首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mike Solomon   《Ore Geology Reviews》2008,33(3-4):329-351
The Ordovician Zn–Pb–Cu massive sulphide ore deposits of the Bathurst mining camp share many features with those of the Devonian/Carboniferous Iberian pyrite belt, particularly the tendency to large size (tonnage and metal content); shape, as far as can be determined after allowing for deformation; metal content, particularly Fe/Cu, Pb/Zn and Sn; mineral assemblages (pyrite + arsenopyrite ± pyrrhotite and lack or rarity of sulphates); sulphide textures (particularly framboidal pyrite); lack of chimney structures and rubble mounds; irregular metal or mineral zoning; and the low degree of zone refining compared to Hokuroku ores. The major differences between the provinces are the lack of vent complexes and the presence of Sn–Cu ores in the Iberian pyrite belt. There are also similarities in the geological setting of the two camps: both lie within continental terranes undergoing arc-continent and continent–continent collision, and in each case massive sulphide mineralisation followed ophiolite obduction; the ore deposits are associated with bimodal volcanic rocks derived from MORB and continental crust and marine shales; and mineralisation was locally accompanied or followed by deposition of iron formations.Fluid inclusion data from veins in stockworks from at least six of the Iberian massive sulphide deposits point to sulphide deposition having taken place in basins containing mostly spent saline, ore-forming fluids (brine pools), and it is suggested that most of the major features of the Bathurst deposits can be explained by similar processes. The proposed model is largely independent of ocean sulphate and O2 content, whereas low values of each are requisites for the current, spreading-plume model of sulphide deposition in the Bathurst camp.  相似文献   

2.
The stringer zones and commonly the interaction zone at the base of the massive sulphide mounds in the Iberian Pyrite Belt contain bismuth and cobalt minerals that are not found in the overlying massive sulphides. These are fairly rare cobalt sulphoarsenides (cobaltite, alloclasite, galucodot) that were formed at the beginning of the massive sulphide genesis, and fairly common bismuth sulphides (bismuthinite, hammarite, wittichenite, cosalite, kobellite, joseite, etc.), including species rare at world scale (nuffieldite, giessenite, jaskolskiite) that were deposited from last stage high-temperature (> 300 °C) copper-bearing fluids containing Bi (Te, Se). The last stage fluids precipitated chalcopyrite containing Cu, Bi, Te, (Se) sulphosalts at the base of the sulphide mound to form a high cupriferous zone. Their interaction with the massive sulphides is reflected by the formation of an exchange zone, a few metres thick, showing chalcopyrite disease textures, at the base of the mound; this zone forms the upper limit of potentially economic copper enrichment and of bismuth minerals. Gold is undoubtedly in part, if not totally, related to this last phase. The bismuth concentrations being equivalent in the massive sulphides and the stringers, the presence of bismuth minerals in the stringer zones results from high-temperature conditions combined with a rarity of galena, which impedes absorption of available Bi. The distribution of these bismuth minerals provides a basic mineralogical zoning in the stringer zone, with a deep, low-aS2 zone containing native bismuth and tellurides and a shallow, higher-aS2 zone in contact with the massive ore sensu stricto and containing complex bismuth sulphides. These results make it possible to distinguish between sulphide veinlets belonging to stockwork zones of massive orebodies and veinlets of an ambiguous nature, and provide mineralogical criteria for the proximity of copper-rich zones. They enrich the very complex mineralogy of the Iberian Pyrite Belt.  相似文献   

3.
Central Jebilet (Moroccan Variscan Belt) hosts several Cu and Pb–Zn massive sulphide deposits that are associated with a suite of gabbroic and microgranitic, tholeiitic to alkaline, intrusions emplaced 330 Ma ago. The intrusions and ore bodies form structural lineaments within marine Visean shales that are affected by very low to low-grade post-Visean metamorphism and contemporaneous shortening accompanied by the development of conjugate ductile to brittle shear zones. The ductile shear zones are localised in thermally softened aureoles around magmatic intrusions, while brittle deformation is common far from the intrusions. The intrusions have induced a contact metamorphism that reaches the hornblende hornfels facies, and their emplacement was accompanied by hydrothermal activity that leached base metals from the felsic intrusions.The massive sulphide deposits consist of steeply dipping elongate lenses that are located in shear zones 1–1.5 km away from the intrusions. They are dominated by pyrrhotite (up to 90%), sphalerite, galena, chalcopyrite, pyrite and arsenopyrite forming a mylonitic texture. Their wall rocks are altered to syntectonic mineral assemblages similar to those found in the alteration zones associated with the magmatic intrusions. The massive sulphide deposits located near the felsic intrusions are rich in lead and zinc compared to those located near the mafic intrusions, which are copper deposits. These relationships indicate that the whole Central Jebilet hydrothermal system could be described in terms of a lateral secretion of base metals from source zones (i.e. bimodal intrusions) to discharge zones (i.e. the Jebilet sulphide deposits). The metapelites in the contact metamorphic zone around felsic intrusions contain zincian ilmenite that was probably related to interaction of the host rocks with chlorine-rich fluid carrying zinc and other metals leached from the microgranites.  相似文献   

4.
Massive and stockwork Fe-Cu-Zn (Cyprus type) sulphide deposits in the upper parts of ophiolite complexes represent hydrothermal mineralization at ancient accretionary plate boundaries. These deposits are probable metallogenic analogues of the polymetallic sulphide deposits recently discovered along modern oceanic spreading centres. Genetic models for these deposits suggest that mineralization results from large-scale circulation of sea-water through basaltic basement along the tectonically active axis of spreading, a zone of high heat flow. The high geothermal gradient above 1 to 2 km deep magma chambers emplaced below the ridge axis drives the convective circulation cell. Cold oxidizing sea-water penetrating the crust on the ridge flanks becomes heated and evolves into a highly reduced somewhat acidic hydrothermal solvent during interaction with basaltic wall-rock. Depending on the temperature and water/rock ratio, this fluid is capable of leaching and transporting iron, manganese, and base metals; dissolved sea-water sulphate is reduced to sulphide. At the ridge axis, the buoyant hydrothermal fluid rises through permeable wall-rocks, and fluid flow may be focussed along deep-seated fractures related to extensional tectonic processes. Metal sulphides are precipitated along channelways as the ascending fluid undergoes adiabatic expansion and then further cooling during mixing with ambient sub-sea-floor water. Vigorous fluid flow results in venting of reduced fluid at the sea-floor/sea-water interface and deposition of massive sulphide. A comparison of sulphide mineralization and wall-rock alteration in ancient and modern spreading centre environments supports this genetic concept.Massive sulphide deposits in ophiolites generally occur in clusters of closely spaced (< 1–5 km) deposits. Individual deposits are a composite of syngenetic massive sulphide and underlying epigenetic stockwork-vein mineralization. The massive sulphide occurs as concordant tabular, lenticular, or saucer-shaped bodies in pillow lavas and pillow-lava breccia; massive lava flows, hyalcoclastite, tuff, and bedded radolarian chert are less commonly associated rock types. These massive sulphide zones are as much as 700 m long, 200 m wide, and 50 m thick. The pipe-, funnel-, or keel-shaped stockwork zone may extend to a dehpth of 1 km in the sheeted-dike complex. Several deposits in Cyprus are confined to grabens or the hanging wall of premineralization normal faults.Polymetallic massive sulphide deposits and active hydrothermal vents at medium- to fast-rate spreading centres (the East Pacific Rise at lat. 21°N, the Galapagos Spreading Centre at long. 86°W, the Juan de Fuca Ridge at lat. 45°N., and the Southern Trough of Guaymas Basin, Gulf of California) have interdeposit spacings on a scale of tens or hundreds of metres, and are spatially associated with structural ridges or grabens within the narrow (< 5 km) axial valleys of the rift zones. Although the most common substrate for massive sulphide accumulations is stacked sequences of pillow basalt and sheet flows, the sea-floor underlying numerous deposits in Guaymas Basin consists of diatomaceous ooze and terrigenous clastic sediment that is intruded by diabase sills. Mound-like massive sulphide deposits, as much as 30 m wide and 5m high, occur over actively discharging vents on the East Pacific Rise, and many of these deposits serve as the base for narrow chimneys and spires of equal or greater height. Sulphides on the Juan de Fuca Ridge appear to form more widespread blanket deposits in the shallow axial-valley depression. The largest deposit found to date, along the axial ridge of the Galapagos Spreading Centre, has a tabular form and a length of 1000 m, a width of 200 m, and a height of 30 m.The sulphide assemblage in both massive and vein mineralization in Cyprus type deposits is characteristically simple: abundant pyrite or, less commonly, pyrrhotite accompanied by minor marcasite, chalcopyrite, and sphalerite. With few exceptions, the composition of massive sulphide ranges from 0.3 to 5 wt. % Cu, from 0.1 to 3 wt. % Zn, from 0.5 to 30 ppm Au, and from 1 to 50 ppm Ag. The only common gangue minerals — quartz, chlorite, calcite, and gypsum generally make up less than 10 percent of the massive zone.Sulphide assemblages in massive sulphide samples recovered from the Juan de Fuca Ridge (abundant sphalerite, wurtzite, and pyrite; minor marcasite, chalcopyrite, and galena), East Pacific Rise (abundant sphalerite, pyrite, and chalcopyrite; minor wurtzite, marcasite, and pyrrhotite), and Guaymas Basin (abundant pyrrhotite and sphalerite; minor chalcopyrite) contrast with ophiolitic deposits. Bulk analyses of two zinc-rich sulphide samples from the Juan de Fuca Ridge yield the following average values: Zn, 56.6 wt. %; Cu, 0.2 wt. %; Pb, 0.15 wt. %; Fe, 4.9 wt. %; Ag, 260 ppm; and Cd, 775 ppm. Other minerals precipitated with sulphides at hydrothermal-vent sites include anhydrite, barite, gypsum, Mg-hydroxysulphate-hydrate, talc, sulphur, and amorphous silica.Massive sulphide lenses in some Cyprus-type deposits are underlain by a silica-rich zone consisting of massive quartz, opaline silica, red jasper, or chert mixed with disseminated and veinlet Fe-Cu-Zn sulphides. Some deposits are overlain by ochre, a gossanous Mn-poor Fe-rich bedded deposit composed of goethite, maghemite, quartz, and finely disseminated sulphide. In the Solomon Islands, ochre is overlain by siliceous sinter containing anhydrite, barite, and sulphide; the sinter contains anomalous Ag, Au, Cu, Zn, and Hg, and grades upward into Fe-rich chert and manganiferous wad. Amorphous Fe-Mn deposits (umber) and Mn-bearing chert enriched in Ba, Co, Cu, Ni, Cr, Pb, and Zn are common features near the top of ophiolite sequences. Although their genetic relation to sulphide mineralization is uncertian, they probably formed during off-axis hydrothermal discharge.At modern, medium-rate spreading centres, thin blankets of unconsolidated hydrothermal sediment have been observed near hydrothermal sulphide deposits. Basalt fragments recovered with massive sulphide from the Juan de Fuca Ridge have surfaces coated with smectite, magnetite, hematite, opaline silica, and Fe---Mn-oxyhydroxides. Sediment mounds composed largely of nontronitic clay and hydrated Fe and Mn oxides, and more distal metalliferous (Fe, Mn, Cu, Ni, Pb, Zn) sediment on the flanks of ceanridges, are also products of off-axis hydrothermal processes.Pillow lavas, diabase dikes, and gabbro in ophiolite sequences, and deeper, layer 2 basalt and diabase recovered from oceanic ridges, are altered to greenschist-facies assemblages (albite + chlorite + actinolite ± sphene ± quartz ± pyrite) during high-temperature sub-sea-floor hydro-thermal metamorphism near the axis of spreading. Chemical changes in the wall-rock during this large-scale sea-water/rock interactive episode depend on the water/rock ratio and temperature but generally include gains in Mg, Na and H2O and losses of Ca. Subsequent low temperature sea-water/rock interaction away from the axis of spreading results in fracture-controlled zeolitefacies alteration, characterized by smectite, caledonite, zeolite, calcite, prehnite, hematite, marcasite, and pyrite. This retrograde alteration involves increases in total Fe, K, and H2O and decreases in Mg and Si in the wallrock; Ca may be lost or gained.Wall-rock alteration in Cyprus type stockwork zones is more striking, in that the basalt and diabase between veins of Fe---Cu-Zn sulphides, quartz, and chlorite have undergone partial to complete conversion to fine-grained aggregates of quartz + chlorite + illite + pyrite; kaolinite and palygorskite may be present in minor amounts. Calcium and Na are strongly depleted; K, Al, Ti, Mn, and Ni are leached to a lesser extent; and Fe, S, Cu, Zn, and Co are strongly enriched in the wall-rock underlying massive sulphide. Mafic rocks at depth in the volcanic pile may be enriched in K, Rb, and Li, and depleted in Cu, Co, and Zn. Lavas lateral to and overlying massive sulphide mineralization may have low concentrations of Cu and high concentrations of Zn and Co relative to background levels.Mutual consideration of hydrothermal sulphide deposits and associated wall-rock alteration in ophiolites and at modern oceanic spreading centres can provide useful criteria for the development of regional exploration models for ophiolitic terrains.  相似文献   

5.
The main Woodlawn ore lens is a polymetallic, massive sulphide deposit’ with pyrite the major constituent, variable sphalerite, galena and chalcopyrite, and minor arsenopyrite, tetrahedrite‐tennantite, pyrrhotite and electrum. The silicate gangue minerals are chlorite, quartz, talc and sericitic mica. Other mineralization in the vicinity consists of footwall copper ore in chlorite schist and several smaller massive sulphide lenses. The predominant country rocks are felsic volcanics and shales, with abundant quartz, chlorite and mica, and talc in mineralized zones.

An important textural feature of the massive ore is the fine compositional banding. Bands, which vary in thickness from a few tens of micrometres to several millimetres, are produced by variations in the sulphide content. Post‐depositional metomorphism and minor fracturing have only slightly modified this banding.

Apart from the major element constituents—Pb, Zn, Fe, Cu and S—the ore is characterized by significant (100–1000 ppm) values for Ag, As, Cd, Mn, Sb and Sn, and lower (1–100 ppm) values of Au, Bi, Co, Ga, Hg, Mo, Ni, Tl. In and Ge. Variations in the base‐metal sulphide content, the gangue mineralogy, and trace elements, are used to separate the orebody into hanging‐wall and footwall zones. The hanging‐wall zone shows a more variable trace element content, with higher Tl, Sn, Ni, Mn, Ge and Sb, but lower Ag, Cd, and Mo, than the footwall zone.

In general style of mineralization, mineralogy, and chemistry, the Woodlawn deposit resembles other volcanogenic massive sulphide deposits in eastern Australia, in New Brunswick in Canada, and the Kuroko deposits of Japan.  相似文献   

6.
辽宁红透山铜-锌块状硫化物产在太古宙绿岩带中,矿床形成后经历了强烈的变形和变质,变质程度达高级角闪岩相。野外和显微镜研究表明,矿石在进变质过程中发生过强烈的机械再活化和重结晶,但各种进变质结构大部分已被变质峰期的全面重结晶所清除,目前保存着的结构主要是变质峰期和退变质过程的产物。退变质过程以黄铁矿变斑晶生长、矿石糜棱岩的形成、二次退火和化学再活化为特征。矿床中高度富集铜和金的矿石是韧性剪切形成的矿石糜棱岩受退变质流体叠加而成。磁黄铁矿主要是同生沉积后重结晶的产物,另有一部分由退变质热液形成,而黄铁矿变斑晶则有沉积一重结晶、磁黄铁矿退变质脱硫和热液叠加多种成因。世界各地块状硫化物矿床中的磁黄铁矿和黄铁矿各有三种成因类型。磁黄铁矿的类型有:同生沉积.变质重结晶、同生沉积黄铁矿变质和退变质热液充填或交代;黄铁矿的类型有:同生沉积-变质重结晶、磁黄铁矿退变质脱硫和退变质热液充填或交代。红透山矿区的退变质流体具有从早到晚氧逸度升高的趋势。  相似文献   

7.
安徽铜陵马山金铜硫矿床产于中石炭统黄龙组白云岩与灰岩地层之间,主矿体呈层状。矿石结构构造、成矿元素地层学分带、硫化物矿物微量元素地球化学和硫、铅同位素等特征表明,该矿床是中石炭世海底喷流沉积的块状硫化物矿床,成矿后在燕山期又受到了石英闪长岩体的改造和叠加。在长江中、下游断裂拗陷带中有许多硫化物矿床在成因上与马山相似。研究表明,在晚古生代,有一片洋壳拖着扬子板块往北向华北板块俯冲,故这类矿床形成于扬子古陆北缘的被动大陆边缘环境。  相似文献   

8.
The Lewis Ponds Zn–Pb–Cu–Ag–Au deposit, located in the eastern Lachlan Fold Belt, central western New South Wales, exhibits the characteristics of both volcanic-hosted massive sulphide and carbonate-hosted replacement deposits. Two stratabound massive to disseminated sulphide zones, Main and Toms, occur in a tightly folded Upper Silurian sequence of marine felsic volcanic and sedimentary rocks. They have a combined indicated resource of 5.7 Mt grading 3.5% Zn, 2.0% Pb, 0.19% Cu, 97 g/t Ag and 1.9 g/t Au. Main Zone is hosted by a thick unit of poorly sorted mixed provenance breccia, limestone-clast breccia and quartz crystal-rich sandstone, whereas Toms Zone occurs in the overlying siltstone. Pretectonic carbonate–chalcopyrite–pyrite and quartz–pyrite stringer veins occur in the footwall porphyritic dacite, south of Toms Zone. Strongly sheared dolomite–chalcopyrite–pyrrhotite veins directly underlie the Toms massive sulphide lens. The mineralized zones consist predominantly of pyrite, sphalerite and galena. Paragenetically early framboidal, dendritic and botryoidal pyrite aggregates and tabular pyrrhotite pseudomorphs of sulphate occur throughout the breccia and sandstone beds that host Main Zone, but are rarely preserved in the annealed massive sulphide in Toms Zone. Main and Toms zones are associated with a semi-conformable hydrothermal alteration envelope, characterized by texturally destructive chlorite-, dolomite- and quartz-rich assemblages. Dolomite, chlorite, quartz, calcite and sulphides have selectively replaced breccia and sandstone beds in the Main Zone host sequence, whereas the underlying porphyritic dacite is weakly sericite altered. Vuggy and botryoidal textures resulted from partial dissolution of the dolomite-altered sedimentary rocks and unimpeded growth of base metal sulphides, carbonate and quartz into open cavities. The intense chlorite-rich alteration assemblage, underlying Toms Zone, grades outward into a weak pervasive sericite–quartz assemblage with distance from the massive sulphide lens. Limestone clasts and hydrothermal dolomite at Lewis Ponds are enriched in light carbon and oxygen isotopes. The dolomite yielded 13CVPDB values of –11 to +1 and 18OVSMOW values of 6 to 16. Liquid–vapour fluid inclusions in the dolomite have low salinities (1.4–7.7 equiv. wt% NaCl) and homogenization temperatures (166–232°C for 1,000 m water depth). Dolomitization probably involved fluid mixing or fluid–rock interactions between evolved heated seawater and the limestone-bearing facies, prior to and during mineralization. 34SVCDT values range from 2.0 to 5.0 in the massive sulphide and 3.9 to 7.4 in the footwall carbonate–chalcopyrite–pyrite stringer veins, indicating that the hydrothermal fluid may have contained mamgatic sulphur and a component of partially reduced seawater. The sulphide mineral assemblages at Lewis Ponds are consistent with moderate to strongly reduced conditions during diagenesis and mineralization. Low temperature dolomitization of limestone-bearing facies in the Main Zone host sequence created secondary porosity and provided a reactive host for fluid-rock interactions. Main Zone formed by lateral fluid flow and sub-seafloor replacement of the poorly sorted breccia and sandstone beds. Base metal sulphide deposition probably resulted from dissolution of dolomite, fluid mixing and increased fluid pH. Pyrite, sphalerite and galena precipitated from a relatively low temperature, 150–250°C hydrothermal fluid. In contrast, Toms Zone was emplaced into fine-grained sediment at or near the seafloor, above a zone of focused up-flowing hydrothermal fluids. Copper-rich assemblages were deposited in the Toms Zone footwall and massive sulphide lenses in Main and Toms zones as the hydrothermal system intensified. During the D1 deformation, fracture-controlled fluids within the Lewis Ponds fault zone and adjacent footwall volcanic succession remobilized sulphides into syntectonic quartz veins. Lewis Ponds is a rare example of a synvolcanic sub-seafloor hydrothermal system developed within fossiliferous limestone-bearing facies. The close spatial association between limestone, hydrothermal dolomite, massive sulphide and dacite provides a basis for new exploration targets elsewhere in New South Wales.Editorial handling: D. Lentz  相似文献   

9.
长江中、下游地区块状硫化物矿床普遍受到燕山期岩浆及其热液的改造与叠加.本文以铜陵冬瓜山矿床为例,探讨这类矿床的成矿机制.该矿床主要由层状硫化物矿体组成,伴有矽卡岩型和斑岩型矿体.野外地质观察及室内矿相学的研究表明,冬瓜山层状矿体中矿石遭受了强烈的热变质作用及热液交代作用.进变质过程中形成的结构主要为黄铁矿受燕山期岩浆侵...  相似文献   

10.
A distinct vertical zonation very similar to that described for the Kuroko deposits of Japan, is displayed by both mineralogy and textures of sulphides from the Lahanos and Kzlkaya massive sulphide deposits of northeastern Turkey. A deeper erosional level is exposed at the Kzlkaya deposit, so that only remnants of the massive sulphide ore zone are present. The zonation is from an upper zone of massive Cu and Zn sulphides (black and yellow ore) with fine-grained, colloform, banded, framboidal, and spherulitic textures, downwards through an intermediate zone of low Cu-Zn massive pyrite with transitional textures, to a lower zone of stockwork and impregnated pyrite displaying euhedral, zoned textures. The fine-grained and colloform pyrite of the upper zones is progressively overgrown by, and recrystallized to, the massive and euhedral pyrite of lower zones. The original textures of these deposits are best preserved by pyrite. The previous interpretation of these textures, of sulphide deposition from colloidal solutions ponded by an impermeable pyroclastic horizon, is reexamined in the light of present observations. Although ultra-fine-grained sulphides, framboids, and radially-cracked spherules could have formed by replacement of pre-existing minerals by a colloidal solution, the colloform and banded textures are indicative of growth in open spaces. It thus seems likely that the fine-grained colloform sulphides, including chalcopyrite, sphalerite, and tennantite as well as pyrite, were initially deposited on or near the surface of the sea-floor. Additional evidence for this interpretation is seen in the progressive recrystallization of the sulphide textures to massive, much coarser, pyrite in the lower zones. This recrystallization may in part be due to diagenetic and hydrothermal processes operating after formation of the original layered sulphides. These conclusions are in agreement with those reached for the similar, but larger Madenköy deposit 100 km to the east.  相似文献   

11.
辽宁红透山块状硫化物矿床矿石糜棱岩铜-金富集机制   总被引:9,自引:0,他引:9  
辽宁红透山太古宙块状硫化物型铜锌矿床成矿后的变质作用达到高角闪岩相 ,并经历了 3个阶段的变形。矿床的主要矿石矿物为黄铁矿、磁黄铁矿、黄铜矿和闪锌矿。主矿体内分布有 30多条矿石糜棱岩带 ,它们大多数平行或近于平行块状硫化物矿层 ,少数产在矿体附近围岩中。带中的各种硫化物矿物均遭受了强烈的剪切变形 ,其中黄铁矿以碎裂为主 ,而磁黄铁矿、黄铜矿和闪锌矿显示强烈的塑性。矿石糜棱岩比块状硫化物矿石明显富集铜、金、银等元素 ,其铜、金和银平均含量分别达1 1 .0 0 % ,1 .74g/t和 2 35g/t,相对于块状矿石的富集系数分别为 5 .3、5 .0和 4 .6。这些金属的高度富集主要是因为矿石糜棱岩受到了后期流体的叠加。铅同位素组成表明矿石糜棱岩中的金属一部分来自块状矿石 ,另一部分来自块状硫化物矿体之外。韧性剪切和流体叠加均发生于矿床退变质过程中  相似文献   

12.
Exploration of Zn-rich sulphide deposits at Leadville, northern Lachlan Fold Belt, New South Wales, for over two decades has been largely on the premise that the mineralisation represents felsic volcanic-hosted massive sulphides (VHMS). Deposits are hosted by ?Silurian felsic metavolcanic, psammopelitic and calcareous metasedimentary rocks which have been intruded by the late Carboniferous I-type Gulgong Granite. Evidence for an epigenetic replacement (skarn) origin of the deposits, rather than representing metamorphosed volcanogenic massive sulphides, includes the proximity of evolved granitic intrusives and reactive carbonate rocks, a skarn mineral assemblage (with characteristic prograde and retrograde stages), lack of textural or lithological indications of an exhalative origin, and gossan and sulphide compositions consistent with Zn-Pb skarns and atypical of Lachlan Fold Belt VHMS deposits. Furthermore, sulphide lead isotope ratios are significantly more radiogenic than signatures for VHMS deposits in the Lachlan Fold Belt. Carbonate δ13C and δ18O and sulphide δ34S values are consistent with the interaction of magmatic hydrothermal fluids with Palaeozoic carbonate rocks and a largely magmatic source of sulphur. It is concluded that the Leadville deposits are of skarn type, genetically related to the Gulgong Granite.  相似文献   

13.
The Wilga and Currawong copper-zinc massive sulphide deposits in northeastern Victoria occur within a sequence of Silurian volcanics and sediments. The Wilga deposit which was discovered in mid 1978 consists of a single lens while the Currawong deposit, discovered in early 1979, consists of at least two lenses.The first indication of the presence of base metal mineralization in the area was provided by an assessment of stream sediment geochemical data contained in open-file Exploration Licence reports at the Victorian Department of Minerals and Energy.The massive sulphide mineralization does not outcrop, but the ore horizons are weakly mineralized and give rise to stringer gossans as far as 150 m up dip from ore grade mineralization. These can be identified by their trace element chemistry (anomalous values of Bi, Fe, As, Au, Pb, Hg, Se, Co, Ag and Mn) corresponding to the trace element signature of both stringer and massive sulphides.Soils in the area are essentially skeletal and residual with some colluvial movement on the steeper slopes. The soils are highly anomalous in Cu, Pb, and Zn over the projected horizon of the Wilga mineralization and the No. 2 lens at Currawong.The stream sediment responses at both Wilga and Currawong result from a combination of chemical and elastic dispersion. Downslope from the surface expression of the Wilga mineralization a spring discharges directly into the Tambo River. The spring has a very low pH and is rich in base metals resulting in enhanced metal values in both stream water and stream sediments.Analyses of selected samples of the more prominent vegetation species have failed to show a clear relationship to the mineralization.  相似文献   

14.
The Ortaklar VMS deposit is hosted in the Koçali Complex consisting of basalts and deep sea pelagic sediments, which formed by rifting and continental break-up of the southern Neotethyan in Late Triassic. The basalts are of NMORB-type without notable crustal contamination. From the surface to depth, the Ortaklar deposit consists of a gossan zone, a thick massive ore zone and a poorly developed stockwork zone. Primary mineralisation is characterised by distinctive facies including sulphide breccias (proximal), graded beds (distal), stockworks and chimney fragments. Ore mineral abundances decrease in the order of pyrite, magnetite, chalcopyrite, and sphalerite. Two distinct phases of mineralisation, massive magnetite and massive sulphide, are present in the Ortaklar deposit. Textural evidence (e.g., magnetite replacing sulphides) and the spatial relationships with the host rocks indicate that magnetite and sulphide minerals were generated in different stages. The transition from sulphide to magnetite mineralisation is interpreted to relate to variation in H2S content of ore fluids. The 1st stage massive sulphide ore might have formed by early hydrothermal fluids rich in Fe and H2S. The 2nd stage massive magnetite might have formed by later neutral hydrothermal fluids rich in Fe but poor in H2S, replacing the pre-existing sulphide ore.The alteration patterns, mineral paragenesis, lithological features (massive ore-stockwork ore-gossan) of the Ortaklar deposit together with its trace elements, Cu-Pb-Zn-Au-Ag and REE signatures are all consistent with a Cyprus-type VMS system. The δ34S values in pyrite and chalcopyrite samples range from 2.6 to 5.7‰, indicating that the hydrothermal fluids were associated with sub-seafloor igneous activity, typical of Cyprus-type VMS deposits. However, magnetite formed later than sulphide minerals in the Ortaklar deposit, contrasting with typical Cyprus-type VMS deposits where magnetite generally occurs in lower sections. Consequently, although the Ortaklar deposit generally conforms to Cyprus-type deposits, it is distinguished from them by its late stage and high magnetite concentration. Thus, the Ortaklar deposit is thought to be an exceptional and perhaps unique Cyprus-type VMS deposit.  相似文献   

15.
Draa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism.The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb  18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits.The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds.Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression.  相似文献   

16.
Late Neoproterozoic collision between East and West Gondwana concentrated transpressional deformation in the juvenile crust of the Nubian Shield in Eritrea along at least two steep, curvilinear crustal-scale belts, the Augaro-Adobha Belt (AAB) and the Asmara-Nakfa Belt (ANB). Volcanosedimentary rocks dominantly metamorphosed at greenschist-facies conditions characterize the belts. Each of these belts comprises a complex network of syn-metamorphic shear-fold structures. Steep strike-slip shear zones and accompanying vertical to steeply plunging folds dominated the latest phase of deformation. Quartz vein-hosted gold ± sulphide type and volcanic-hosted massive sulphide type deposits and occurrences are either deformed or hosted by these steep shear zones and folds. The deposits are broadly grouped into three major mineral districts, Asmara, Augaro and Bisha. The Asmara district, the main focus of this study, is located where the southern part of the Asmara-Nakfa Belt changes in strike from NNE–SSW to NNW–SSE. Combined field, micro-structural, and magnetic fabric studies are conducted in the sheared host rocks of a series of the mineral deposits and/or occurrences of the Asmara mineral district. These combined studies revealed that the Asmara area was subjected to a transpressional deformation accommodated in a complex and curved flower structure. Both the quartz vein and massive sulphide types of deposits are sheared, folded and generally spatially associated. The ore-bearing quartz veins are often concentrated along dilatant-extensional en-echelon fracture arrays in reverse and normal sense shear zones, and they either cut through or structurally overlie, the massive sulphide deposits. The massive sulphides that formed at the same time as the Neoproterozoic volcanosedimentary rocks were later deformed and metamorphosed with them. This study, along with previous investigations, further implies that the Asmara area represents an intra-arc, palaeo-oceanic trough or basin located over a west-northwestward dipping subduction zone that subsequently underwent transpression. The transpressional belts track the general locations of such oceanic basins into which ore-bearing fluids that resulted in various phases of vein type deposits were channeled. This study can help to locate new prospects and develop existing ore deposits and/or occurrences in Neoproterozoic Eritrea and elsewhere in areas of similar structural setting.  相似文献   

17.
海相火山-沉积建造铁铜矿床类型及地质特征   总被引:4,自引:1,他引:4  
于浦生  邬介人 《地球学报》1996,17(Z1):50-56
铁-铜型矿床产出的时代从元古宙到新生代均有,与其有关的火山岩大多数为中基性与中酸性或偏碱性岩石。作者以镜的山桦树沟、陇山陈家庙和陕西铜厂不同时代的铁-铜矿床为例,概述了该类型矿床的地质特征、成矿环境并着重探了铁-铜矿床的成因机制,认为该类型矿床是与火山作用有关的喷气-沉积型矿床,同时指出柳沟峡地区及其以西(东缰地区)铁-铜型铜矿化带的发现,是进一步寻找铁-铜-金矿床的有利地段。  相似文献   

18.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

19.
《Geodinamica Acta》2013,26(3):117-137
In the Ligurian Alps (South-Western Italian Alps), Zn-Pb deposits occur within late Palaeozoic meta-sedimentary units belonging to the Briançonnais Zone near Casario (Tanaro valley). Different types of sulphide-rich, lens-shaped mineralizations are recognized: sphalerite-galena massive sulphide bodies, pyrite-rich lenses and sulphide-rich quartz–carbonate-chloritoid granofels. Sulphide lenses and host rocks are affected by at least three ductile deformation phases and by a polyphase alpine metamorphism, whose climax conditions are estimated, based on P-T pseudosection calculations, at T = 300-325 °C and P = 0.55-0.60 GPa. In all the mineralized lenses the ore minerals are represented, in variable amount, by Fe-poor sphalerite, galena, pyrite and arsenopyrite (± tetrahedrite, chalcopyrite and pyrrhotite); the gangue consists of quartz, carbonate (sideritemagnesite ± rhodochrosite s.s.), Fe-chloritoid, muscovite-phengite and chlorite. The mineralizations are associated with chloritoid – carbonate micaschists displaying a finely bedded texture, with sharp between-bed compositional contrast, which suggests their exhalative origin.

In spite of the tectono-metamorphic overprint, some pre-metamorphic features of the hydrothermal system are still recognized, like relics of the hydrothermal feeding system, primary growth textures and sulphide-rich microbreccias. These massive sulphide lenses, which share many characters with the SEDEX deposits, testify to the occurrence of an exhalative event of Upper Carboniferous age previously unrecognized in the Ligurian Briançonnais Unit.  相似文献   

20.
Eight Zn–Pb–Cu massive sulphide deposits that appear to have formed on the sea floor (seven in Spain, one in Tasmania) are believed to have been precipitated in brine pools, based on the salinities and temperatures of fluid inclusions in underlying stockworks. Comparing the geological features of these deposits with those of the Zn–Pb–Cu massive sulphide ores of the Hokuroku Basin, Japan, which have formed as mounds from buoyant fluids of low salinity, shows that brine pool deposits have: (1) potentially very large size and tonnage, and high aspect ratio, (2) higher Zn/Cu and Fe/Cu values, (3) no evidence of chimneys, (4) relatively abundant framboidal pyrite and primary mineral banding, (5) reduced mineral assemblages (pyrite-arsenopyrite/pyrrhotite), and minor or rare barite in the massive sulphide, (6) associated stratiform and/or vein carbonates, (7) relatively unimportant zone refining, (8) lack of vertical variation in sphalerite and sulphur isotopic compositions, and (9) evidence of local bacterial sulphate reduction. Application of these criteria to the Rosebery deposit in Tasmania, for which there are no fluid inclusion data, leads to the conclusion that the southern section was deposited as separate lenses in a brine-filled basin or basins. Other potential candidates include Brunswick no. 12 and Heath Steele (Canada), Woodlawn and Captains Flat (New South Wales), Hercules and Que River (Tasmania), and Tharsis and the orebodies at Aljustrel (Spain and Portugal). Recently published fluid inclusion data for Gacun (China) and Mount Chalmers (Queensland) suggest that not all ores deposited from highly saline fluids have reduced mineral assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号