首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six samples of a single carbonate-rich unit of the Swiss Préalpes, progressively metamorphosed from diagenesis to deep anchizone, yield 40Ar/39Ar spectra with variably developed staircase patterns, consistent with mixtures of detrital mica and neocrystallized mixed-layer illite/smectite. The lowest temperature heating steps for different size fractions (2–6?μm and 6–20?μm) converge to ~40?Ma providing an imprecise, maximum age of regional metamorphism. A method is described for distinguishing and quantifying the amount of pre-existing detrital mica versus neoformed illite layer in the illite/smectite formed during Tertiary Alpine metamorphism by comparison of X-ray diffraction patterns with Newmod© simulations. In the least metamorphosed samples the illite/smectite contains ~65% neoformed illite, and this illite accounts for approximately 17% of all dioctahedral phyllosilicate minerals in the rock (e.g., detrital mica and illite/smectite). In contrast, the illite/smectite from the more strongly metamorphosed samples contains >97% neoformed illite, which accounts for ~70% to >90% of all dioctahedral phyllosilicate minerals. Phyllosilicate morphologies viewed by scanning electron microscopy are consistent with these estimates. A process of dissolution/reprecipitation is inferred as a mechanism for the growth of the neoformed phyllosilicates. A plot of neoformed illite content versus 40Ar/39Ar total fusion age yields a near-linear curve with an extrapolated age of 27?Ma for 100% neoformed dioctahedral phyllosilicates. This age is interpreted as the time of incipient metamorphism and is consistent with independent biostratigraphic constraints. Model 40Ar/39Ar age spectra constructed with the XRD simulation results correspond well to the experimental data and illustrate the changes in degassing properties of progressively metamorphosed mixtures of detrital mica and neoformed illite.  相似文献   

2.
Late Pennsylvanian sedimentary rocks in the Narragansett basin were metamorphosed (lower anchizone to sillimanite grade) during late Paleozoic regional metamorphism at ca. 275–280 Ma. Twenty-five variably sized concentrates of detrital muscovite were prepared from samples collected within contrasting low-grade areas (diagenesis — lower greenschist facies). Microprobe analyses suggest that the constituent detrital grains are not chemically internally zoned; however, some grains within several concentrates display very narrow (<25 m), compositionally distinct, low-grade, epitaxial peripheral overgrowths. Detrital muscovite concentrates from the lower anchizone are characterized by internally concordant 40Ar/39Ar age spectra which define plateau ages of ca. 350–360 Ma. These are interpreted to date post-Devonian (Acadian) cooling within proximal source areas. Concentrates from lower grade sectors of the middle anchizone display slightly discordant spectra in which apparent ages systematically increase from ca. 250–275 Ma to define intermediate- and high-temperature plateaus of ca. 360–400 Ma. Detrital muscovite within samples from higher grade sectors of the middle anchizone and the upper anchizone are characterized by systematic low age discordance throughout both low-and intermediate-temperature increments. High-temperature ages only range up to ca. 330 Ma. Six size fractions of detrital muscovite from a sample collected within the lower greenschist facies have similarly discordant spectra, in which, apparent ages increase slightly throughout the analyses from ca. 250 Ma to 275 Ma. The detrital muscovite results are interpreted to reflect variable affects of late Paleozoic regional metamorphism. However, it is uncertain to what extent the systematic low age spectra discordance reflects intracrystalline gradients in the concentration of 40Ar and/or experimental evolution of gas from relatively non-retentive epitaxial overgrowths. However, low age discordance occurs regardless of the extent of epitaxial overgrowth. Intermediate-temperature increments evolved during 40Ar/39Ar whole-rock analyses of five slate/phyllite samples are characterized by internally consistent apparent K/Ca ratios. These are attributed to gas evolved from constituent, very fine-grained white mica. Samples from lower grade portions of the middle anchizone are characterized by intermediate-temperature apparent ages which systematically increase from ca. 275–300 Ma to ca. 360–375 Ma before evolution of a high-temperature contribution from detrital plagioclase feldspar. This age variation may reflect partial late Paleozoic rejuvenation of very fine-grained detrital material with a source age similar to that for the detrital muscovites. Slate/phyllite samples from upper sectors of the middle anchizone and from the upper anchizone were completely rejuvenated during late Paleozoic metamorphism and record intermediate-and high-temperature plateau ages of ca. 270–290 Ma. These data document that metamorphic conditions of the lower to middle biotite zone (ca. 325–350 °C) are required to completely rejuvenate intracrystalline argon systems of detrital muscovite. Therefore, the 40Ar/39Ar dating method may be useful in determination of detrital muscovite provenance and in resolution of the metamorphic evolution of low-grade terranes.  相似文献   

3.
Diffusion parameters have been estimated for K-feldspar in and adjacent to mylonite shear zones in the Wyangala Batholith. The parameters obtained suggest that deformation during mylonitisation would have caused argon systematics to reset because diffusion distances were reduced by cataclasis, deformation and/or recrystallisation. However, the mineral lattice remained sufficiently retentive to allow subsequently produced radiogenic argon to be retained. 40Ar/39Ar geochronology is thus able to constrain operation of these biotite-grade ductile shear zones to the period from ca 380 Ma to ca 360 Ma, at the end of the Tabberabberan Orogeny.  相似文献   

4.
Paleozoic to Oligocene metasedimentary rocks present in the Alpi Apuane region of the Northern Apennines, Italy, have been sequentially deformed during a Tertiary progressive deformation. In an attempt to date the individual deformation episodes, over 50 conventional K-Ar and 1140 Ar/39Ar incremental gas release analyses have been carried out on fine grained white micas separated from samples whose structural settings were well known. Mineralogy, X-ray diffractometry, and thin-section analyses indicate that the constituent muscovite and phengite formed under metamorphic conditions of 3–4 kbars and 300–400°C during all deformational phases. Pre-existing micas were variably crenulated during each subsequent deformational phase. Both K-Ar and 40Ar/39Ar analyses were carried out on 0.6-2μm, 2–6 μm and 6–20 μm size separates of the phengitic white mica. Although the K-Ar apparent ages range from 11 to 27 Ma and are consistent with available stratigraphic constraints, the 40Ar/39Ar age spectra display variable internal discordancy. These isotopic data indicate that: (1) both the K-Ar and 40Ar/39Ar total-gas ages decrease as the degree of crenulation increases; (2) the K-Ar and 40Ar/39Ar total-gas ages decrease as grain size decreases; (3) for each sample, characteristics of the 40Ar/39Ar age spectra depend upon grain size, with fine sizes yielding discordant patterns which systematically increase in apparent age from low to high temperature and (4) phengitic micas associated with earliest structures yield generally older ages than micas associated with later structures.The isotopic results are interpreted to indicate that the major deformation phase (D1) occurred at approximately 27 Ma with subsequent pulses ending by c. 10 Ma. These results may be combined with finite strain data to suggest that the region was deformed at strain rates between 10−15 and 10−14 s−1. A 27 Ma age indicates Mid-Oligocene initiation of plate tectonic activity in the Western Mediterranean and concomitant deformation in the Northern Apennines.  相似文献   

5.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

6.
Generally synmetamorphic granitic stocks intrude high-grade, Silurian-lowermost Devonian metasedimentary rocks near Augusta, Maine. Rb-Sr whole-rock isochrons (8 points each) define mutually overlapping crystallization ages of 394±8 m.y. (Togus quartz monzonite), 387±11 m.y. (Hallowell quartz monzonite), and 381±14 m.y. (Three Mile Pond biotite granodiorite), thereby providing a narrow chronologic bracket for Acadian tectonothermal activity in the area. Igneous hornblende, muscovite, and biotite display internally concordant 40Ar/39Ar age spectra with plateau dates of 350 m.y. (hornblende) and 300-265 m.y. (muscovite and biotite), with an overall southwestward younging trend. The mineral dates are similar to those recorded in adjacent portions of the regional metamorphic terrain and suggest a prolonged postmagmatic cooling which closely followed the diachronous northeast-southwest post-Acadian cooling of the country rocks. No evidence for a distinct Permian thermal overprint of older isotopic systems has been observed.  相似文献   

7.
Long-lived intra-oceanic arcs of Izu-Bonin-Marianas (IBM)-type are built on thick, granodioritic crust formed in the absence of pre-existing continental crust. International Ocean Discovery Program Expedition 350, Site U1437, explored the IBM rear arc to better understand continental crust formation in arcs. Detailed petrochronological (U–Pb geochronology combined with trace elements, oxygen and hafnium isotopes) characterizations of zircon from Site U1437 were carried out, taking care to exclude potential contaminants by (1) comparison of zircon ages with ship-board palaeomagnetic and biostratigraphic ages and 40Ar/39Ar geochronology, (2) analysing zircon from drill muds for comparison, (3) selectively carrying out in situ analysis in petrographic thin sections, and (4) minimizing potential laboratory contamination through using pristine equipment during mineral separation. The youngest zircon ages in Site U1437 are consistent with 40Ar/39Ar and shipboard ages to a depth of ~1390 m below sea floor (mbsf) where Igneous Unit Ig 1 yielded an 40Ar/39Ar age of 12.9 ± 0.3 Ma (all errors 2σ). One single zircon (age 15.4 ± 1.0 Ma) was recovered from the deepest lithostratigraphic unit drilled, Unit VII (1459.80–1806.5 mbsf). Site U1437 zircon trace element compositions are distinct from those of oceanic and continental arc environments and differ from those generated in thick oceanic crust (Iceland-type) where low-δ18O evolved melts are produced via re-melting of hydrothermally altered mafic rocks. Ti-in-zircon model temperatures are lower than for mid-ocean ridge rocks, in agreement with low zircon saturation temperatures, suggestive of low-temperature, hydrous melt sources. Zircon oxygen (δ18O = 3.3–6.0‰) and hafnium (εHf = + 10–+16) isotopic compositions indicate asthenospheric mantle sources. Trace element and isotopic differences between zircon from Site U1437 rear-arc rocks and the Hadean detrital zircon population suggest that preserved Hadean zircon crystals were probably generated in an environment different from modern oceanic convergent margins underlain by depleted mantle.  相似文献   

8.
Mantle xenoliths provide direct information about lithospheric evolution and asthenosphere–lithosphere interaction, and therefore precise dating of the host basalts which carried the xenoliths is important. Here we report 40Ar/39Ar geochronology of phlogopite separates from five spinel lherzolite xenoliths collected from the North China Craton (Hannuoba of Hebei Province, Sanyitang of Inner Mongolia Autonomous Region and Hebi of Henan Province), as well as the groundmass of the host basalts. Argon extraction was performed by conventional step heating technique and ultra-violet laser ablation microprobe (UVLAMP) technique. 40Ar/39Ar incremental heating results on groundmass yielded geologically meaningless ages. However, conventional step heating on phlogopites produced Miocene cooling ages, identical to the eruption ages obtained from the K–Ar dating methods of the Hannuoba and Sanyitang basalts. Adopting procedures to exclude potential influence of excess radiogenic Ar from a deep fluid source on a phlogopite separate from lherzolite yielded results with a good agreement of ages suggesting that the argon isotopes are distributed homogenously in this mineral, with no influence of excess argon. Phlogopites from Hebi yield ages between 6.43 and 6.44 Ma which are slightly older than those obtained from K–Ar method on whole-rocks. The discrepancy in the K–Ar ages obtained from the altered whole-rock samples suggests partial loss of 40Ar. As a consequence, phlogopite Ar–Ar ages are considered more accurate than that of the whole-rocks. These results suggest that 40Ar/39Ar chronology of phlogopite provides reliable and precise 40Ar/39Ar ages of host basalts.  相似文献   

9.
In order to test their chronometric potential, 40Ar/39Ar stepheating- (and 4He-) analyses have been carried out on five manganese ore minerals of the hollandite-cryptomelane series from three Precambrian manganese deposits (Ultevis/Sweden, Sitapar/India, Bachkoun/Morocco). Samples from the metamorphic occurrences Ultevis and Sitapar yielded Ar ages of 1.8 Ga and 0.95 Ga, interpreted as the age of postmetamorphic cooling (Hollandites/Ultevis) and of an early, K-introducing alteration process subsequent to amphibolite facies metamorphism (cryptomelanes/Sitapar). Both data are consistent with known chronologies of the Svecokarelian and Satpura orogenic cycles. A date of 670 Ma obtained for a hollandite from a volcanogenic vein deposit (Bachkoun), however, contrasts with published extrusion ages of 580–560 Ma for the volcanic host rocks (Ouarzazate Series), probably due to incorporation of excess argon. The use of the 40Ar/39Ar technique, together with multiple isotope systematics, made it nevertheless possible to establish a reasonable estimate of a mineralization age close to 580 Ma. Measurement of fractional Ar losses during vacuum step heating (500–1600 °C), although indicating good Ar retentivities, failed to define model diffusion parameters because of non-linear Arrhenius arrays. Helium diffusion results (200–1200 °C) indicated retention of radiogenic 4He by the samples, corroborated by U/He mineral dates between 0.96 and 0.31 Ga. Potassium-bearing manganese oxides are therefore able to retain argon (possibly also 4He) through geological times and may thus provide ages of ore-forming processes (and perhaps later cooling and alteration stages).  相似文献   

10.
11.
杨静  郑德文  陈文  武颖  李洁  张彦 《地质通报》2015,34(203):579-586
由于40Ar/39Ar定年方法在技术上极具复杂性,目前,国内在开展干旱区研究中很少使用风化矿物定年研究手段。重点介绍黄钾铁矾矿物40Ar/39Ar定年法的基本流程,并针对该方法的技术问题初步探讨了解决办法。研究表明,科学的野外采集样品、仔细的挑选矿物并综合采用多种测试手段(X衍射、扫描电镜、电子探针)进行监测可以获得纯净的风化矿物,并结合精细的40Ar/39Ar阶段加热技术,能够获得比较可靠的风化矿物40Ar/39Ar年龄。  相似文献   

12.
The Late Triassic Central Patagonian Batholith is a key element in paleogeographic models of West Gondwana just before to the break-up of the supercontinent. The preexisting classification of units of this batholith was mainly based on isotopic and geochemical data. Here we report the results of field mapping and petrography, backed up by three new 40Ar/39Ar biotite ages, which reveal previously unnoticed relationships of the rocks in the batholith. Based on the new information we present a reorganization of units where the batholith is primarily formed by the Gastre and the Lipetrén superunits. The Gastre Superunit is the oldest magmatic suite and is composed of I-type granites which display evidence of felsic and mafic magma interaction. It is formed by 4 second-order units: 1) equigranular hornblende–biotite granodiorites, 2) porphyritic biotite–hornblende monzogranites, 3) equigranular biotitic monzogranites and 4) hornblende quartz-diorites. Emplacement depth of the Gastre Superunit is bracketed between 6 and 11 km (1.8–3 kbar), and the maximum recorded temperatures of emplacement are comprised between 660 and 800 °C. The recalculated Rb/Sr age is 222 ± 3 Ma and the porphyritic biotite–hornblende monzogranites yielded a 40Ar/39Ar age in biotite of 213 ± 5 Ma. On the other hand, the Lipetrén Superunit is made up by fine-grained biotitic monzo- and syenogranites that postdate magma hybridization processes and intrude all the other units. The recalculated Rb/Sr age for this suite is identical to a 40Ar/39Ar age in biotite extracted from one of its monzogranites (206.4 ± 5.3 and 206 ± 4 Ma, respectively). This and the observed textural features suggest very fast cooling related to a subvolcanic emplacement. An independent unit, the “Horqueta Granodiorite”, which has previously been considered as the record of a Jurassic intrusive stage in the Central Patagonian Batholith, gave a 40Ar/39Ar age in biotite of 214 ± 2 Ma. This and the reexamination of available isotopic data allow propose that this granodiorite unit is part of the Late Paleozoic intrusives in the region. The Late Triassic Central Patagonian Batholith is overlain by 190–185 Ma volcano-sedimentary rocks, suggesting that it was exposed sometime between the latest Triassic and earliest Jurassic times, roughly coeval with a major accretionary episode in the southwestern margin of Gondwana.  相似文献   

13.
新疆阿尔泰印支期伟晶岩的成矿年代学研究   总被引:10,自引:0,他引:10  
阿尔泰的伟晶岩长期以来被认为是海西期造山过程的产物。为了查明伟晶岩矿床的成矿时代,本文通过对伟晶岩型稀有金属矿床中白云母的40Ar 39Ar法同位素定年研究,首次在阿尔泰中部的大喀拉苏大型稀有金属矿床和小喀拉苏稀有金属矿床获得了新的同位素年龄数据,其坪年龄分别为248.42±2.11Ma和233.79±0.41Ma,从而证实了印支期稀有金属成矿作用的存在,提出了伟晶岩型矿床形成于多个时代,且稀有金属成矿作用主要发生在海西期造山运动之后的看法。  相似文献   

14.
Summary The Cretaceous Eclogite-Gneiss unit and its tectonic overburden (Micaschist, Phyllite and Lower Magdalensberg units) and the underlying Preims subunit of the Saualpe, Eastern Alps, have been investigated in order to constrain the mode of exhumation of the type locality of eclogites. 40Ar/39Ar ages of white mica from the eclogite-bearing unit suggest rapid, uniform cooling and exhumation between 86 and 78 Ma (Santonian-Campanian). Overlying units show upwards increasingly older ages with an age of 261.7 ± 1.4 Ma in the uppermost, low-grade metamorphic unit (Lower Magdalensberg unit). We consider this Permian age as geologically significant and to record a Permian tectonic event. Rocks of phyllite and micaschist units along western margins of the Saualpe block yield amphibole and white mica ages ranging from 123 to 130 Ma. These are considered to closely date the age of nappe stacking, whereas a single biotite age of 66–68 Ma from a shear zone is interpreted to date retrogression during normal faulting. Biotite and amphibole of Micaschist and Eclogite-Gneiss units show variable contents of extraneous argon. Consequently, their ages are in part geologically meaningless whereas other samples yield meaningful ages. The white mica ages from the Eclogite-Gneiss unit range from 78 to 85 Ma and argue for cooling through ca. 400 °C during the time as the westerly adjacent Upper Cretaceous Krappfeld collapse basin formed. The Preims subunit with paragneiss and marbles is considered to represent a large synmetamorphic shear zone at the base of the overthrusting Eclogite-Gneiss unit. The unit comprises a flat-lying foliation and a SE-trending lineation. This zone is interpreted to represent a zone of top-NW thrusting. A major ductile low-angle normal fault with top to ESE shear has been detected between the Eclogite-Gneiss and overlying units, and between the Micaschist and Phyllite units. The ductile thrust at the base and the low-angle normal fault at the top are considered to confine a NW-ward extruding high-pressure wedge. The new observations argue for rapid exhumation of a subducted high-pressure wedge within a subduction channel. Rapid surface erosion of the exhuming wedge might have facilitated exhumation. Eroded sedimentary rocks are preserved within adjacent Gosau basins, although only pebbles of low-grade metamorphic rocks of the uppermost tectonic unit can be found in these basins.  相似文献   

15.
Blueschists are sporadically exposed as lenses within the Lancangjiang metamorphic complex, and represent unique components of the Paleo-Tethys. In this paper, we present geochemical and geochronological results of blueschists to decipher their origin and tectonic significance. The whole-rock geochemical analyses revealed strong similarities with ocean island basalt (OIB), and further discrimination diagrams confirm an affinity to a within-plate setting. Combined studies on blueschists using cathodoluminescence (CL) imaging, SHRIMP U-Pb dating of zircon domains and 40Ar/39Ar dating of phengite and glaucophane provide evidence of their magmatic origin and metamorphic evolution. Slightly oscillatory zoned or compositionally homogeneous zircon grains/domains, as well as structureless zircon rims, yield ages from 231.6 ± 3.7 to 225.3 ± 4.8 Ma, recording the blueschist facies metamorphic event. In contrast, the captured zircon grains and cores with a major age peak at ~241 Ma as well as several minor older age peaks indicate the multiple provenance of the zircons. 40Ar/39Ar step heating analyses on single grains of phengite and glaucophane separated from blueschists yield plateau ages ranging from 242.5 ± 1.4 to 228.7 ± 1.5 Ma which are interpreted to reflect high-pressure metamorphism.This study provides geochemical and geochronological constraints on the tectonic evolution of the Paleo-Tethyan ocean, which was closed and subsequently subducted as a result of the collision of the Simao and Baoshan Blocks. During subduction in Trassic (243 to 225 Ma), the protoliths of blueschists underwent blueschist facies conditions.  相似文献   

16.
西藏多不杂斑岩铜金矿是在班公湖—怒江成矿带发现的第一个斑岩型矿床。通过对多不杂矿床蚀变钾长石进行40Ar/39Ar年代学测试获得,蚀变钾长石的坪年龄为(118.31±0.60)Ma,反等时线年龄为(118.30±0.79)Ma,它们代表多不杂矿床钾化蚀变的年龄为119~118 Ma,与成矿年龄同期。多不杂矿床形成的岩浆-热液过程为,由岩浆期(约120Ma)演化至钾化和成矿期(119~118 Ma),再演化至绢英岩化期(118~115 Ma)。  相似文献   

17.
The Yingchengzi gold deposit, located 10 km west of Shalan at the eastern margin of the Zhangguangcai Range, is the only high commercially valuable gold deposit in southern Heilongjiang Province, NE China. This study investigates the chronology and geodynamic mechanisms of igneous activity and metallogenesis within the Yingchengzi gold deposit. New zircon U–Pb data, fluid inclusion 40Ar/39Ar dating, whole‐rock geochemistry and Sr–Nd isotopic analysis is presented for the Yingchengzi deposit to constrain its petrogenesis and mineralization. Zircon U–Pb dating of the granite and diabase–porphyrite rocks of the igneous complex yields mean ages of 471.7 ± 5.5 and 434 ± 15 Ma respectively. All samples are high‐K calc‐alkaline or shoshonite rocks, are enriched in light rare earth elements and large ion lithophile elements, and are depleted in high field strength elements, consistent with the geochemical characteristics of arc‐type magmas. The Sr–Nd isotope characteristics indicate that the granite formed by partial melting of the lower crust, including interaction with slab‐derived fluids from an underplated basaltic magma. The primary magma of the diabase–porphyrite was likely derived from the metasomatized mantle wedge by subducted slab‐derived fluids. Both types of intrusive rocks were closely related to subduction of the ocean plate located between the Songnen–Zhangguangcai Range and Jiamusi massifs. However, fluid inclusion 40Ar/39Ar dating indicates that the Yingchengzi gold deposit formed at ~249 Ma, implying that the mineralization is unrelated to both the granite (~472 Ma) and diabase–porphyrite (~434 Ma) intrusions. Considering the tectonic evolution of the study area and adjacent regions, we propose that the Yingchengzi gold deposit was formed in a late Palaeozoic–Early Triassic continental collision regime following the closure of the Paleo‐Asian Ocean. In addition, the Yingchengzi deposit could be classified as a typical orogenic‐type gold deposit occuring in convergent plate margins in collisional orogens, and unlikely an intrusion‐related gold deposit as reported by previous studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The Brixen Quartzphyllite, basement of the Southern Alps (Italy), consists of metasediments which had suffered progressive deformation and low grade metamorphism (p max4 kbar, T max375±25° C) during the Palaeozoic. It has been excavated by pre-Permian erosion, buried again beneath a pile of Permo-mesozoic to Cainozoic sediments (estimated T max150° C), and is now exposed anew due to late Alpine uplift and erosion. The behavior of the K-Ar system of white micas is investigated, taking advantage of the narrow constraints on their thermal history imposed by the geological/stratigraphic reference systems.The six structurally and petrographically differing samples come from a single outcrop, whose position is roughly two kilometers beneath the Permian land-surface. White mica concentrates from five grain size fractions (<2 , 2–6 , 6–20 , 20–60 , 60–75 ) of each sample have been analyzed by the conventional K-Ar method, four selected concentrates additionally by the 40Ar/39Ar stepwise heating technique; furthermore, Ar content and isotopic composition of vein quartz were determined.The conventional ages of the natural grain size fractions (20–60 , 60–75) are in the range 316±8 Ma, which corresponds to the 40Ar/39Ar plateau age of 319.0±5.5 Ma within the error limits. The finer grain size fractions yield significantly lower ages, down to 233 Ma for fractions <2 . Likewise low apparent ages (down to 83 Ma) are obtained for the low temperature 40Ar/39Ar degassing steps.There is no correlation between microstructural generation of white mica prevailing in the sample and apparent age. This favours an interpretation of the 316±8 Ma values as cooling age; progressive deformation and metamorphism must be respectively older and their timing cannot be resolved by these methods. The data preclude any significant influence of a detrital mica component as well as of excess argon.The lower ages found for the fine grain-size fractions (respectively the low-T degassing steps) correspond to a near-surface period (p-T-minimum); the values are geologically meaningless. The effect is interpreted to result from partial Ar loss due to reheating during Mesozoic-Cainozoic reburial. A model based on diffusion parameters derived from the outgassing experiments and Dodson's (1979) equation yields a closure temperature of 284±40 °C for a cooling rate of 18° C/Ma. Furthermore, this model suggests that the observed argon loss of up to 5% may in fact have been induced by reheating to 150 °C for 50 Ma.  相似文献   

19.
The Gaoligong metamorphic zone is located southeast of the Eastern Himalayan Syntaxis in western Yunnan, China. The zone is characterized by four stages of deformation (D1–D4). D1 structures record early compressive deformation during the Indosinian orogeny, which formed tight to isoclinal F1 folds of bedding with a penetrative S1 foliation developed parallel to fold axial planes. Mid-crustal horizontal shearing during D2 resulted in overprinting of D1 structures. D1 and D2 structures are associated with granulite facies metamorphism. D3 doming resulted in late crustal thickening and the development of a regional NW–SE trending F3 antiform. Synchronous with or slightly subsequent to D3 deformation, the zone experienced D4 ductile strike-slip shearing, resulting in its exhumation to shallow crustal levels and retrograde metamorphism. Granitic D4 mylonites predominantly yield 40Ar/39Ar mica ages of 15–16 Ma, indicating that D4 dextral strike-slip shearing occurred in the Miocene. Weakly deformed leucogranite and protomylonite yield 40Ar/39Ar ages of 10–11 Ma, suggesting that ductile strike-slip shearing continued to the Late Miocene. The new 40Ar/39Ar data indicate that escape-related deformation along the Gaoligong strike-slip shear zone occurred in the Miocene. In association with recent geophysical studies, and on the basis of the structural, crystal preferred orientation (CPO), and geochronological data presented in this paper, we suggest that the Gaoligong metamorphic zone formed in response to intracontinental transpression in the southeast of Tibet, characterized as intense deformation and metamorphism at middle–upper crustal levels.  相似文献   

20.
The Boa Vista and Cubati Basins, Paraíba, Brazil, are NW–SE extension-related intracratonic basins that resulted from tectonic stresses after the opening of the South Atlantic. These basins contain lacustrine fossiliferous sediments, bentonite beds, and basalt flows that preserve Cenozoic continental records. 40Ar/39Ar ages for six whole-rocks from two distinct basaltic flows underlying the sediments in the Boa Vista basin are 27.3 ± 0.8 and 25.4 ± 1.3 Ma, while three grains from a basaltic flow overlying the sediments yield 22.0 ± 0.2 Ma. The sediments at the nearby Cubati Basin are overlain by a basalt flow with ages of ∼25.4 Ma. Three whole-rocks from an NE–SW-trending trachytic dyke cross cutting the sediments at the Boa Vista Basin yield 40Ar/39Ar ages of ∼12.45 ± 0.06, 12.59 ± 0.07, and 12.58 ± 0.07 Ma. Three whole-rocks from a nearby volcanic plug (Chupador) yield an age of 23.4 ± 0.1 Ma. The geochronological results combined with stratigraphic correlations between the two basins allow bracketing the age of the main sedimentary and bentonic units within the Boa Vista and Cubati Basins between 25.5 ± 1.3 and 24.9 ± 0.1 Ma. The ages, combined with field observations reveal that the formation of the Boa Vista and Cubati basins is associated with mantle-derived magmas channelled through reactivated Precambrian shear zones. Our geochronological results suggest that a temporal link with the Fernando de Noronha and Saint Helena hot spots can be excluded as possible sources of the Boa Vista and Cubati magmas. Rather, the extensional tectonics in the 30–20 Ma interval, long after Gondwana break-up, may be associated with the re-activation of continental-scale shear zones that channelled small batches of mantle-derived magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号