首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

2.
Amplification of structural response of r.c. base-isolated structures is expected under near-fault ground motions, yet there is a lack of knowledge of their behavior in the case of fire. To investigate the nonlinear seismic response following a fire, an incremental dynamic analysis is carried out on five-storey r.c. base-isolated framed buildings with fire-protected High-Damping-Laminated-Rubber Bearings (HDLRBs), designed in line with the Italian seismic code. Horizontal components of near-fault ground motions characterized by forward-directivity or fling-step pulse-type are considered. The nonlinear seismic response of base-isolated structures in a no fire situation is compared with that in the event of fire, at 45 (i.e. R45) and 60 (i.e. R60) minutes of fire resistance, assuming both damaged (i.e. DS) and repaired (i.e. RS) stiffness conditions. Five fire scenarios are considered assuming the fire compartment confined to the area of the first level (i.e. F1), the first two (i.e. F1/2) and the upper (i.e. Fi, i=3–5) levels, with the parametric temperature–time fire curve evaluated in accordance with Eurocode 1. The nonlinear seismic analysis is performed by using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial-stress-like iterative procedure. At each step of the analysis, plastic conditions are checked at the critical (end) sections of the girders and columns, where thermal mapping with reduced mechanical properties is evaluated with the 500 °C isotherm method proposed by Eurocode 2. A viscoelastic model with variable stiffness properties in the horizontal and vertical directions, depending on the axial force and lateral deformation, simulates the response of an HDLRB.  相似文献   

3.
近断层脉冲型地震动作用下隔震结构地震反应分析   总被引:17,自引:5,他引:17  
隔震结构在远震场地减震效果良好,但是近断层地震动的明显的长周期速度和位移脉冲运动可能对隔震建筑等长周期结构的抗震性能和设计带来不利影响,需要深入探讨。本文首先讨论近断层地震动的长周期脉冲运动特征,然后以台湾集集地震8条典型近震记录和其它4条常用近震记录以及4条远震记录作为地震动输入,对两幢安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构进行非线性地震反应时程分析,通过比较探讨了算例计算结果,定量说明隔震结构的近震脉冲效应显著,是隔震设计不容忽视的问题。  相似文献   

4.
A displacement-based design procedure using hysteretic damped braces (HYDBs) is proposed for the seismic retrofitting of unsymmetric-plan structures. An expression of the viscous damping equivalent to the hysteretic energy dissipated by the damped braced frame is proposed under bidirectional seismic loads, where corrective factors are assumed as a function of design parameters of the HYDBs. To this end, the nonlinear dynamic analysis of an equivalent two degree of freedom system is firstly carried out on seven pairs of real ground motions whose displacement response spectra match, on average, the design spectrum proposed by the Italian seismic code for a high-risk seismic zone and a medium subsoil class. Then, the extended N2 method considered by the European seismic code, which combines the nonlinear static analysis along the in-plan principal directions of the structure with elastic modal analysis, is adopted to evaluate the higher mode torsional effects. The town hall of Spilinga (Italy), a reinforced concrete (r.c.) framed building with an L-shaped plan, is supposed to be retrofitted with HYDBs. Six structural solutions are compared considering two alternative in-plan distributions of the HYDBs, to eliminate (elastic) torsional effects, and three design values of the frame ductility combined with a constant design value of the damper ductility. To check the effectiveness and reliability of the DBD procedure, the nonlinear static analysis of the test structures is carried out, by evaluating the vulnerability index of r.c. frame members and the ductility demand of HYDBs for different in-plan directions of the seismic loads.  相似文献   

5.
This paper focuses on the interstory drift ratio (IDR) demands of building structures subjected to near-fault ground motions having different impulsive characteristics based on generalized interstory drift spectral analysis. The near-fault ground motions considered include the idealized simple pulses and three groups of near-fault ground motions with forward directivity pulses, fling-step pulses and without velocity pulse. Meanwhile, the building systems are equivalently taken as shear-flexural beams with representative lateral stiffness ratios. The IDR distribution of continuous beams subjected to three groups of near-fault ground motions is acquired. It is illustrated that the maximum IDR shifts from the upper half to the lower half of buildings with an increase in lateral stiffness ratio. For long-period systems, the average IDR under impulsive ground motions is significantly greater than that under non-pulse motions. Finally, for moment-resisting frame buildings the forward directivity pulses amplify the drift response of higher modes, while the fling-step pulses excite primarily their contribution in the first mode and generate large deformation in the lower stories. The essential reason for this phenomenon is revealed according to the distinct property of near-fault impulsive ground motions and generalized drift spectral analysis.  相似文献   

6.
Forward directivity may cause large velocity pulses in ground motion time histories that are damaging to buildings at sites close to faults, potentially increasing seismic collapse risk. This study quantifies the effects of forward directivity on collapse risk through incremental dynamic analysis of building simulation models that are capable of capturing the key aspects of strength and stiffness degradation associated with structural collapse. The paper also describes a method for incorporating the effects of near-fault directivity in probabilistic assessment of seismic collapse risk. The analysis is based on a suite of RC frame models that represent both past and present building code provisions, subjected to a database of near-fault, pulse-like ground motions with varying pulse periods. Results show that the predicted collapse capacity is strongly influenced by variations in pulse period and building ductility; pulse periods that are longer than the first-mode elastic building period tend to be the most damaging. A detailed assessment of seismic collapse risk shows that the predicted probability of collapse in 50 years for modern concrete buildings at a representative near-fault site is approximately 6%, which is significantly higher than the 1% probability in the far-field region targeted by current seismic design maps in the US. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Failure of one-story precast structures consisting of cantilever columns connected by simply supported beams was widely reported throughout the epicentral regions of the last devastating earthquakes in Turkey. As a single degree of freedom system, precast columns are designed by using the elastic spectrum given in the seismic code and by considering a seismic load reduction factor which takes into account the inelastic behavior of the columns under seismic loads. Although the existing seismic codes consider near-fault shaking effects in the development of elastic response spectra, they do not currently consider the increased inelastic demands that may occur during near-fault ground motion. The current study consists of nonlinear time history analyses of various hypothetical columns having geometric and mass properties which are being used in Turkish precast industry and the evaluation of damage indexes (DI) in terms of peak ground velocity (PGV) and peak ground acceleration (PGA) of the used strong ground motions. It is achieved that near-fault earthquakes create more damages on the columns. This might be one of the main reasons for the collapse of several one-storey precast buildings which were well designed according to the seismic codes in the district of existing faults. The obtained PGV versus DI charts prove that if one increase the sectional dimensions and/or longitudinal reinforcement ratio of the column, the possible damage from near-fault shaking effects could be reduced.  相似文献   

8.
A displacement-based design procedure is proposed for proportioning hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a reinforced concrete (r.c.) in-elevation irregular framed building which has to be retrofitted. To check the effectiveness and reliability of the design procedure, a numerical investigation is carried out with reference to a six-storey r.c. framed building, which, originally designed according to an old Italian seismic code (1996) for a medium-risk zone, has to be retrofitted by inserting of HYDBs to attain performance levels imposed by the current Italian code (NTC08) in a high-risk zone. To simulate a vertical irregularity, a change of use of the first two floors, from residential to office, is also supposed; moreover, masonry infill walls, regularly distributed along the perimeter, are substituted with glass windows on these floors. Nonlinear dynamic analyses of unbraced (UF), infilled (IF) and damped braced infilled (DBIF) frames are carried out considering sets of artificially generated and real ground motions, whose response spectra match those adopted by NTC08 for different performance levels. To this end, r.c. frame members are idealized by a two-component model, assuming a bilinear moment–curvature law whose ultimate bending moment depends on the axial load, while the response of an HYDB is idealized by a bilinear law, to prevent buckling. Finally, masonry infills are represented as equivalent diagonal struts, reacting only in compression, with an elastic–brittle linear law.  相似文献   

9.
As the forward directivity and fling effect characteristics of the near-fault ground motions, seismic response of structures in the near field of a rupturing fault can be significantly different from those observed in the far field. The unique characteristics of the near-fault ground motions can cause considerable damage during an earthquake. This paper presents results of a study aimed at evaluating the near-fault and far-fault ground motion effects on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 10 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The Koyna gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records. The Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is employed in nonlinear analysis. Nonlinear dynamic response and seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. Both local and global damage indices are established as the response parameters. The results obtained from the analyses of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the near-fault ground motions, which have significant influence on the dynamic response of dam–reservoir–foundation systems, have the potential to cause more severe damage to the dam body than far-fault ground motions.  相似文献   

10.
It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-fault factors, based on the collected world-widely free-site records of near-fault earthquakes ground motions classified by earthquake magnitude and site condition, the attenuation relationship expressions of the acceleration spectrum demand at the key points within the long period and moderate period were established in term of the earthquake magnitude and the site condition. Furthermore, the near-fault factors’ expressions about the earthquake magnitude and the fault distance were deduced for the area lack of near-fault strong earthquake records. Based on the current Chinese Building Seismic Design Code, the near-fault effect factors and the modified design spectral curves, which were valuable for the seismic design, were proposed to analyze the seismic response of structures.  相似文献   

11.
陈波  谢俊举  温增平 《地震学报》2013,35(2):250-261
研究了具有不同自振特性的建筑结构在近断层速度脉冲型及非速度脉冲型地震动作用下的结构层间变形分布,揭示了近断层速度脉冲对工程结构地震响应的特殊影响. 从汶川MS8.0地震近断层强震记录中选取两组典型速度脉冲型记录和非脉冲型记录, 根据确定的目标地震动强度水平,利用时域叠加小波函数法对选择的强震记录进行调整, 使之与目标地震动水平对应的加速度反应谱保持一致, 以此作为结构地震反应分析的地震动输入. 选取具有不同自振特征的3层、11层和20层典型钢筋混凝土框架结构, 建立有限元分析模型, 分别计算在速度脉冲型与非速度脉冲型记录作用下这些结构层间变形分布. 研究表明,速度脉冲型记录与非速度脉冲型记录作用下结构层间变形有明显差异, 且与结构自振特征有关.就低层结构的层间变形而言, 非速度脉冲型记录的影响较速度脉冲型记录的影响大. 随着结构自振周期的增加, 高阶振型的影响更加明显. 与非速度脉冲型记录相比,速度脉冲型记录的结构层间位移反应中值及离散程度较大. 速度脉冲型记录更容易激发高层结构的高阶振型, 产生较大的层间位移反应. 非速度脉冲型记录对中低层结构层间变形影响较大.因此, 在开展近断层结构地震影响评价时, 应考虑近断层速度脉冲的影响.   相似文献   

12.
A displacement-based design (DBD) procedure aiming to proportion hysteretic damped braces (HYDBs) in order to attain, for a specific level of seismic intensity, a designated performance level of a structure is proposed for the retrofitting of framed buildings. A key step for the reliability of the DBD procedure is the selection of the equivalent viscous damping in order to account for the energy dissipated by the damped braced frame. In this paper, expressions of the equivalent damping are obtained considering the energy dissipated by the HYDBs and the framed structure. To this end, dynamic analyses of an equivalent single degree of freedom system, whose response is idealized by a trilinear model, are carried out considering real accelerograms matching, on the average, Eurocode 8 (EC8) response spectrum for a medium subsoil class. Then, a three-storey reinforced concrete (r.c.) framed structure of a school building, designed in a medium-risk seismic region according to the Italian code in force in 1975, is supposed as retrofitted as if in a high-risk seismic region of the current seismic code (NTC08) by the insertion of HYDBs. Nonlinear static analyses are carried out to evaluate the vulnerability of the primary structure, characterized by the lack of interior girders along the floor slab direction, and to select optimal properties of the HYDBs. The effectiveness of the retrofitting solutions is checked referring to nonlinear dynamic analyses, considering artificially generated accelerograms whose response spectra match those adopted by NTC08 for the earthquake design levels corresponding to the serviceability and ultimate limit states.  相似文献   

13.
Seismic response analysis of an irregular base isolated building   总被引:3,自引:0,他引:3  
This paper assesses the reliability of code-compliant linear and nonlinear dynamic analyses for irregular buildings with base isolation system (BIS). Comprehensive analyses are carried out for a case study comprising a large reinforced concrete multi-storey framed hospital with 327 high-damping rubber bearings. Spectral and time history (linear and nonlinear) analyses were performed on the three-dimensional (3D) finite element model (FEM) of the structure; simplified analyses were also conducted on single-degree-of-freedom (SDOF) systems. It is found that, at damageability limit state, the values of maximum interstorey drifts (d/h) computed with spectral analyses on the three-dimensional FEM range between 1/6 and 1/10 of the code limit (d/h = 0.33%); thus more stringent code limits should be required for buildings with BISs. The maximum floor acceleration is reduced by about 70% with respect to the ground acceleration (free field site); the acceleration profile is uniform along the height of the multi-storey frame. Threshold values of floor accelerations to assess the seismic performance of equipments in buildings with BIS are lacking. At ultimate limit state (ULS), spectral analyses provide values of actions and deformations that are less conservative than those derived through time history analyses. To perform reliable dynamic analyses of base isolated buildings it is crucial to select natural earthquake ground motions compliant with the fundamental period of vibration of the structural system. Nevertheless, it is not straightforward to select adequate natural strong motions in the catalogues available world-wide; buildings incorporating BISs possess periods of vibration which are generally higher than 2.0 s. As a result, distant and high-magnitude earthquakes are effective for base isolated buildings; nevertheless, such earthquakes are scarce in the seismic databases. The outcomes of the present study also demonstrate that simplified linear analyses tend to provide estimates of the response quantities, displacements of base isolators and base shear of the superstructure, which can be reliably employed at preliminary design stage. Spectral analysis results of the 3D model tend to match those of the SDOF systems, even for irregular superstructure, provided that modal mass participating ratios are greater than 85–90%. The results of spectral analyses on both SDOF and three-dimensional FEM envelope the outcomes of linear time histories.  相似文献   

14.
根据最近几次的近断层地震观测记录研究显示,在现行结构抗震设计规范中很少考虑近断层效应的影响,对于缺乏近断层强震观测资料地区,抗震设计规范的改进方法及近断层效应的设计参数还没有统一结论. 本文基于UBC97近断层因子设计理念, 在收集世界范围内近断层观测记录的基础上,按场地和震级进行分类,建立了中长周期关键点处的加速度谱需求的衰减关系式,推导给出了缺乏近断层观测资料地区近断层影响因子的震级和断层距的关系式. 并以我国现行的建筑抗震设计规范为基础,建议了近断层影响因子的参考取值和修正后的反应谱曲线,为我国结构抗震设计提供了参考.   相似文献   

15.
This paper presents a methodology for constructing seismic design spectra in near-fault regions.By analyzing the characteristics of near-fault pulse-type ground motions,an equivalent pulse model is proposed,which can well represent the characteristics of the near-fault forward-directivity and fling-step pulse-type ground motions.The normalized horizontal seismic design spectra for near-fault regions are presented using recorded near-fault pulse-type ground motions and equivalent pulse-type ground motions,which are derived based on the equivalent pulse model coupled with ground motion parameter attenuation relations.The normalized vertical seismic design spectra for near-fault regions are obtained by scaling the corresponding horizontal spectra with the vertical-to-horizontal acceleration spectral ratios of near-fault pulse-type ground motions.The proposed seismic design spectra appear to have relatively small dispersion in a statistical sense.The seismic design spectra for both horizontal and vertical directions can provide alternative spectral shapes for seismic design codes.  相似文献   

16.
近断层地震动中长周期、短持时和高能量的加速度脉冲将对高层摩擦摆基础隔震结构的减震性能产生不利影响,考虑土-结构相互作用(SSI效应)后的隔震结构将产生动力耦合效应,可能进一步放大隔震结构地震响应。为此,通过一幢框架-核心筒高层摩擦摆基础隔震结构的非线性地震响应分析,考察近断层脉冲型地震动作用下框架-核心筒摩擦摆基础隔震结构的层间位移角、楼层加速度和隔震层变形等响应规律,揭示隔震体系的损伤机理。基于集总参数SR (sway-rocking)模型,分析不同场地类别与不同地震动类型对隔震体系动力响应影响规律。结果表明:高层摩擦摆基础隔震结构在近断层脉冲型地震动作用下的减震效果相比普通地震动减震效果变差,楼层剪力、层间位移角和隔震层变形等超越普通地震动作用下的1.5倍;对于Ⅲ和Ⅳ类场地类别,考虑SSI效应使隔震结构的地震响应进一步放大,弹塑性层间位移角随着土质变软增大尤为明显。  相似文献   

17.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

18.
通过对隔震结构进行非线性动力响应分析,分别研究地震动参数和支座参数对结构地震响应的影响。首先,建立铅芯橡胶支座基础隔震结构的非线性运动方程;然后,以人工合成脉冲型地震动作为输入,运用MATLAB进行编程并求解结构在脉冲型地震动作用下的地震响应;最后,分别研究速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比对隔震支座最大位移和上部结构层间位移的影响。研究结果表明,脉冲周期对结构地震响应影响很大,在进行隔震设计时应使结构自振周期远离脉冲周期;支座刚度比对结构地震响应影响较大,在进行支座选型时应重点关注;支座屈服力对支座位移的影响显著,屈服力越大,支座位移越小。  相似文献   

19.
Ground motions with forward-directivity effect in the near-fault region are obviously different from ordinary far-field ground motions. Design spectral models for this kind of motions have been proposed by correlating sim-ple pulses with parameters attenuation relationships in a previous study of the authors. To further test the applica-bility of the established design spectral model, we analyze ground motion pseudo-velocity response spectra (PVS), normalized pseudo-velocity spectra (NPVS) and bi-normalized pseudo-velocity spectra (BNPVS) of 53 typical near-fault forward-directivity ground motions. It is found that BNPVS not only has more salient features to reflect the difference between soil and rock sites, but also has less scattering to reveal the nature of forward-directivity motions. And then, BNPVS is used for prediction of design spectra accounting for the influence of site conditions, and the constructed design spectra are compared with those spectra established previously. It is concluded that site condition can heavily affect ground motions, buildings on rock can be even more dangerous than those on soil sites, in particular for ordinary buildings with short to middle vibration periods. Finally, pulse models are also suggested for structural analyses in the near-fault region.  相似文献   

20.
The objective of this paper is to describe the lessons learned and actions that have been taken related to the seismic design of bridge structures after the Chi-Chi, Taiwan earthquake. Much variable near-fault ground motion data was collected from the rupture of Chelungpu fault during the Chi-Chi earthquake, allowing the seismic response of bridge structures subjected to these near-fault ground motions to be carefully examined. To study the near-fault ground motion effect on bridge seismic design codes, a two-level seismic design of bridge structures was developed and implemented. This design code reflects the near-fault factors in the seismic design forces. Finally, a risk assessment methodology, based on bridge vulnerability, is also developed to assist in decisions for reducing seismic risk due to failure of bridges. Director of Center for Research on Earthquake Engineering. Supported by: the Science Council, Chinese Taipei, under grant no. SC 90-2211-E-002-028.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号