the SCS basin in both summer (from May to July) and autumn (from August to October) when the SCS Monsoon Jet dominates the circulation, which flows northeastward across the SCS. Even so, circulation patterns of these two phases diverse significantly. From May to July, the SCS monsoon jet flows northward near the Vietnam coast and bends eastward along the topography southeast off Hainan Island at about 18°N forming an anticyclonic turn. It then turns northeastward after crossing the SCS. From August to October, however, the monsoon Jet leaves the coast of Vietnam and enters interior of the basin at about 13°N, and the general circulation pattern becomes cyclonic. The Kuroshio intrusion was not obvious in spring, summer and autumn. It is suggested from these observations that dynamic adjustment of the SCS circulation starts right after the peak period of the prevailing monsoon.  相似文献   

2.
A high resolution (3–8 km grid), 3D numerical ocean model of the West Caribbean Sea (WCS) is used to investigate the variability and the forcing of flows near the Meso-American Barrier Reef System (MBRS) which runs along the coasts of Mexico, Belize, Guatemala and Honduras. Mesoscale variations in velocity and temperature along the reef were found in seasonal model simulations and in observations; these variations are associated with meandering of the Caribbean current (CC) and the propagation of Caribbean eddies. Diagnostic calculations and a simple assimilation technique are combined to infer the dynamically adjusted flow associated with particular eddies. The results demonstrate that when a cyclonic eddy (negative sea surface height anomaly (SSHA)) is found near the MBRS the CC shifts offshore, the cyclonic circulation in the Gulf of Honduras (GOH) intensifies, and a strong southward flow results along the reef. However, when an anticyclonic eddy (positive SSHA) is found near the reef, the CC moves onshore and the flow is predominantly westward across the reef. The model results help to explain how drifters are able to propagate in a direction opposite to the mean circulation when eddies cause a reversal of the coastal circulation. The effect of including the Meso-American Lagoon west of the Belize Reef in the model topography was also investigated, to show the importance of having accurate coastal topography in determining the variations of transports across the MBRS. The variations found in transports across the MBRS (on seasonal and mesoscale time scales) may have important consequences for biological activities along the reef such as spawning aggregations; better understanding the nature of these variations will help ongoing efforts in coral reef conservation and maintaining the health of the ecosystem in the region.  相似文献   

3.
The aim of this paper is to investigate the trends and shifts of the circulation types over Romania for 50-year period (1961–2010) on seasonal basis. In order to achieve this, two objective catalogues, namely GWT and WLK, from COST733 Action were employed. Daily circulation types were grouped according to the cyclonicity and anticyclonicity and were used to calculate the seasonal occurrence frequency of cyclonic and anticyclonic types. The trend of seasonal time series was investigated by using Mann–Kendall test and the shifts points were determined by using Pettitt test. The results reveal that the occurrence frequency of anti-cyclonic types increases in summer and winter seasons and the occurrence frequency of cyclonic ones decreases for the summer season (for alpha = 0.05).  相似文献   

4.
Hydrographic data collected during the cruise HIDROPRESTIGE were combined with meteorological and dynamic data provided by remote sensors and drifting/moored buoys, to describe the surface circulation of the Northern Iberian basin in March-April 2003. Sea surface winds transported the floating Prestige oil slicks from the sinking area to the continental slope off the Rías Baixas in 1/2 month: the surface current intensity was 2% of the wind intensity and it was rotated clockwise 5 degrees from the wind direction. Mesoscale cyclonic and anticyclonic structures west of 10 degrees W increased the residence time of oil patches in the Northern Iberian basin, as compared with the expected southwards flow of the Iberian current (IC). On the other hand, the Iberian poleward current (IPC) formed a marked surface front with coastal waters, preventing the entry of fuel oil into the rías. PAHs in the surface layer during the cruise were <0.5 microgL(-1), except in the Galicia bank (approximately 1 microg L(-1); where the Prestige tanker was still leaking) and the vicinity of Cape Fisterra (approximately 1.5 microg L(-1); where the convergence front between the IPC and coastal waters vanished).  相似文献   

5.
Application of an individual-based particle tracking model to the migration of tropical fish larvae along the continental shelf between the Houtman Abrolhos Islands and Rottnest Island (Western Australia) has shown that there is potential for the southwards advection of passive particles/larvae in the Leeuwin Current system throughout the year. However, seasonal variations in the prevailing wind field result in corresponding seasonal changes in the surface current flow (both alongshore and cross-shelf) on the continental shelf, leading to a pulse of modelled particles arriving at Rottnest Island during the autumn months. This matches, within a month, the observed April/May peak in annual recruitment of 2 species of damselfish (Abudefduf sexfasciatus and A. vaigiensis), at the time when the Leeuwin Current is strengthening. It is assumed that the larvae are in the uppermost 20 m of the water column and that there are no vertical diurnal movements.The model has a 10 km grid spacing, and so can resolve some of the current gradients across the continental shelf. Comparison of the modelled near-surface currents with ADCP measurements at 2 current mooring sites as well as with a broader range of historical current measurements off south-western Australia indicates that the alongshore net transport is reasonably well reproduced by the model, whereas agreement with the cross-shelf flow is not as good (this may be partly attributed to the paucity of high-quality near-surface current measurements in the area of study). Because of limitations in our knowledge of the swimming ability, choice of swimming direction and habitat selection of larval fish, as well as the inability of the model to reproduce the small-scale circulation around Rottnest Island, the swimming capacity of the late-stage larval fish is not specifically included; they are considered as potential settlers once they have reached within 20 km of the Island.The observed inter-annual variability in recruitment is not as well matched by the model as is the seasonal pattern, but this is almost certainly due to uncertainties in biological factors such as spawning strength, food and predation en route, which are not known.The modelled results are also applied to a more general discussion of the transport of eggs and larvae of commercial fish and invertebrate species on the Western Australian continental shelf, and it is shown that the seasonality and position on the shelf of the spawning may play a large role in the movement (and hence survival and ultimate recruitment) of different species.  相似文献   

6.
Results of field observations of current dynamics in the frontal zone of the western Middle Caspian are given. The cyclonic circulation over the western slope in winter is shown to be a unidirectional intense current with velocities up to 100 cm/s. In summer, the current slows down and separates into branches—it turns southwestward and westward at the slope depth down to 150 m, southward and southeastward at the depth of ~100–350 m, and eastward at larger depths. In summer, shelf currents interact with the flow of Middle Caspian cyclonic circulation, resulting in that anticyclonic vortices reach the shelf.  相似文献   

7.
A set of four indices that quantify Lagrangian properties of the Gulf of California seasonal circulation were implemented from outputs of a three-dimensional numerical model. From trajectories of particles seeded over the entire Gulf, we calculated for 12 one-month periods the following indices: net and total distance traveled by the particles, the number of particles that are found within an area centered on the release positions after one month, and time taken by particles to escape from a 50-km-radius circle. These indices can be used for studies on transport of inert properties and passive planktonic organisms such as eggs and early-stage larvae; their use is illustrated for typical summer and winter conditions in the Gulf of California. These indices show the potential for connecting areas separated by a few hundreds of km along the eastern side of the Gulf, due to the strong seasonal up-gulf and down-gulf current. In the Northern Gulf, large displacements occur at the borders of the basin-wide seasonally reversing eddy that dominates the large-scale circulation (cyclonic in summer, anticyclonic in winter). On the other hand, the potential for self-recruitment areas is found as particles can be trapped for longer than one month within these eddies, as well as in smaller ones in the Northern Gulf, and near the coast of the peninsular side of the Southern Gulf, where current speeds are slow and many small capes and islands are present.  相似文献   

8.
The Northern current is the main circulation feature of the North-Western Mediterranean Sea. While the large-scale to mesoscale variability of the northern current (NC) is well known and widely documented for the Ligurian region, off Nice or along the Gulf of Lions shelf, few is known about the current instabilities and its associated mesoscale dynamics in the intermediate area, off Toulon. Here, we took advantage of an oceanographic cruise of opportunity, the start of a HF radar monitoring programme in the Toulon area and the availability of regular satellite sea surface temperature and chlorophyll a data, to evaluate the realism of a NEMO-based regional high-resolution model and the added value brought by HF radar. The combined analysis of a 1/64° configuration, named GLAZUR64, and of all data sets revealed the occurrence of an anticyclonic coastal trapped eddy, generated inside a NC meander and passing the Toulon area during the field campaign. We show that this anticyclonic eddy is advected downstream along the French Riviera up to the study region and disturbs the Northern current flow. This study aims to show the importance of combining observations and modelling when dealing with mesoscale processes, as well as the importance of high-resolution modelling.  相似文献   

9.
孙千千  朱伟  李明 《湖泊科学》2015,27(5):865-872
于2010年7月至2011年6月期间,对太湖贡湖湾及梅梁湾微囊藻的种类组成及其群落的时空分布差异进行调查,并探讨影响微囊藻群落时空分布的环境因子.结果表明,7-11月太湖贡湖湾和梅梁湾都表现为鱼害微囊藻(Microcystis ichthyoblabe)、惠氏微囊藻(M.wesenbergii)及铜绿微囊藻(M.aeruginosa)顺次成为优势种的演替过程,其余时间段内以鱼害微囊藻及其它微囊藻为主.通过CCA分析环境因子与微囊藻属内各种类之间的关系,发现温度是驱动其季节演替的主要因素.两个湖湾之间及同一个湖湾内中心与岸边区域的微囊藻种属分布差异不明显.但是受到风的作用,两个湖湾中下风向位置的微囊藻细胞丰度较高.惠氏微囊藻和铜绿微囊藻更易受到风的影响而向下风向位置迁移,这是因为惠氏微囊藻和铜绿微囊藻群体粒径相对较大,易于漂浮在表层而通过表层迁移聚集于下风向处.可见风引起的表层迁移是影响微囊藻群落空间分布的重要因素.  相似文献   

10.
The South China Sea (SCS) is a semi-enclosed deep basin with complex topography includ-ing broad continental shelves, steep slopes, and a large deep basin. It is dominated by prevailing southwest monsoon in summer and by much stronger northeast monsoon in…  相似文献   

11.
In the region southeast of Okinawa, during May to July 2001, a cyclonic and an anticyclonic eddy were observed from combined measurements of hydrocasts, an upward-looking moored acoustic Doppler current profiler (MADCP), pressure-recording inverted echo sounders (PIESs), satellite altimetry, and a coastal tide gauge. The hydrographic data showed that the lowest/highest temperature (T) and salinity (S) anomalies from a 13-year mean for the same season were respectively -3.0/ 2.5℃ and -0.20/ 0.15 psu at 380/500 dbar for the cyclonic/anticyclonic eddies. From the PIES data, using a gravest empirical mode method, we estimated time-varying surface dynamic height (D) anomaly referred to 2000 dbar changing from -20 to 30 cm, and time-varying T and S anomalies at 500 dbar ranging through about ±2 ℃ and ±0.2 psu, respectively. The passage of the eddies caused variations of both satellite-measured sea surface height anomaly (SSHA) and tide-gauge-measured sea level anomaly to change from about –20 to 30 cm, consistent with the D anomaly from the PIESs. Bottom pressure sensors measured no variation related to these eddy activities, which indicated that the two eddies were dominated by baro-clinicity. Time series of SSHA map confirmed that the two eddies, originating from the North Pacific Subtropical Countercurrent region near 20°―30°N and 150°―160°E, traveled about 3000 km for about 18 months with mean westward propagation speed of about 6 cm/s, before arriving at the region southeast of Okinawa Island.  相似文献   

12.
Previous investigations have suggested that wind stress curl, the balance of influx- and outflux-induced upwelling, as well as a positive vorticity source fed from the left flank of the Kuroshio are all possible mechanisms that contribute to a persistent cyclonic gyre in the South China Sea (SCS). Studies have also suggested that the loop current that forms from the Kuroshio intrusion in the Luzon Strait, similar to the Loop Current in the Gulf of Mexico (GOM), has rarely been observed in the northern SCS. In this research, an idealized numerical model driven by annual mean wind stress was adopted to investigate the relative importance of dynamic processes that control the mean flow pattern of Kuroshio in the Luzon Strait and regulate circulation in the SCS. An analysis of results drawn from numerical experiments suggests that the three mechanisms are of approximately equal importance in the formation of the persistent cyclonic gyre in the northern SCS. Unlike the Gulf Stream which enters the Gulf of Mexico through the Yucatan Channel, the two topographic ridges that align nearly meridionally in the Luzon Strait keep the Kuroshio flowing roughly northward without distinct intrusion into the SCS. Unsurprisingly, an anticyclonic loop current similar to the Gulf Stream pathway in the GOM was barely observed in the northern SCS.  相似文献   

13.
Two diagnostic models, reproducing circulation generated in a marginal sea by variable density, have been developed. The models’ domain is a 2D transverse section for which analytical solutions have been obtained. They describe the winter situation in the northern Adriatic, with a strong vertical mixing present and the density maximum dominating the centre of the basin. Both models employ Boussinesq-type parametrisation of friction and linear slip at the bottom. The first model allows for frictional departure from hydrostatic equilibrium and includes vertical friction only. The second one is hydrostatic but allows for lateral friction as well. The results obtained by the two models are similar and to some extent dependent on the vertical and bottom friction. They reproduce several well known characteristics of the Adriatic circulation (cyclonic surface flow, downwelling in the central and larger part of the basin compensated by upwelling in the coastal zone) but also predict some phenomena that are still not well understood. A conspicuous feature of the model results are coastal jets, which were observed in the Adriatic on several occasions. The present models show that the distance of jets from the coasts depends on lateral friction: it is found to vary from 1 up to 10 km on the Italian side and between 2 and 15 km on the Croatian side. Both models reproduce the west–east asymmetry, with the wider current on the east side of the basin. The asymmetry is a subject on which conflicting empirical results exist in the Adriatic. In the two models cyclonic flow occupies the whole water column, which disagrees with some recent theoretical findings of the near-bottom anticyclonic flow and thus leaves the issue open.  相似文献   

14.
The oceanic response to a typhoon, where mesoscale ocean circulations co-exist, was investigated by analyzing the independent observations of profiling floats data at three different locations, satellite altimetry data near the eye of Typhoon Man-Yi (2007) before and after its passage, and synthetic aperture radar data taken during the typhoon’s passage. In spite of the nearly symmetric wind pattern around the eye, the distribution of mesoscale eddies had a major impact on the surface currents and mixed layer (ML) depths. As a result, the entrainment of the water below the ML into the ML was affected by the mesoscale circulation and became asymmetric, which accounted for most of the changes observed in the temperature profiles. Changes in the isotherms were driven primarily by the westward propagation of the mesoscale pattern rather than by the typhoon-induced shoaling. The typhoon-induced shoaling could have played a significant role in the generation of high-frequency (e.g., near-inertial) oscillations and/or sub-mesoscale structures. Although a similar or even greater energy flux was observed at the surface, the entrainment within the anticyclonic circulation was weaker than that within the cyclonic circulation and at the edge of the anticyclonic circulation because of the thick pre-existing ML. A strong ocean response to Typhoon Man-Yi (2007) within a cyclonic circulation or at the edge of an anticyclonic circulation, rather than within an anticyclonic eddy, has implications for the role of mesoscale ocean circulations in better understanding and forecasting the typhoon intensity.  相似文献   

15.
Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea and its mechanism were investigated using empirical orthogonal function (EOF) analysis with satellite sea surface heights over the northern East/Japan Sea and a three-dimensional circulation model. The spatial structure and temporal variation of first EOF mode, which explains about 64% of the total variance, indicate that a large cyclonic circulation in the northern East/Japan Sea shows a semi-annual variation with maximum strength in summer and winter. According to numerical model result, the Liman Cold Current, accepted as a major current in the northern East/Japan Sea, is well mixed vertically by the winter monsoon and the current in the upper layer has a relatively deep structure, with a maximum westward speed of about 20 cm/s in winter. On the other hand, in summer the current has a stronger baroclinic structure of velocity than in winter. Numerical experiments showed that in summer the temporal variation of upper layer circulation is controlled by thermal forcing, such as sea surface heat flux and inflow of heat transport into the East/Japan Sea through the Korea/Tsushima Strait. Moreover, the cyclonic circulation in the upper layer of the northern East/Japan Sea is also generated and strengthened by the positive wind stress curl occupying most of the East/Japan Sea during the winter. The seasonal variation of each forcing that drives the circulation is responsible for the strength or weakness of the upper layer circulation in the northern East/Japan Sea. The contribution of each forcing to the seasonal variation of the upper layer circulation is examined through sensitivity experiments. According to these numerical experiments, the upper layer circulation in the northern East/Japan Sea is strengthened twice a year, in winter and summer, and this semi-annual variation is determined by a combination of wind (winter) and thermal (summer) forcing.  相似文献   

16.
Abstract

Surface wind data from a network of stations located in the Po Valley, Italy, have been analysed in order to investigate the features of the local circulation during summer, under synoptic conditions of weak pressure gradients.

The up-valley wind appears to be closely coupled with the sea-land breeze in the eastern part of the valley. The nocturnal phase winds are almost completely absent in the central part of the valley. An anomalous nocturnal circulation in the northeastern part of the valley is tentatively related to the influence of a low-level jet developing in a near plain.

Due to the differential heating of the mountain slopes and the valley floor, the flow is divergent and anticyclonic during the day and convergent and cyclonic at night.  相似文献   

17.
李崇银  杨辉 《湖泊科学》2003,15(Z1):16-22
观测资料的分析极为清楚地表明,江淮流域的夏季降水有着极为明显的低频变化,周期为30-60d和近20d的振荡是其最基本的特征,尤其是在多雨的年份.对应江淮夏季多雨(涝)年和少雨(旱)年,大气环流的分析表明其大气季节内振荡(IS0)的形势有着显著的差异.例如在多雨(少雨)年,在长江以南的850hPa上为一个低频(IS0)反气旋(气旋)性环流控制,而中国北部和日本一带为气旋(反气旋)性环流,从而在江淮流域形成较强的低频辐合(辐散)气流;在200hPa的青藏高原上却为一个低频气旋(反气旋)性环流所控制.分析还表明,对应多雨年,在江淮流域有明显的由中高讳度向南传播和由低玮度向北传播的大气低频振荡的汇合情况;而对应于少雨年,由中高纬度向南传播的低频系统较不明显,在江淮流域低频系统的汇合也较为不清楚.  相似文献   

18.
Summary Upper layer structure of the Typhoon No. 5405 ? Grace ? in 1954 was investigated on synoptic weather maps. Two anticyclonic eddies was clearly shown on both sides of the cyclonic center. Assist. Prof.T. Masui, Yokohama National University, Yakinoshita 929,The City of Kamakura, Kanagawa-ken, Japan.  相似文献   

19.
20.
A new circulation model of the western North Pacific Ocean based on the parallelized version of the Princeton Ocean Model and incorporating the Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme has been developed. The new model assimilates satellite data and is tested for the period January 1 to April 3, 2012 initialized from a 24-year simulation to estimate the ocean state focusing in the South China Sea (SCS). Model results are compared against estimates based on the optimum interpolation (OI) assimilation scheme and are validated against independent Argo float and transport data to assess model skills. LETKF provides improved estimates of the western North Pacific Ocean state including transports through various straits in the SCS. In the Luzon Strait, the model confirms, for the first time, the three-layer transport structure previously deduced in the literature from sparse observations: westward in the upper and lower layers and eastward in the middle layer. This structure is shown to be robust, and the related dynamics are analyzed using the results of a long-term (18 years) unassimilated North Pacific Ocean model. Potential vorticity and mass conservations suggest a basin-wide cyclonic circulation in the upper layer of the SCS (z?>??570 m), an anticyclonic circulation in the middle layer (?570 m?≥?z?>??2,000 m), and, in the abyssal basin (<?2,000 m), the circulation is cyclonic in the north and anticyclonic in the south. The cyclone–anticyclone abyssal circulation is confirmed and explained using a deep-layer reduced-gravity model as being caused by overflow over the deep sill of the Luzon Strait, coupled with intense, localized upwelling west of the strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号