首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The features and similarities in the geology of paleovalley-related uranium mineralizing systems in Australia and China can be used to refine strategies for exploration. Paleovalley-related uranium resources include sandstone-, lignite- and calcrete-style deposits that are developed within the host sediments deposited in paleovalleys. The paleovalleys incise either crystalline bedrock or older sedimentary rocks, and uranium was deposited and concentrated by the influx of oxidized/reduced groundwaters flowing in aquifers within the paleovalley fill. The critical features of paleovalley-related uranium deposits include sediment and uranium sources, geological setting, depositional environment, age and relative timing of mineralization, aquifer characteristics, availability and distribution of reductants, and preservation potential of the uranium mineral system. This set of information provides a basis to establish the uranium mineralization model, which can then be used to assist with generating targets for uranium exploration and prospectivity analysis of a region. With respect to Sino-Australian examples, paleovalley-related uranium deposits form mostly around the margins of sedimentary basins and the mineralization is commonly hosted within channel fills contained within paleovalleys developed upon, or proximal to, Precambrian crystalline rocks that contain primary uranium sources. The deposits that have been well studied show remarkably similar factors that controlled the formation of paleovalley-related uranium deposits. Basement/bedrocks with above-background (2.8 ppm U) levels of uranium (10–100 ppm) that are linked to, and/or, incised by paleovalleys are associated with these deposits and are the inferred source of the uranium. In these regions, extensive fluvial systems developed particularly during Mesozoic and Cenozoic times, uranium from the bedrock was first dispersed into the sediments, and then concentrated to form deposits through successive chemical remobilization, precipitation and concentration. The deposits formed in continental or marginal marine environments, and commonly are associated with reduced lithologies, containing pyrite and dispersed organic matter and/or seams of lignite, or show evidence of infiltrated hydrocarbons. The mineralization is developed where oxidizing fluids (carrying dissolved U) reacted with reductants in the sediments. Geological, geophysical and geochemical features of the paleovalleys and related uranium deposits are used to construct models to understand host sediment distribution, fluid flow and ore genesis that can assist exploration for paleovalley-hosted uranium deposits. Precise geometric definition of the basin margin and paleovalley architecture is important in identifying exploration targets and improving the effectiveness of drilling. Refinements in remote sensing, geophysical and data processing techniques, in combination with sedimentological and depositional interpretations, provide an efficient approach for outlining the principal drainage patterns and channel dimensions. To help reduce risk, an exploration strategy should combine these technologies with a detailed understanding of the physicochemical parameters controlling uranium mobilization, precipitation and preservation.  相似文献   

2.
澳大利亚蕴藏了丰富的铀矿资源,目前铀矿储量位居世界第二。在大地构造上,澳大利亚可划分为中西部前寒武纪克拉通和东部显生宙造山带。在区域地质构造背景和成矿条件研究的基础上,总结了铀矿在北澳、南澳、西澳、中澳和东澳五大成矿区带中的分布情况,勾勒了北澳的派恩克里克、南澳的奥林匹克坝、西澳的伊利列等15个矿集区中的34个类型迥异的矿区的总体地质环境与矿床特征。根据成矿地质作用、成因类型、矿物特征等因素,结合该国铀矿床的具体情况,归纳出8种典型的矿床类型。选取代表性铀矿进行地质环境、矿床地质的分析与总结,认为澳大利亚铀矿的成矿地质条件优越,矿床类型丰富,资源潜力巨大,并指出这些类型可作为今后找铀的靶向类型。  相似文献   

3.
The Frome airborne electromagnetic (AEM) survey was designed to provide reliable pre-competitive AEM data to aid the search for energy and mineral resources around the Lake Frome region of South Australia. Flown in 2010, a total of 32,317 line kilometres of high-quality airborne geophysical data was collected over an area of 95,450 km2 at a flight line spacing mostly of 2.5 km, opening to 5 km spaced lines in the Marree–Strzelecki Desert area to the north. The Lake Frome region hosts a large number of sandstone-hosted uranium deposits with known resources of ~60 000 tonnes of U3O8 including the working In Situ Recovery operations at Beverley, Pepegoona, Pannikin and Honeymoon, and deposits at Four Mile East, Four Mile West, Yagdlin, Goulds Dam, Oban, East Kalkaroo, Yarramba and Junction Dam. The aims of the Frome AEM Survey were to map and interpret critical elements of sandstone-hosted uranium mineral systems including basin architecture, paleovalley morphology, sedimentary facies changes, hydrological connections between uranium sources and uranium deposition sites and structures. Interpretations of the data show the utility of regional AEM surveying for mapping crucial elements of sandstone-hosted uranium mineral systems as well as for mapping geological surfaces, structures and depth of cover over a wide area. Data from the Frome AEM Survey allow mineral explorers to put their own high-resolution AEM surveys into a regional context. Survey data were used to map and interpret a range of geological features that are associated with, or control the location of, sandstone-hosted uranium mineral systems and have been used to assess the uranium prospectivity of new areas to the north of the Flinders Ranges.  相似文献   

4.
Shallow calcrete aquifers in the central north of the Yilgarn Craton in Western Australia are the host to numerous secondary carnotite U deposits. Sampling and analysis of approximately 1400 shallow aquifer groundwaters were conducted to test if U mineralisation of this type may be found using a >5 km sample spacing. Results show this can be achieved. All the economic deposits and most of the minor deposits and occurrences are associated with groundwater that has carnotite (KUO2VO4) approaching or exceeding saturated conditions. Soluble U concentrations alone identified the largest deposit (Yeelirrie) and several smaller deposits, but this parameter was not as successful as the mineral saturation indices. Palaeodrainage distribution and thickness of cover combined with surface drainage and catchment boundaries provided background information of U primary sources and for areas with the highest exploration potential for channel and playa U deposits. Granites in the SE of the study area are less prospective with regard to secondary U deposits. Groundwater geochemistry in conjunction with palaeodrainage mapping may greatly improve exploration through cover where radiometric geophysics is not effective. The study of regional, shallow groundwater for U shows multiple benefits for mineral exploration, the economy and potable water quality.  相似文献   

5.
成矿大地构造背景、盆地形成地质环境及其盆地类型、后期构造改造等是砂岩型铀矿形成前提条件;砂岩型铀矿主要受外生沉积条件、后成水文条件及物理化学环境制约;以东胜大型砂岩型铀为例,对砂岩型铀矿成矿机制与演化、铀矿床空间分布特点及规律等方面进行讨论;探讨了鄂尔多斯盆地地质背景、成矿条件、矿床地质特征、控矿因素及成矿作用,提出砂岩型铀矿成岩、后生、低温热液成矿阶段形成的特态相矿物群,论述了低温成矿作用的矿物学及物理化学证据,认为东胜大型砂岩型铀矿具有沉积预富集-古层间氧化淋滤-后生二次还原与交代的成因特征.  相似文献   

6.
A literature review of the source and occurrence of helium shows that it can, under favorable conditions, lead to the discovery of radioactive ore deposits, oil and gas pools, and fracture zones associated with mineral occurrences. Analytical results show that anomalous helium is present in groundwaters and near uranium occurrences and thus can aid in the identification of uranium occurrences or prospective target areas for uranium exploration.  相似文献   

7.
The discovery that Au accumulates in calcrete (pedogenic carbonate or caliche) was made in 1987 by CSIRO. Calcrete is a general term describing accumulation of alkaline earth metals in soils of arid and semi-arid terrains around the world. The principal constituent of calcrete is calcite while Au is a noble metal. Calcrete has been a significant tool in a number of Au deposit discoveries, so understanding the mechanisms by which these diametrically different components come together is valuable for enhancing future discovery. Numerous laboratory experiments, case histories and exploration models have been published (most from Australia) yet we do not fully understand the mechanisms involved. It is timely, therefore, twenty-five years on since the first publication of this phenomenon, to review this highly unusual but economically important association.Critical to any review on Au in calcrete is to first consider calcretes themselves. The nature of a particular calcrete, where it has formed and mode of formation is relevant to how, where and why Au accumulates within it. This review commences with a background, nomenclature, history, classification and some examples of calcrete types found near Au deposits. How calcretes form, their origins and the role of biota is considered. Their locations in the regolith and landscape, as well as exploration models for Au in calcrete are discussed. A section on the chemistry of Au in calcretes details what we know about possible mechanisms of formation and considers what laboratory experiments on microorganisms and abiotic experiments tell us. Following on is a summary of practical aspects of identifying, collecting and analysing samples for exploration purposes. Selected mineral exploration case histories are described and how they fit into models of exploration and different regolith settings. Concluding sections include a summary and implications of this accumulated knowledge to discovering Au deposits.  相似文献   

8.
我国沉积变质型铀矿床主要产在华北地台的太古界、元古界的变质岩系中,都在古老基底剥蚀面之上,有花岗岩侵入或混合岩化。古地理环境为滨海-浅海相中近古海岸线的基底洼地。矿化特点因地段不同而异:远离花岗岩地段,矿体呈似层状,与地层产状基本一致,受层位、岩性控制,铀矿物是沥青铀矿,粒度小,沿层理定向排列;近花岗岩外接触带或混合岩化地段为巢状矿体,铀矿物是晶质铀矿,粒度大,呈脉状、网脉状产出。与国外澳北区铀矿床相比,两者基本相似,但我国铀矿化分布空间大,形成时间长,无盖层。矿床形成过程为:沉积阶段形成了富铀  相似文献   

9.
蒙古国铀矿地质特征及资源潜力   总被引:2,自引:0,他引:2  
吴涛涛 《地质与勘探》2018,54(6):1247-1255
蒙古国蕴含较丰富的铀矿资源。本文总结了蒙古国74处已知的铀矿床(点)地质资料,将蒙古国铀矿划分为砂岩型、火山岩型、花岗岩型、蚀变岩型、沉积岩型等5种类型,其中火山岩型和砂岩型是蒙古国主要的铀矿矿床类型;通过对蒙古国大地构造背景及典型铀矿床地质特征进行研究,将蒙古国划分为4个铀成矿省,其中最具成矿潜力的是蒙古-额尔古纳铀成矿省、戈壁-塔木察格铀成矿省;结合蒙古国成矿地质背景及矿产开发情况,圈定了多尔诺特铀矿潜力区、乔伊尔铀矿潜力区、赛因山达-宗巴音铀矿潜力区、楚鲁特铀矿潜力区、布图里诺儿铀矿潜力区等5处铀矿勘查开发潜力区。  相似文献   

10.
Stratabound, uraniferous diagenetic xenotime cements provide a minimum depositional age of 1,632±3 Ma for the sedimentary Birrindudu Group in the Killi Killi Hills, Tanami Region in northern Australia. The age of xenotime formation is broadly coeval with that recently proposed (1,650–1,600 Ma) for uranium mineralisation in the unconformity-associated deposits of the Pine Creek Inlier, northern Australia, and Athabasca Basin, Canada. The geological setting and formation model for the uraniferous xenotime crystals are similar to those widely proposed for unconformity-associated uranium deposits, suggesting a genetic link between the two. However, xenotime formation in the Birrindudu Group occurred during an apparently earlier stage of diagenesis, compared to late diagenetic formation of unconformity-associated uranium deposits. This could be explained by variations in the thickness of sediment cover and diachronous diagenesis across the basin, at the time of the basin-wide uranium mobilisation event, herein dated at ca. 1,630 Ma. In such a scenario, stratabound uraniferous xenotime cements could represent the remote distal zones of a more deeply buried, uranium mineralising system. Alternatively, the xenotime layer represents a precursor to, or a source for, later unconformity-associated ore deposition. In this case, the presence of diagenetic uraniferous xenotime in an area prospective for unconformity-associated uranium mineralisation would be an indication of, and still provide an approximate age for, uranium mobilisation within the cover sequence. Xenotime is a far more robust mineral than uraninite for U–Pb geochronology and can potentially provide a more reliable and precise timeframe for uranium mineralisation and subsequent recrystallisation events if present in the immediate uranium-ore environment.  相似文献   

11.
The Mount Boreas‐type granite and spatially associated syenitic granitoid of Western Australia yield Pb‐Pb ages of 2370 ± 100 Ma and 2760 ± 210 Ma, respectively. Th‐Pb ages, although less precise, are concordant with these ages, and therefore the apparent ages are interpreted to be the crystallisation ages for these two units. U‐Pb ages are variable and for the most part anomalously old, which suggests a Cainozoic uranium loss. However, this loss is generally small (< 3μg/g); therefore, neither granitoid in its fresh state provides a good source for nearby calcrete‐hosted uranium deposits. The possibility remains that the Mount Boreas‐type granite that has been completely weathered during the Tertiary could have been a source for the calcrete‐type uranium deposits in W.A. Although the Mount Boreas‐type granite is highly fractionated, it does not bear a strong geochemical imprint of a sedimentary precursor. This feature contrasts it with apparently fresh granitoids from other parts of the world that have lost large amounts of uranium (~ 20μg/g) and are associated with large roll‐type and other low temperature‐type uranium deposits.  相似文献   

12.
华南碳硅泥岩型铀矿床与断陷带倾伏地段的关系   总被引:1,自引:0,他引:1  
文章以产于不同地质背景及不同层位的五个碳硅泥岩型铀矿床为例,说明该类型铀矿床常分布于断陷带的倾伏地段。初步探讨了该类型铀矿床产于断陷带倾伏地段的原因:富铀地层是成矿的物质基础和前提,经干旱气候条件下地下水的淋积造矿作用成为工业富集,成矿期都在气候干旱的中、新生代;断陷带的倾伏地段比扬起段汇水条件好,易形成铀矿床;在新构造运动上升区,保矿条件是控矿诸因素中最关键的条件,倾伏地段最有利于保矿。文章指出了识别断陷带倾伏地段的标志,对该类型锚矿床找矿勘探有实际意义。  相似文献   

13.
在辽东大石桥组蛇纹石化大理岩中新发现晶质铀矿矿化现象。晶质铀矿呈角砾状发育在蛇纹石化白云石大理岩中,并叠加有辉钼矿、黄铁矿等矿化。U-Pb同位素年龄测定显示,晶质铀矿形成于1763~1794Ma。EPMA U-Th-Pb化学年龄显示,晶质铀矿形成后经历了1512±20Ma的热事件改造,对应一次岩浆侵入事件。辽东地区经历了古元古代的裂谷拉张、碰撞造山、造山后伸展等重大地质事件。大石桥组中蛇纹石化大理岩中的铀矿化,以及连山关铀矿床、翁泉沟地区铁-硼-铀矿床的热液铀成矿作用均形成于古元古代晚期造山后/非造山区域伸展环境,可能与区域伸展体制下的地幔柱活动有关。  相似文献   

14.
矿床是地质过程的产物之一, 深入分析控制矿床形成和保存的关键地质过程是矿产资源定量预测与评价的基础.闽西南马坑式铁多金属矿为矽卡岩型矿床, 燕山期的岩浆活动提供了热源、流体来源及部分的铁质来源; 热液沿着北东向断裂向上运移, 在岩体与石炭-二叠纪碳酸盐岩地层的接触面及石炭-二叠纪地层内部发生了热液交代作用, 形成了矽卡岩化; 铁主要来源于石炭-二叠纪碳酸盐岩建造, 后期燕山期岩浆的侵入, 使得铁进一步富集; 并在石炭-二叠纪地层中沉淀成矿.基于上述关键成矿过程, 从"源"(热源、物质来源和流体来源)、"运"(流体通道)、"盖"(圈闭)、"储"(矿质沉淀场所)和"存"(矿床的后期保存条件)等方面提取了地质证据, 利用模糊逻辑综合地质证据得到了找矿有利度图.结果显示所圈定的预测远景区与已知铁多金属矿床在空间上具有很强的相关性, 可作为进一步工作部署的依据.基于地质过程的矿产资源定量预测与评价方法, 决定矿床能否形成的关键地质过程为评价依据, 可为闽西南进一步找寻马坑式铁多金属矿提供新的找矿思路和参考依据.   相似文献   

15.
16.
开鲁盆地铀矿水文地球化学找矿研究   总被引:2,自引:0,他引:2  
邹顺庚 《铀矿地质》2000,16(4):226-232
本文从基础地质条件出发 ,界定了开鲁盆地的发展历史 ,全面分析了研究区的水文地质条件、水文地球化学特征及地下水的含铀性 ,确定了在整体坳陷期形成的姚家组和四方台组区域承压含水层的找矿意义。同时 ,从水文地质构造层、渗入渗出体系的划分及浅层地下水和深部地下水化学异常显示等方面入手 ,较详细地阐述了开鲁盆地水文地质条件和水文地球化学特征及其对层间氧化带发育条件的影响 ,预测了两处可地浸砂岩型铀矿的成矿远景地段 ,并指出道德庙是本区最具找矿前景的地区。  相似文献   

17.
18.
华南热液铀矿成矿作用若干问题探讨   总被引:1,自引:0,他引:1  
华南地区基底铀背景值较高,区域热液铀矿形成于晚中生代-古近纪(K-E)的地壳拉张期。区内各类型热液铀矿床在成矿时代、温压条件、矿物组合及热液蚀变等方面有一定的共同特征,根据热液铀矿床的分布可划分为三大成矿带。铀成矿与伸展构造关系密切,且成矿流体、物质可能为不同来源;铀成矿期铀主要以碳酸铀络合物形式运移。  相似文献   

19.
澳大利亚铀矿资源考察   总被引:3,自引:0,他引:3  
澳大利亚铀矿资源丰富,是世界上最大的铀矿资源国。本文重点介绍了澳大利亚铀矿床类型和铀矿资源分布情况。了解澳大利亚铀矿产出的地质背景、成矿规律和控矿因素,对寻找铀矿资源具有十分重要的意义,这些经验可为勘查人员提供更多寻找铀矿的思路。我国铀矿勘查正处于新的发展时期,借鉴澳大利亚找铀矿思路和成功经验,开辟新区和矿区外围铀矿勘查,推进国内铀资源找矿突破。  相似文献   

20.
我国寻找大型、超大型铀矿床的找矿方向和有利靶区   总被引:1,自引:3,他引:1  
70年代以来,国外通过地质找矿、成矿模式研究、物化探新方法的应用先后发现了一批超大型铀矿床。深入开展与寻找超大型铀矿床有关的地质研究,已引起国际地学界的高度重视。争取在我国发现更多的大型超大型铀矿床是广大铀矿地质工作者的重要任务。本文综合分析了世界超大型铀矿床产出的区域地质背景和地质成矿条件,进行了对比研究,提出我国寻找超大型铀矿床的找矿方向和有利靶区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号