首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Picos II Paleontological Site (PIIPS), located in the city of Piranhas, in Alagoas State, is a fossil deposit with a pond-like geomorphological feature, a kind of peculiar deposit for the Quaternary of Northeast Brazil. A detailed taphonomic study is presented about the PIIPS assemblage, from material collection to the laboratory analysis. The conservation state of the collected fossils in PIIPS is different from that found in other tank deposits, showing a high degree of specimen preservation. Two taxa of pleistocenic mammals have been identified: Eremotherium laurillardi and Notiomastodon platensis, and fragments of an avian bone, whose taxonomic identification was not possible. The taphonomic analysis indicates that the deposited material experienced a short transportation in high-energy event, with a short period of subaerial exposure before the final burial, where at least the final disarticulation occurred in situ, which explains the high conservation level of the material. The sedimentological analysis made in each layer of the deposit corroborates the information related to the transport of the material, which were obtained in taphonomic analysis. Regarding these aspects, PIIPS reflects nearly non-biased biocenotic patterns. The well-preserved material found in PIIPS demonstrates the great potential of deposits with pond-like geomorphological features, with sidelines that are less steep than traditional tanks, providing smoother transport and accommodation for skeletal elements, which is a distinguishing factor in preserving fossils of vertebrates.  相似文献   

2.
The siderolitids from the uppermost Campanian and Maastrichtian deposits of the Pyrenees have been re-studied. This has revealed a high diversity and rapid replacement of taxa, confirming the group as a good tool for high resolution biostratigraphy. Two genera have been found in the uppermost Campanian–Maastrichtian interval in the Pyrenean deposits: Siderolites Lamarck, and Wannierina Robles-Salcedo. Siderolites, with canaliferous spines or denticulate periphery, is represented by four species replacing each other from the latest Campanian to Maastrichtian: Siderolites praecalcitrapoides (latest Campanian), S. pyrenaicus sp. nov. (early Maastrichtian), Siderolites calcitrapoides (late Maastrichtian) and Siderolites denticulatus (late Maastrichtian). Wannierina is characterised by well-developed keels and ramified marginal canals. Two species of Wannierina have been identified and they succeeded one another from latest Campanian to early Maastrichtian: Wannierina vilavellensis sp. nov. (latest Campanian) and Wannierina cataluniensis (early Maastrichtian). The species of the genus Siderolites inhabited shallow waters of tropical to subtropical platforms with moderate-to-high water-energy conditions and those of the genus Wannierina are typical of deep–water low-energy environments but still in the eutrophic zone.  相似文献   

3.
This paper discusses a well-represented fossil record of cartilaginous fishes (Chondrichthyes) from southern South America. The recovered samples allow the recognition of three assemblages with chronostratigraphic and paleogeographic value: i) typical Maastrichtian sharks and rays with affinities to eastern Pacific fauna, including the taxa Ischyrhiza chilensis, Serratolamna serrata, Centrophoroides sp. associated to Carcharias sp., and Dasyatidae indet.; ii) a scarce reworked assemblage of Paleocene–Early Eocene age including the taxa Otodus obliquus and Megascyliorhinus cooperi; iii) a rich assemblage with reworked taxa of Early to Middle Eocene age, together with autochthonous deposited Middle to Late Eocene taxa with close affinities to paleoichthyofaunas recovered from the North Atlantic, represented by Carchariashopei’, Odontaspis winkleri, Carcharoides catticus, Macrorhizodus praecursor, Carcharocles auriculatus, Striatolamia sp., Striatolamia macrota, Hexanchus agassizi, Notorhynchus sp., Myliobatis sp., Abdounia sp., Pristiophorus sp., Squatina sp., cf. Rhizoprionodon sp., Ischyodus sp., and one new species, Jaekelotodus bagualensis sp. nov. The studied samples include for the first time taxa with well established chronostratigraphic resolutions as well as taphonomic information that help clarifying the age of the fossil-bearing units. In addition, they provide relevant information about the evolution of the Magallanes (=Austral) Basin from the Upper Cretaceous to the Paleogene, suggesting a probable connection with the Quiriquina Basin of south-central Chile during the latest Cretaceous. Finally, the studied assemblages indicate a latitudinal pattern of distribution that provides valuable data on the environmental evolution and temperature of southern South America during the Paleogene.  相似文献   

4.
We report on a turtle from the Mina Esquirol site (Vallcebre basin), a new locality of early Maastrichtian age in the south-eastern Pyrenees. Fossils were located in the basal Tremp Formation, which was deposited in a littoral marsh. The material consists of a cast of a carapace including peripheral fragments and partial neural plates. The carapace exhibits a vermiculate ornamentation that is characteristic of genus Solemys and a histological bone structure similar to that of terrestrial taxa. However, taphonomic data indicates little transport and a short biostratinomic history, whereas palaeontological and sedimentological context indicates that the specimen was preserved in a shallow brackish water environment. Based on this taphonomic and sedimentological evidence, we suggest that at least some species of genus Solemys had a lifestyle similar to extant fresh or brackish water turtles (terrapins) and that the histological evidence alone for a terrestrial lifestyle is misleading.  相似文献   

5.
Geologic deposits containing fossils with remains of non-biomineralized tissues (i.e. Konservat-Lagerstätten) provide key insights into ancient organisms and ecosystems. Such deposits are not evenly distributed through geologic time or space, suggesting that global phenomena play a key role in exceptional fossil preservation. Nonetheless, establishing the influence of global phenomena requires documenting temporal and spatial trends in occurrences of exceptionally preserved fossil assemblages. To this end, we compiled and analyzed a dataset of 694 globally distributed exceptional fossil assemblages spanning the history of complex eukaryotic life (~ 610 to 3 Ma). Our analyses demonstrate that assemblages with similar ages and depositional settings commonly occur in clusters, each signifying an ancient geographic region (up to hundreds of kilometers in scale), which repeatedly developed conditions conducive to soft tissue preservation. Using a novel hierarchical clustering approach, we show that these clusters decrease in number and shift from open marine to transitional and non-marine settings across the Cambrian-Ordovician interval. Conditions conducive to exceptional preservation declined worldwide during the early Paleozoic in response to transformations of near-surface environments that promoted degradation of tissues and curbed authigenic mineralization potential. We propose a holistic explanation relating these environmental transitions to ocean oxygenation and bioturbation, which affected virtually all taphonomic pathways, in addition to changes in seawater chemistry that disproportionately affected processes of soft tissue conservation. After these transitions, exceptional preservation rarely occurred in open marine settings, excepting times of widespread oceanic anoxia, when low oxygen levels set the stage. With these patterns, non-marine cluster count is correlated with non-marine rock quantity, and generally decreases with age. This result suggests that geologic processes, which progressively destroy terrestrial rocks over time, limit sampling of non-marine deposits on a global scale. Future efforts should aim to assess the impacts of such phenomena on evolutionary and ecological patterns in the fossil record.  相似文献   

6.
This study of the upper Maastrichtian to Danian sedimentary succession from the northern part of the Romanian Eastern Carpathians (Varniţa section) aims to establish an integrated biostratigraphy based on calcareous nannofossils, organic-walled dinoflagellate cysts (dinocysts) and foraminiferal assemblages, and to reconstruct the depositional environments of the interval. The stratigraphic record across the studied section is incomplete, considering that an approximately 16 m thick strata interval from the top of the Maastrichtian to lowermost Danian cannot be analyzed due to a landslide covering the outcrop. The upper Maastrichtian is marked by a succession of biostratigraphic events, such as the First Appearance Datum (FAD) of the nannoplankton taxon Nephrolithus frequens and FAD of the dinocyst species Deflandrea galeata and Disphaerogena carposphaeropsis, and the Last Appearance Datum (LAD) of Isabelidinium cooksoniae in the lower part of the section. These bioevents are followed by the LAD of the Dinogymnium spp. and Palynodinium grallator dinocyst markers in the top of the Maastrichtian deposits analyzed. In terms of foraminiferal biostratigraphy, the upper Maastrichtian Abathomphalus mayaroensis Zone is documented in the lower part of the studied section. Some bioevents, such as the bloom of the calcareous dinoflagellate genus Thoracosphaera and the FAD of the organic-walled dinocysts Damassadinium californicum, Senoniasphaera inornata, Xenicodinium lubricum and X. reticulatum suggest an early Danian age for the middle part of the section. From the Danian deposits in the Varniţa section, we describe a new organic-walled dinocyst species, Pentadinium darmirae sp. nov., which is until now the only species of the Pentadinium genus discovered in the Paleocene. The occurrence of the global Danian dinocyst marker Senoniasphaera inornata in the top of the section, suggests an age not younger than middle Danian (62.6 Ma) for the analyzed deposits.The palynofacies constituents, as well as the agglutinated foraminiferal morphogroups, used to reconstruct the depositional environments, show that the late Maastrichtian sediments were deposited in an outer shelf to distal (bathyal) environment, followed by a marine transgression during the Danian.  相似文献   

7.
Feathers are rare in the fossil record because they have a low fossilization potential. Despite their palaeobiological significance, they also provide important palaeoecological and taphonomic information. Here, we report a new occurrence of three isolated feathers from the shales of the Oligocene Tremembé Formation (Taubaté Basin, SE Brazil). Their possible taxonomic affinities and taphonomic features are also discussed. Analyses identified the specimens as representatives of two pennaceous morphotypes (i.e., a contour and a rectrice feather). Both are preserved as carbonized traces, although, due taphonomic processes, they show different degrees of preservation. Since the Tremembé Formation is responsible for the most diverse record of Cenozoic birds, and because water-adapted birds (e.g., anseriformes and phoenicopteriformes) occur in this unit, it is highly possible that these feathers belonged to these aquatic taxa. Further investigations should concentrate on geochemical and microscopic techniques in order to reveal additional taxonomic and paleoecological features currently unknown in Paleogene birds of Brazil.  相似文献   

8.
Cuticle — the decay-resistant outer layer of leaves and young stems — provides a reliable means of identifying fossil plant remains and reflects the vegetative adaptations of plants to climate and other environmental parameters. The study of dispersed angiosperm cuticles originated prior to World War II and has focused on the origin and paleoecology of coal. Activity in dispersed cuticles reached a high point during the 1950s and 1960s with the study of Tertiary lignites in central Europe, then subsided in central Europe as workers from other regions expanded the technique to other time-periods and geographic regions. Data from dispersed cuticles augment data from palynomorphs because dispersed cuticles originate from a different generation of the vascular plant life cycle and have different taphonomic histories. Because the analysis of dispersed angiosperm cuticles is unfamiliar to many geologists, methods for the analysis and preparation of dispersed angiosperm cuticles are detailed in an appendix.Dispersed cuticle assemblages from coals in the upper Albian Longford Member of the Kiowa Formation and the Maastrichtian-Paleocene Raton Formation of the Southern Western Interior provide new constraints on the times that angiosperms entered coal swamps and rose to dominance. The Kiowa assemblages indicate that angiosperms first entered coal swamp environments by the late Albian, while the Raton assemblages indicate that angiosperms dominated primary productivity in some subtropical coal swamps by the late Maastrichtian. Angiosperms in Kiowa coals probably comprised pioneer species in conifer-dominated vegetation; the most common family of angiosperms was Chloranthaceae. Angiosperms in upper Maastrichtian Raton coals comprised the dominant seed plants to the exclusion of conifers; magnoliid dicots and monocots were the dominant taxa and comprised diverse genera and families. Evidence from palynology and types of preserved cuticle indicates that ferns were subordinate to seed plants in biomass in Raton coals, in contrast to some described assemblages from the Northern Western Interior. Paleocene coals from the Raton Basin show the loss of many Cretaceous angiosperm taxa as well as the appearance of new taxa, including conifers belonging to Taxodiaceae. However, these Taxodiaceae were evergreen and subordinate in abundance to angiosperms. Vegetational patterns shown by Cretaceous-Paleocene coals of the Southern Western Interior contrast with those of more northerly regions and indicate a poleward gradient in the timing of angiosperm dominance in coal swamps.  相似文献   

9.
A palynological investigation of sedimentary rocks enclosing an exceptionally well-preserved fossil dinosaur (Hadrosauridae) discovered in the upper part of the Hell Creek Formation in south western North Dakota was conducted in order to document the immediate paleoenvironment of this dinosaur. The specimen, an Edmontosaurus annectens is remarkable in having exceptional three-dimensional preservation of soft tissue around the skeleton, indicating rapid burial. A well-preserved palynological assemblage dominated by fern and bryophyte spores, with lesser gymnosperm and angiosperm pollen was recovered. Sparse fresh-water algae and marine dinoflagellate cysts were also recorded. The palynofacies is dominated by wood fragments, including charcoal, with little amorphous organic matter. The presence of some typical pollen taxa of the Wodehouseia spinata Assemblage Zone including Striatellipollis striatellus, Tricolpites microreticulatus, Leptopecopites pocockii as well as a diverse suite of Aquilapollenites, is fully consistent with a Late Cretaceous (late Maastrichtian) age. The palynoflora indicates a local vegetation composed of a canopy of conifers dominated by Pinaceae and a minor sub-canopy of Taxodium and cycads, as well as an understory of hydrophilous ferns, mosses and herbaceous angiosperms, indicative of a warm and humid climate – an environment where this specific hadrosaur roamed over 66 million years ago.  相似文献   

10.
The uppermost Cretaceous (upper Campanian–Maastrichtian) marine deposits of the central south Pyrenees host a rich larger benthic foraminiferal fauna and several rudist-rich levels. These marine deposits are directly overlain by the continental facies of the Arén and Tremp Formations, which are famous for their fossil dinosaur remains. Larger benthic foraminiferal distribution documents an important faunal turnover in all the carbonate platform environments within the photic zone, from open marine to littoral areas. Biostratigraphy indicates that this turnover occurred close to the Campanian-Maastrichtian boundary. This is also confirmed by strontium isotope stratigraphy which indicates an earliest Maastrichtian age for the appearance of the larger benthic foraminiferal assemblage constituted by Lepidorbitoides socialis, Clypeorbis mammillata, Wannierina cataluniensis, Orbitoides gruenbachensis, Siderolites aff. calcitrapoides, Fascispira colomi, Omphalocyclus macroporus and Laffiteina mengaudi. In particular, a numerical age of 71 Ma is obtained for the Hippurites radiosus level, just a few meters below the first continental deposits of the Arén sensu stricto Formation. The youngest marine sediments of the central south Pyrenees are early Maastrichtian in age. This is also an important constraint for the age of the end-Cretaceous dinosaur fossil localities of the Tremp basin.  相似文献   

11.
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the 143Nd/144Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo143Nd/144Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 101-103 are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, εNd values are often similar within one εNd unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing εNd values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic 143Nd/144Nd incorporated post mortem during diagenesis. Unlike REE patterns, 143Nd/144Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the εNd value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of ±1 εNd unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of εNd values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in εNd values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived εNd values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to εNd values, 87Sr/86Sr can help to further constrain the fossil provenance and reworking.  相似文献   

12.
Actinopterygian remains have been recovered from Upper Cretaceous (lower Campanian to lower Maastrichtian) marginal marine deposits of the Adaffa Formation in northwestern Saudi Arabia. The fossils comprise gars (Lepisosteidae), pachycormids (cf. Protosphyraena sp.), indeterminate pycnodontiforms, enchodontid teleosts (cf. Enchodus sp.) and other indeterminate Teleostei. This assemblage is significant because it includes a novel occurrence for the Middle East (Pachycormidae) together with taxa (Lepisosteidae, Pycnodontiformes, Enchodontidae) that have been previously recorded from Late Cretaceous faunas elsewhere in the Mediterranean Tethyan region.  相似文献   

13.
The first data on the distribution of calcareous nannofossils in the Behbehan section, the Kuh-e-Rish, are considered. According to the distribution of nannofossils, the Upper Cretaceous deposits of the section are subdivided into nine biostratigraphic zones. CC17 (Calculites obscurus zone) indicate the Late Santonian. Biozones CC18 (Aspidolithus parcus zone), CC19 (Calculites ovalis zone), CC20 (Ceratolithoides aculeus zone), CC21 (Quadrum sissinghii zone), and CC22 (Quadrum trifidum zone) represent the Campanian. Biozone CC23 (Tranolithus phacelosus zone) indicate the Late Campanian–Early Maastrichtian. Biozones CC24 (Reinhardtites levis zone) and CC25 (Arkhangelskiella cymbiformis zone) suggest the Middle and Late Maastrichtian, respectively. In the late Late Maastrichtian, due to decreasing in water depth at the study area, Nephrolithus frequens zone (CC26) defined in Tethysian domain was not recognized. The boundary between Gurpi–Pabdeh Formations represented a non-depositional period from the late Late Maastrichtian to the end of Early Paleocene. Also, it seems that predominant conditions of the sedimentary environment of Neotethys basin with the presence of index species calcareous nannofossils specified, which itself indicates that the warm climate and high depth of the basin in Late Santonian to Late Maastrichtian, in low latitudes has been prevalent.  相似文献   

14.
Early Cambrian univalve molluscs are predominantly represented by microscopic forms (body length of 1–3 mm), preserved mainly as phosphatised internal moulds with limited definable features. Macromolluscs (≥ 5 mm) are generally rare, occur in low abundance and are poorly preserved, often lacking apical features and ornament which hinders taxonomic assessment. New and previously undescribed material from lower Cambrian Hawker Group carbonates of the Flinders Ranges in South Australia includes four new taxa, Minastirithella silivreni gen. et sp. nov., Galeacalvus coronarius gen. et sp. nov., Helcionella histosia sp. nov., and Ilsanella enallaxa sp. nov. Three-dimensional silicified shell material preserved with intact apices offers new insight into protoconch morphology, growth habit (isometric vs. allometric) and developmental mode. This material supports previous suggestions that some micromollusc taxa may in fact be early ontogenetic stages (juveniles) of larger macroscopic taxa; such that the millimetric size range of helcionelloids conforms to the dimensions of earliest apical portion in some macromolluscs documented herein. However, taphonomic limitations associated with phosphatisation show that the morphology (especially height vs. width) of the apex can greatly influence the probability of steinkern formation and preservation potential for both micro- and macro-scale helcionelloids. Artificial inflation in the appearance of millimetric helcionelloids with an optimal morphology for phosphatisation is thus directly linked to taphonomic biases in the fossil record.  相似文献   

15.
Estuaries are complex sedimentary and ecological systems, where controlling factors are variable largely depending on wave vs. tidal dominance and fluvial processes. Paleoenvironmental reconstruction of their ancient counterparts in the form of coastal valley deposits in the subsurface or outcrop requires a multidisciplinary approach. Microfossils can play an integral part in identifying estuarine subenvironments. Foraminifera can be abundant in modern estuaries and resemble characteristics of brackish ichnofaunal communities in featuring low species diversity, but high abundances of opportunistic species, different feeding strategies and common infaunal species. Whereas sediment distribution is highly controlled by energy regimes, foraminifera seem to respond to salinities and tidal exposure. Whereas individual taxa can widely range bathymetrically, the combination of certain taxa becomes diagnostic for estuarine environments. Fossil marginal marine assemblages are dominated by agglutinated species due to taphonomic loss of the calcareous component that is often dominant in modern estuaries. When comparisons between fossil and modern assemblages are undertaken it is advisable to compare with Recent subsurface or remnant assemblages for a more accurate basis of paleoenvironmental interpretation. More integrated research with detailed taphonomic observations is needed on ancient coastal valley deposits to find the paleoecological requirements of extinct taxa and their link to sedimentary facies and ichnofacies.  相似文献   

16.
The Calafate Formation crops out in south-western Santa Cruz Province, Argentina, and displays a stacking of asymmetrical coarsening–fining-upward cycles. These cycles are interpreted as the product of short-lived transgressive-regressive events in which the coarsening upward part represents sedimentary aggradation with a stable or decreasing sea level. Sedimentological and palynological analyses indicate nearshore marine conditions. Even though the existence of an estuary or incised valley cannot be determined, this is the most probable palaeogeographic model. Based on dinoflagellate cysts, the base of the section is considered to be not older than Maastrichtian. The presence of the oyster Ambigostrea clarae (Ihering) occurring together with the dinoflagellate cyst species Manumiella druggii (Stover) Bujak and Davies and Eisenackia circumtabulata Drugg in the middle part of the section indicates an age no older than late Maastrichtian. According to sedimentological data, deposits representing the Cretaceous–Palaeogene transition would have been eroded, which is confirmed by the presence of Grapnelispora loncochensis Papú. This megaspore is a consistent component of the Maastrichtian assemblages from Patagonia.  相似文献   

17.
The North American fossil record of dinosaur eggshells for the Cretaceous is primarily restricted to formations of the middle (Albian–Cenomanian) and uppermost (Campanian–Maastrichtian) stages, with a large gap in the record for intermediate stages. Here we describe a dinosaur eggshell assemblage from a formation that represents an intermediate and poorly fossiliferous stage of the Upper Cretaceous, the Santonian Milk River Formation of southern Alberta, Canada. The Milk River eggshell assemblage contains five eggshell taxa: Continuoolithus, Porituberoolithus, Prismatoolithus, Spheroolithus, and Triprismatoolithus. These ootaxa are most similar to those reported from younger Campanian–Maastrichtian formations of the northern Western Interior than they are to ootaxa reported from older middle Cretaceous formations (i.e., predominantly Macroelongatoolithus). Characteristics of the Milk River ootaxa indicate that they are ascribable to at least one ornithopod and four small theropod species. The taxonomic affinity of the eggshell assemblage is consistent with the dinosaur fauna known based on isolated teeth and fragmentary skeletal remains from the formation, although most ornithischians and large theropods are not represented by eggshell. Relative to the Milk River Formation eggshell, similar oospecies occurring in younger Cretaceous deposits tend to be somewhat thicker, which may reflect an increase in body size of various dinosaur lineages during the Late Cretaceous.  相似文献   

18.
Benthic foraminifers from borehole sections recovered by drilling in the Yamal Peninsula, West Siberia, characterize the Ceratobulimina cretacea Beds (the upper Campanian-lower Maastrichtian) and the Spiroplectammina variabilis-Gaudryina rugosa spinulosa and Spiroplectammina kasanzevi-Bulimina rosenkrantzi regional zones of the lower and upper Maastrichtian, respectively. The Danian Stage is missing from the sections, which include marine deposits of the Selandian Stage attributed to the Ceratolamarckina tuberculata Beds. Foraminiferal assemblages of the beds include the Siberian endemic species associated with Paleocene foraminifers of the Midway-type fauna of subglobal distribution range. Occurrence of the latter suggests that warm-water surface currents from the North Atlantic reached southern areas of the Kara Sea.  相似文献   

19.
The Kholokhovchan Flora comes from tuffaceous – terrigenous deposits of the Vetvinskaya Member (Chalbugchan Group) in the Penzhina and Oklan rivers interfluve, Northeastern Russia. The depositional environment of the plant-bearing deposits is interpreted to have been a freshwater lake. The Kholokhovchan Flora hosts 42 fossil plant species belonging to Marchantiopsida, Polypodiopsida, Ginkgoales, Leptostrobales, Bennettitales, Pinales and Magnoliopsida. It is characterised by diverse angiosperms, less diverse conifers and ferns, by the presence of relatively ancient Sphenobaiera, Phoenicopsis and Pterophyllum together with advanced Late Cretaceous Taxodium, Glyptostrobus and angiosperms, among which platanoids are quite diverse. The Kholokhovchan Flora is most similar to Penzhina and Kaivayam floras of the Anadyr-Koryak Subregion and Arman Flora of the Okhotsk-Chukotka volcanogenic belt (Northeastern Russia) and should be dated as Turonian–Coniacian. The Kholokhovchan Flora, that populated volcanic plateaus and intermontane valleys, are characterised by a mixture of ancient “Mesophytic” plants with typical Late Cretaceous “Cenophytic” taxa. This peculiar composition probably reflects a gradual penetration of new angiosperm-dominated plant assemblages into older floras: during the Late Cretaceous, “Cenophytic” assemblages migrated along river valleys and other disturbed habitats into the interior of Asia, eventually occupying volcanogenic uplands, and in places replacing the “Mesophytic” fern-gymnospermous communities that existed there. Two new angiosperm species, as well as four the most characteristic conifers of the Kholokhovchan Flora, are described: Cupressaceae gen. et sp. indet. cf. Widdringtonites sp., Taxodium cf. olrikii, Taxodium sp., Glyptostrobus sp., Ettingshausenia vetviensis sp. nov. and Parvileguminophyllum penzhinense sp. nov.  相似文献   

20.
《Quaternary Science Reviews》2007,26(19-21):2526-2543
Occasional excavation of in situ and ex situ deposits at the formerly mined Gondolin paleocave system has yielded large and diverse samples of Plio-Pleistocene faunas, including isolated hominin and non-hominin primate remains. In 2003, new excavations into naturally decalcified, in situ sediments near the GD 1 datum point near the northwest corner of the cave system were undertaken. This paper describes the recovered faunal remains, taphonomy of the assemblage, and the geological and paleomagnetic context of the GD 1 deposits. The deposits represent a series of inter-stratified speleothem, in-washed sediments and talus deposits we suggest date to a time period prior to, and just after, the Olduvai normal-polarity event at around 1.7–1.8 Ma. Surface sediments and clasts were introduced into the cave by rain water runoff entering a vertically-oriented entrance that had formed along a rift in the area of GD 1. The faunal assemblage consists primarily of fragmentary diaphyseal fragments and isolated teeth. Taxonomically, the small collection of specifically identifiable bovid and equid fossils is generally consistent with remains previously excavated from in situ deposits in the Gondolin paleocave system (GD 2) and dated to around 1.8 Ma; however, the depositional histories of these two assemblages from Gondolin are remarkably different. The preservation and relative proportions of recovered skeletal elements at GD 1 is consistent with these materials having been initially accumulated outside the karstic system near the vertical cave entrance, and then later hydrologically sorted and deposited inside the cave. The sporadic to continuous water flow into the northwest corner of the cave system during the Pleistocene gradually decalcified the excavated fossilbearing breccias and further modified the composition and spatial distribution of the fossil assemblage by introducing potentially younger deposits and skeletal materials. This study highlights the variation in taphonomic processes that can occur within a single cave system, and the complex pre- and postdepositional geological and hydrological processes that can influence the taphonomic history of South African Plio-Pleistocene karstic fossil assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号