首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

A fractional vegetation cover (FVC) estimation method incorporating a vegetation growth model and a radiative transfer model was previously developed, which was suitable for FVC estimation in homogeneous areas because the finer-resolution pixels corresponding to one coarse-resolution FVC pixel were all assumed to have the same vegetation growth model. However, this assumption does not hold over heterogeneous areas, meaning that the method cannot be applied to large regions. Therefore, this study proposes a finer spatial resolution FVC estimation method applicable to heterogeneous areas using Landsat 8 Operational Land Imager reflectance data and Global LAnd Surface Satellite (GLASS) FVC product. The FVC product was first decomposed according to the normalized difference vegetation index from the Landsat 8 OLI data. Then, independent dynamic vegetation models were built for each finer-resolution pixel. Finally, the dynamic vegetation model and a radiative transfer model were combined to estimate FVC at the Landsat 8 scale. Validation results indicated that the proposed method (R2?=?0.7757, RMSE?=?0.0881) performed better than either the previous method (R2?=?0.7038, RMSE?=?0.1125) or a commonly used method involving look-up table inversions of the PROSAIL model (R2?=?0.7457, RMSE?=?0.1249).  相似文献   

2.
The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.  相似文献   

3.
ABSTRACT

The effect of terrain shadow, including the self and cast shadows, is one of the main obstacles for accurate retrieval of vegetation parameters by remote sensing in rugged terrains. A shadow- eliminated vegetation index (SEVI) was developed, which was computed from only red and near-infrared top-of-atmosphere reflectance without other heterogeneous data and topographic correction. After introduction of the conceptual model and feature analysis of conventional wavebands, the SEVI was constructed by ratio vegetation index (RVI), shadow vegetation index (SVI) and adjustment factor (f (Δ)). Then three methods were used to validate the SEVI accuracy in elimination of terrain shadow effects, including relative error analysis, correlation analysis between the cosine of solar incidence angle (cosi) and vegetation indices, and comparison analysis between SEVI and conventional vegetation indices with topographic correction. The validation results based on 532 samples showed that the SEVI relative errors for self and cast shadows were 4.32% and 1.51% respectively. The coefficient of determination between cosi and SEVI was only 0.032 and the coefficient of variation (std/mean) for SEVI was 12.59%. The results indicate that the proposed SEVI effectively eliminated the effect of terrain shadows and achieved similar or better results than conventional vegetation indices with topographic correction.  相似文献   

4.
Accurate and up-to-date information on forest dendrometric traits, such as above ground biomass is important in understanding the contribution of terrestrial ecosystems to the regulation of atmsopheric carbon, especially in the face of global environmental change. Besides, dendrometric traits information is critical in assessing the healthy and the spatial planning of fragile ecosystems, such as the savanna dry forests. The aim of this work was to test whether red-edge spectral data derived from WorldView-2 multispectral imagery improve biomass estimation in savanna dry forests. The results of this study have shown that biomass estimation using all Worldview-2 raw spectral bands without the red-edge band yielded low estimation accuracies (R2 of 0.67 and a RMSE-CV of 2.2 t ha?1) when compared to when the red-edge band was included as a co-variate (R2 of 0.73 and a RMSE-CV of 2.04 t ha?1). Also, similar results were obseved when all WorldView-2 vegetation indices (without the red-edge computed ones), producing slightly low accuracies (R2 of about 0.67 and a RMSE-CV of 2.20 t ha?1), when compared to those obtained using all indices and RE-computed indices(R2 of 0.76 and a RMSE-CV of 1.88 t ha?1). Overall, the findings of this work have demontrated the potential and importance of strategically positioned bands, such as the red-edge band in the optimal estimation of indigeonus forest biomass. These results underscores the need to shift towards embracing sensors with unique and strategeically positioned bands, such as the forthcoming Sentinel 2 MSI and HysPIRI which have a global footprint.  相似文献   

5.
Soil erosion is the most important factor in land degradation and influences desertification in semi-arid areas. A comprehensive methodology that integrates revised universal soil loss equation (RUSLE) model and GIS was adopted to determine the soil erosion risk (SER) in semi-arid Aseer region, Saudi Arabia. Geoenvironmental factors viz. rainfall (R), soil erodibility (K), slope (LS), cover management and practice factors were computed to determine their effects on average annual soil loss. The high potential soil erosion, resulting from high denuded slope, devoid of vegetation cover and high intensity rainfall, is located towards the north western part of the study area. The analysis is investigated that the SER over the vegetation cover including dense vegetation, sparse vegetation and bushes increases with the higher altitude and higher slope angle. The erosion maps generated with RUSLE integrated with GIS can serve as effective inputs in deriving strategies for land planning/management in the environmentally sensitive mountainous areas.  相似文献   

6.
Abstract

River basin assessment is crucial for water management and to address the watershed issues. So, an integrated river basin management and assessment model using morphometric assessment, remote sensing, GIS and SWAT model was envisaged and applied to Kaddam river basin, Telangana state, India. Morphometric results showed high drainage density ranging from 2.19 to 5.5?km2/km, with elongated fan shape having elongation ratio of 0.60–0.75 with sparse vegetation and high relief. Land use change assessment showed that 265.26?km2 of forest land is converted into irrigated land and has increased sediment yields in watersheds. The calibration (r 2?=?0.74, NSE?=?0.84) and validation (r 2?=?0.72, NSE?=?0.84) of SWAT model showed that simulated and observed results were in agreement and in recommended ranges. The SWAT simulations were used to compute mean annual water and sediment yield from 1997 to 2012, along with morphometric results to categorize critical watersheds and conservation structures were proposed accordingly.  相似文献   

7.
ABSTRACT

In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a ‘bridge’. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R2?=?0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.  相似文献   

8.
Efforts to reforest parts of the Kordofan Province of Sudan are receiving support from international development agencies. These efforts include planning and implementing reforestation activities that require the collection of natural resources and socioeconomic data, and the preparation of base maps. A combination of remote sensing, geographic information system and global positioning systems procedures are used in this study to meet these requirements.

Remote sensing techniques were used to provide base maps and to guide the compilation of vegetation resources maps. These techniques provided a rapid and efficient method for documenting available resources. Pocket‐sized global positioning system units were used to establish the location of field data collected for mapping and resource analysis. A microcomputer data management system tabulated and displayed the field data. The resulting system for data analysis, management, and planning has been adopted for the mapping and inventory of the Gum Belt of Sudan.  相似文献   

9.
Abstract

The rapid and accurate grasp of changes in residences is crucial for urban planning and urbanisation. However, the traditional methods for extracting residences exists several problems, which lead to inaccurate extraction results. In this study, the Landsat image is used to establish a new method for extracting the residences quickly and accurately. The specific steps are as follows: (1) We calculate surface albedo to exclude the interference of waters and shadows; (2) Using single-band threshold method, we eliminate the interference of shadows; (3) Normalized Difference Vegetation Index is calculated to exclude the effects of vegetation; (4) Roads are removed by calculating the shape index. Verification shows that the accuracy of this extraction method is 92.81%, which is more accurate than the traditional methods and solves the problems existed in the traditional methods. This novel method is a new reference for other land cover research on the technical aspect.  相似文献   

10.
Abstract

The purpose of this paper is to develop Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modelling and Mapping Studies (GIMMS) Normalised Difference Vegetation Index (NDVI; AVHRR GIMMS NDVI for short) based fraction of absorbed photosynthetically active radiation (FPAR) from 1982 to 2006 and focus on their seasonal and spatial patterns analysis. The available relationship between FPAR and NDVI was used to calculate FPAR values from 1982 to 2006 and validated by Moderate-resolution Imaging Spectroradiometer (MODIS) FPAR product. Then, the seasonal dynamic patterns were analysed, as well as the driving force of climatic factors. Results showed that there was an agreement between FPAR values from this study and those of the MODIS product in seasonal dynamic, and the spatial patterns of FPAR vary with vegetation type distribution and seasonal cycles. The time series of average FPAR revealed a strong seasonal variation, regular periodic variations from January 1982 to December 2006, and opposite patterns between the Northern and Southern Hemispheres. Evergreen vegetation FPAR values were close to 0.7. A clear single-peak curve was observed between 30°N and 80°N – an area covered by deciduous vegetation. In the Southern Hemisphere, the time series fluctuations of FPAR averaged by 0.7° latitude zones were not clear compared to those in the Northern Hemisphere. A significant positive correlation (P<0.01) was observed between the seasonal variation of temperature and precipitation and FPAR over most other global meteorological sites.  相似文献   

11.
Abstract

This study aims to develop an approach to characterize cropland drought conditions in El Salvador, Central America. The data were processed for 2016–2017 through three main steps: (1) reconstructing MODIS land-surface temperature (LST), (2) Landsat-MODIS data fusion and (3) drought delineation using the temperature vegetation dryness index (TVDI). The results of LST reconstruction using the random forests (RF) indicated the median RMSE value of 0.5?°C. The fusion results achieved from the STARFM compared with the reference Landsat data revealed close agreement with the correlation coefficient (r) values higher than 0.84. The TVDI results verified with that from the reference Landsat data indicated r values of 0.85 and 0.75 for 2016 and 2017, respectively. The larger very dry area was observed for the 2016 primera season due to prolonged droughts. Approximately 11.5% and 10.7% of croplands were, respectively, associated with very dry moisture condition in the 2016 and 2017 primera seasons.  相似文献   

12.
Abstract

Riparian vegetation has a fundamental influence on the biological, chemical and physical nature of rivers. The quantification of riparian landcover is now recognised as being essential to the holistic study of the ecosystem characteristics of rivers. Medium resolution satellite imagery is now commonly used as an efficient and cost effective method for mapping vegetation cover; however such data often lack the resolution to provide accurate information about vegetation cover within riparian corridors. To assess this, we measure the accuracy of SPOT multispectral satellite imagery for classification of riparian vegetation along the Taieri River in New Zealand. In this paper, we discuss different sampling strategies for the classification of riparian zones. We conclude that SPOT multispectral imagery requires considerable interpretative analysis before being adequate to produce sufficiently detailed maps of riparian vegetation required for use in stream ecological research.  相似文献   

13.
Gonipterus scutellatus outbreaks may severely defoliate Eucalyptus plantations growing in South Africa. Therefore, detecting and mapping the severity and extent of G. scutellatus defoliation is essential for the deployment of suppressive measures. In this study, we tested the utility of spatially optimized vegetation indices and an artificial neural network in detecting and mapping G. scutellatus-induced vegetation defoliation, using both visual estimates of percentage defoliation and optical leaf area index (LAI) measures. We tested both field methods to determine which of the two were more superior in detecting vegetation defoliation using optimized vegetation indices. These indices were computed from a WorldView-2 pan-sharpened image, which is characterized with a 0.5-m spatial resolution and eight spectral bands. The indices were resampled to spatial resolutions that best represented levels of G. scutellatus-induced defoliation. The results showed that levels of defoliation, using visual percentage estimates, were detected with an R2 of 0.83 and an RMSE of 1.55 (2.97% of the mean measured defoliation), based on an independent test data-set. Similarly, LAI subjected to defoliation was detected with an R2 of 0.80 and an RMSE of 0.03 (0.06% of the mean measured LAI), based on an independent test data-set. Therefore, the results indicate that the cheaper less-complicated visual percentage estimates of defoliation was the more superior model of the two. A sensitivity analysis revealed that NDRE, MCARI2 and ARI ranked as the top three most influential indices in developing both percentage defoliation and LAI models. Furthermore, we compared the optimized model with a model developed using the original image spatial resolution. The results indicated that the optimized model performed better than the original 0.5-m spatial resolution model. Overall, the study showed that vegetation indices optimized to specific spatial resolutions can effectively detect and map levels of G. scutellatus-induced defoliation and LAI subjected to defoliation.  相似文献   

14.
Estimating tropical biomass is critical for establishment of conservation inventories and landscape monitoring. However, monitoring biomass in a complex and dynamic environment using traditional methods is challenging. Recently, biomass estimates based on remotely sensed data and ecological variables have shown great potential. The present study explored the utility of remotely sensed data and topo-edaphic factors to improve biomass estimation in the Eastern Arc Mountains of Tanzania. Twenty-nine vegetation indices were calculated from RapidEye data, while topo-edaphic factors were taken from field measurements. Results showed that using topo-edaphic variables or vegetation indices, biomass could be predicted with an R2 of 0.4. A combination of topo-edaphic variables and vegetation indices improved the prediction accuracy to an R2 of 0.6. Results further showed a decrease in biomass estimates from 1162 ton ha?1 in 1980 to 285.38 ton ha?1 in 2012. This study demonstrates the value of combining remotely sensed data with topo-edaphic variables in biomass estimation.  相似文献   

15.
Understanding factors affecting the behaviour and movement patterns of the African elephant is important for wildlife conservation, especially in increasingly human-dominated savanna landscapes. Currently, knowledge on how landscape fragmentation and vegetation productivity affect elephant speed of movement remains poorly understood. In this study, we tested whether landscape fragmentation and vegetation productivity explains elephant speed of movement in the Amboseli ecosystem in Kenya. We used GPS collar data from five elephants to quantify elephant speed of movement for three seasons (wet, dry and transitional). We then used multiple regression to model the relationship between speed of movement and landscape fragmentation, as well as vegetation productivity for each season. Results of this study demonstrate that landscape fragmentation and vegetation productivity predicted elephant speed of movement poorly (R2 < 0.4) when used as solitary covariates. However, a combination of the covariates significantly (p < 0.05) explained variance in elephant speed of movement with improved R2 values of 0.69, 0.45, 0.47 for wet, transition and dry seasons, respectively.  相似文献   

16.
ABSTRACT

This paper provides a study of the changes in land use in urban environments in two cities, Wuhan, China and western Sydney in Australia. Since mixed pixels are a characteristic of medium resolution images such as Landsat, when used for the classification of urban areas, due to changes in urban ground cover within a pixel, Multiple Endmember Spectral Mixture Analysis (MESMA) together with Super-Resolution Mapping (SRM) are employed to derive class fractions to generate classification maps at a higher spatial resolution using an Artificial Neural Network (ANN) predicted Wavelet method. Landsat images over the two cities for a 30-year period, are classified in terms of vegetation, buildings, soil and water. The classifications are then processed using Indifrag software to assess the levels of fragmentation caused by changes in the areas of buildings, vegetation, water and soil over the 30 years. The extents of fragmentation of vegetation, buildings, water and soil for the two cities are compared, while the percentages of vegetation are compared with recommended percentages of green space for urban areas for the benefit of health and well-being of inhabitants. Changes in Ecosystem Service Values (ESVs) resulting from the urbanization have been assessed for Wuhan and Sydney. The UN Sustainable Development Goals (SDG) for urban areas are being assessed by researchers to better understand how to achieve the sustainability of cities.  相似文献   

17.
陆地总初级生产力遥感估算精度分析   总被引:1,自引:0,他引:1  
林尚荣  李静  柳钦火 《遥感学报》2018,22(2):234-252
准确估算陆地总初级生产力GPP(Gross Primary Productivity)数值对碳循环过程模拟有重要影响。本文介绍了多种基于植被指数以及基于光能利用率的遥感GPP算法,综述了不同算法在其研究区域的估算精度;并分析了MODIS/GPP以及BESS/GPP两种遥感GPP产品在不同植被类型的估算精度。通过对比全球碳通量站网络GPP数据表明,MODIS/GPP产品在全球估算结果具显著相关性(R2=0.59)及中等标准误差(RMSE=2.86 g C/m2/day),估算精度较高的植被类型有落叶阔叶林,草地等;估算精度较低类型包括常绿阔叶林,稀树草原等。本文对GPP产品中存在的不确定性进行分析,通过综述前人研究中发现的遥感估算GPP方法中存在的问题,指出可能的提高卫星遥感GPP产品估算精度的方法及发展趋势。  相似文献   

18.
Crop classification is needed to understand the physiological and climatic requirement of different crops. Kernel-based support vector machines, maximum likelihood and normalised difference vegetation index classification schemes are attempted to evaluate their performances towards crop classification. The linear imaging self-scanning (LISS-IV) multi-spectral sensor data was evaluated for the classification of crop types such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, pea, sugarcane and other crops and non-crop such as water, sand, built up, fallow land, sparse vegetation and dense vegetation. To determine the spectral separability among crop types, the M-statistic and Jeffries–Matusita (JM) distance methods have been utilised. The results were statistically analysed and compared using Z-test and χ2-test. Statistical analysis showed that the accuracy results using SVMs with polynomial of degrees 5 and 6 were not significantly different and found better than the other classification algorithms.  相似文献   

19.
ABSTRACT

Mixed use has been extensively applied as an urban planning principle and hinders the study of single urban functions. To address this problem, it is worth decomposing the mixed use. Inspired by the concept of spectral unmixing in remote sensing applications, this paper proposes a framework for mixed-use decomposition based on big geo-data. Mixed-use decomposition in terms of human activities differs from traditional land use research, and it is more reasonable to infer the actual urban function of land. The framework consists of four steps, namely temporal activity signature extraction, urban function base curve extraction, mixed-use decomposition, and result validation. First, the temporal activity signatures (TASs) of each zone are extracted as the proxy of human activity patterns. Second, the diurnal TASs of routine activities are extracted as urban function base curves (i.e. endmembers). Third, a linear decomposition model is used to decompose the mixed use and obtain multiple results (urban function composition, dynamic activity proportions, and the mixing index). Finally, result validation strategies are concluded. This framework offers method extensibility and has few requirements for the input data. It is validated by means of a case study of Beijing, based on a social media check-in dataset.  相似文献   

20.
及时监测干旱与半干旱区光合/非光合植被覆盖度时空变化,可以为指导荒漠化防治工程及植被衰退机制研究提供重要信息。本文以甘肃民勤典型植被白刺灌丛为研究对象,通过地面控制性光谱实验获取混合光谱、端元光谱与丰度信息,开展线性与非线性光谱混合模型(包括核函数非线性和双线性混合模型)估算光合和非光合植被覆盖度的对比研究,采用全限制最小二乘法进行模型解混,分别获取各样本数据中各类端元丰度及其精度信息,通过模型分解的均方根误差(RMSE)与地面验证精度确定用于光合和非光合植被覆盖度估算的最佳光谱混合模型,其中参考端元丰度采用神经网络(NNC)分类算法对数字影像进行分类获取。结果表明:(1)引入阴影端元的四端元模型相对于传统的三端元模型(光合/非光合植被与裸土)能有效提高光谱解混的精度,并提高光合和非光合植被覆盖度估算精度;(2)对白刺灌丛来说,光合植被、非光合植被、裸土及阴影间多重散射混合效应存在,但混合效应不够显著;考虑非线性参数的核函数非线性光谱混合模型表现略低于线性光谱混合模型,因此非线性光谱混合模型在估算白刺灌丛光合和非光合植被覆盖度时相对于线性光谱混合模型没有明显优势;(3)基于光合/非光合植被、裸土与阴影四端元的线性光谱混合模型可以实现白刺灌丛光合和非光合植被覆盖度的准确估算,光合植被覆盖度估算RMSE为0.11 77,非光合植被覆盖度估算RMSE为0.0835。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号