首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
The response of an oscillating circular cylinder at the wake of an upstream fixed circular cylinder was classified by different researchers as galloping, wake induced galloping or wake induced vibration. Furthermore it is already known that a sharp edge square cylinder would undergo galloping if it is subjected to uniform flow. In this study the influence of the wake of a fixed circular cylinder on the response of a downstream square cylinder at different spacing ratios (S/D = 4, 8, 11) is experimentally investigated. The subject appears not to have received previous attention. The lateral displacements, lift forces and the pressure data from gauges mounted in the wake of the oscillating cylinder are recorded and analyzed. The single degree of freedom vibrating system has a low mass-damping parameter and the Reynolds number ranges from 7.7 × 102 to 3.7 × 104.In contrast to that for two circular cylinders in tandem arrangement, the freely mounted downstream square cylinder displays a VIV type of response at all spacing ratios tested. There is no sign of galloping or wake induced galloping with the square cylinder. With increase at the spacing ratio the cross-flow oscillations decrease. It is shown that the vortices arriving from the upstream fixed circular cylinder play a major role on the shedding mechanism behind the downstream square cylinder and cause the square cylinder to shed vortices with frequencies above Strouhal frequency of the fixed square cylinder (St = 0.13). The VIV type of oscillations in the downstream square cylinder is most probably caused by the vortices newly generated behind the square cylinder.  相似文献   

2.
The validity of the independence principle applied to the vortex-induced vibration (VIV) of an inclined cylinder in steady flow is investigated by conducting numerical simulations. In order to create a perfect end-effect-free condition, periodic boundary condition is applied on the two end boundaries that are perpendicular to the cylinder. It is found that the response amplitude and frequency for an inclination angle of α = 45° agree well with their counterparts for α = 0°. The numerical results demonstrated the validity of the independence principle in the case of vortex-induced vibration, which has not been demonstrated by laboratory tests due to the difficulty in avoiding the end effects.  相似文献   

3.
Experiments employing a low-mass-damping cylinder have been conducted to determine the vortex-induced vibration (VIV) response of four suppressors of the flexible-shroud family. The VIV suppressors were inspired in the concept of the Ventilated Trousers (VT), a flexible shroud composed of a flexible net fitted with three-dimensional bobbins. Reynolds number varied between 5 × 103 and 25 × 103, while reduced velocity varied from 2 to 26. The VIV dynamic response showed that the VT suppressed the peak amplitude of vibration down to 40% of that of a bare cylinder. Other flexible shrouds also achieved suppression, but not as efficiently. Drag was reduced during the VIV synchronization range, but remained above the value for a bare static cylinder thereafter. Spectral analysis of displacement and lift revealed that, depending on the geometry and distribution of the bobbins, the flexible shroud can develop an unstable behavior, capturing energy from the wake and sustaining vibrations for higher reduced velocities. PIV measurements of the wake revealed that the entrainment flow through the mesh is necessary to extend the vortex-formation length of the wake; this mechanism only occurs for the VT mesh.  相似文献   

4.
Laminar flow past a circular cylinder with 3 small control rods is investigated by numerical simulation. This study is concerned with the suppression efficacy of vortex induced vibration by small control rods located around a main cylinder. The effects of the attack angle and rod-to-cylinder gap ratio on the hydrodynamics and vibration responses of the main cylinder are investigated. The attack angle of α = 45° is performed as the critical angle for VIV suppression of 3 control rods. The 3 control rods have no effect on VIV suppression when the attack angle is less than the critical angle. The 3 control rods have an excellent VIV suppression efficacy when the attack angle is larger than the critical angle. The transverse vibration frequency of the cylinder with 3 control rods is less than that for an isolated cylinder for all the configurations. The numerical results for the configurations of α = 45° & 60°, G/D = 0.6–1.2 show excellent suppression efficient among the cases investigated in this study. The best suppression efficient is found at α = 45°, G/D = 0.9 for 3 control rods. 2 rods in behind of the main cylinder perform more efficient than that of 1 rod in front for VIV suppression as the gap ratio of G/D less than 1.0.  相似文献   

5.
Experimental studies were carried out to investigate the response features of an inclined flexible bare cylinder as well as a straked cylinder in a towing tank, with the main purpose of further improving the understanding of the effect of yaw angle on vortex-induced vibration (VIV) suppression. Four yaw angles (a = 0°, 15°, 30°, 45°), which is defined as the angle between the cylinder axis and the plane orthogonal to the oncoming fluid flow, were tested. The cylinder model was towed along the tank to generate a uniform fluid flow. The towing velocity was in the range of 0.05–1.0 m/s with an interval of 0.05 m/s. The corresponding Reynolds number ranged from 800 to 16000. The strakes selected for the experiments had a pitch of 17.5D and a height of 0.25D, which is generally considered as the most effective configuration for VIV suppression of a flexible cylinder in water. The experimental results indicate that VIV suppression effectiveness of the inclined flexible straked cylinder is closely related to the yaw angle. The displacement amplitudes are significantly suppressed in both cross-flow (CF) and in-line (IL) directions at a = 0°. However, with increasing yaw angle, the suppression efficiencies of the CF and IL displacement amplitudes gradually decrease. In addition, the CF dominant frequencies of the straked cylinder obviously deviate from those of the bare cylinder at a = 0° and 15°. This deviation is substantially alleviated with increasing yaw angle. The IL dominant frequencies show less dependency on the yaw angle. Similar trends are also observed on the dominant modes of vibration and the mean drag coefficients.  相似文献   

6.
A flat plate in pitching motion is considered as a fundamental source of locomotion in the general context of marine propulsion. The experimental as well as numerical investigation is carried out at a relatively small Reynold number of 2000 based on the plate length c and the inflow velocity U. The plate oscillates sinusoidally in pitch about its 1/3  c axis and the peak to peak amplitude of motion is 20°. The reduced frequency of oscillation k = πfc/U is considered as a key parameter and it may vary between 1 and 5. The underlying fluid-structure problem is numerically solved using a compact finite-differences Navier–Stokes solution procedure and the numerical solution is compared with Particle Image Velocimetry (PIV) measurements of the flow field around the pitching foil experimental device mounted in a water-channel. A good agreement is found between the numerical and experimental results and the threshold oscillation frequency beyond which the wake exhibits a reverse von Kármán street pattern is determined. Above threshold, the mean velocity in the wake exhibits jet-like profiles with velocity excess, which is generally considered as the footprint of thrust production. The forces exerted on the plate are extracted from the numerical simulation results and it is shown, that reliable predictions for possible thrust production can be inferred from a conventional experimental control volume analysis, only when besides the wake's mean flow the contributions from the velocity fluctuation and the pressure term are taken into account.  相似文献   

7.
《Ocean Modelling》2009,26(3-4):154-171
Ocean surface mixing and drift are influenced by the mixed layer depth, buoyancy fluxes and currents below the mixed layer. Drift and mixing are also functions of the surface Stokes drift Uss, volume Stokes transport TS, a wave breaking height scale Hswg, and the flux of energy from waves to ocean turbulence Φoc. Here we describe a global database of these parameters, estimated from a well-validated numerical wave model, that uses traditional forms of the wave generation and dissipation parameterizations, and covers the years 2003–2007. Compared to previous studies, the present work has the advantage of being consistent with the known physical processes that regulate the wave field and the air–sea fluxes, and also consistent with a very large number of in situ and satellite observations of wave parameters. Consequently, some of our estimates differ significantly from previous estimates. In particular, we find that the mean global integral of Φoc is 68 TW, and the yearly mean value of TS is typically 10–30% of the Ekman transport, except in well-defined regions where it can reach 60%. We also have refined our previous estimates of Uss by using a better treatment of the high frequency part of the wave spectrum. In the open ocean, Uss  0.013U10, where U10 is the wind speed at 10 m height.  相似文献   

8.
The aim of this paper is to evaluate the accuracy, stability and efficiency of the overset grid approach coupled with the RANS (Reynolds Averaged Navier-Stokes) model via the benchmark computations of flows around a stationary smooth circular cylinder. Two dimensional numerical results are presented within a wide range of Reynolds numbers (6.31 × 104  7.57 × 105) including the critical flow regime. All the simulations are carried out using the RANS solver pimpleFoam provided by OpenFOAM, an open source CFD (Computational Fluid Dynamics) toolkit. Firstly, a grid convergence study is performed. The results of the time-averaged drag and lift force coefficients, root-mean square value of lift force coefficient and Strouhal number (St number) are then compared with the experimental data. The velocity, vorticity fields and pressure distribution are also given. One main conclusion is that the numerical solutions in regard to a fixed cylinderare not deteriorated due to the implementation of the overset grid. Furthermore, it can be an appealing approach to facilitate simulations of Vortex Induced Vibrations (VIV), which involves grid deformation. The present study is a good start to implement the overset grid to solve VIV problems in the future.  相似文献   

9.
Passive Turbulence Control (PTC) in the form of selectively distributed surface roughness is used to alter Flow Induced Motion (FIM) of a circular cylinder in a steady flow. The objective is to enhance FIM's synchronization range and amplitude, thus maximizing conversion of hydrokinetic energy into mechanical energy by oscillator in vortex-induced vibration and/or galloping. Through additional viscous damping, mechanical energy is converted to electrical harnessing clean and renewable energy from ocean/river currents. High Reynolds numbers (Re) are required to reach the high-lift TrSL3 (Transition-Shear-Layer-3) flow regime. PTC trips flow separation and energizes the boundary layer, thus inducing higher vorticity and consequently lift. Roughness location, surface coverage, and size are studied using systematic model tests with broad-field laser visualization at 3.0×104<Re<1.2×105 in the low-turbulence free-surface water-channel of the Marine Renewable Energy Laboratory of the University of Michigan. Test results show that 16° roughness coverage is effective in the range (10°-80°) inducing reduced vortex-induced vibration (VIV), enhanced VIV, or galloping. Range of synchronization may increase or decrease, galloping amplitude of oscillation reaches three diameters; wake structures change dramatically reaching up to ten vortices per cycle. Conversion of hydrokinetic energy to mechanical is enhanced strongly with proper PTC.  相似文献   

10.
Below the sill depth (at about 2400 m) of the Alpha-Mendeleyev ridge complex, the waters of the Canada Basin (CB) of the Arctic Ocean are isolated, with a 14C isolation age of about 500 yr. The potential temperature θ decreases with depth to a minimum θm≈−0.524°C near 2400 m, increases with depth through an approximately 300 m thick transition layer to θh≈−0.514°C, and then remains uniform from about 2700 m to the bottom at 3200–4000 m. The salinity increases monotonically with depth through the deep θm and transition layer from about 34.952 to about 34.956 and then remains uniform in the bottom layer. A striking staircase structure, suggestive of double-diffusive convection, is observed within the transition layer. The staircase structure is observed for about 1000 km across the basin and has been persistent for more than a decade. It is characterized by 2–3 mixed layers (10–60 m thick) separated by 2–16 m thick interfaces. Standard formulae, based on temperature and salinity jumps, suggest a double-diffusive heat flux through the staircase of about 40 mW m−2, consistent with the measured geothermal heat flux of 40–60 mW m−2. This is to be expected for a scenario with no deep-water renewal at present as we also show that changes in the bottom layer are too small to account for more than a small fraction of the geothermal heat flux. On the other hand, the observed interfaces between mixed layers in the staircase are too thick to support the required double-diffusive heat flux, either by molecular conduction or by turbulent mixing, as there is no evidence of sufficiently vigorous overturns within the interfaces. It therefore seems, that while the staircase structure may be maintained by a very weak heat flux, most of the geothermal heat flux is escaping through regions of the basin near lateral boundaries, where the staircase structure is not observed. The vertical eddy diffusivity required in these near-boundary regions is O(10−3) m2 s−1. This implies Thorpe scales of order 10 m. We observe what may be Thorpe scales of this magnitude in boundary-region potential temperature profiles, but cannot tell if they are compensated by salinity. The weak stratification of the transition layer means that the large vertical mixing rate implies a local dissipation rate of only O(10−10) W kg−1, which is not ruled out by plausible energy budgets. In addition, we discuss an alternative scenario of slow, continuous renewal of the CB deep water. In this scenario, we find that some of the geothermal heat flux is required to heat the new water and vertical fluxes through the transition layer are reduced.  相似文献   

11.
The wave transmission, reflection, and energy dissipation of the double rows of vertical piles suspending horizontal steel C shaped bars are experimentally and theoretically studied under normal regular waves. Different wave and structural parameters are investigated e.g. the wave length, the C shaped bars draft and spacing, the supporting piles diameter and spacing, and the space between the double rows. Also, the theoretical model based on an eigenfunction expansion method is developed to study the hydrodynamic breakwater performance. In order to examine the validity of the theoretical model, the theoretical results are compared with the experimental and theoretical results obtained by different authors. Comparison between experiments and predictions showed that theoretical model provides a good estimate to the different hydrodynamic coefficients when the friction factors of the upper and the lower parts are fU = 1.5 and fL = 0.75. The present breakwater physical model gives efficiency near other similar systems of different shapes.  相似文献   

12.
Sterol and alkenone compositions in suspended particle and surface sediment samples collected in the Northwestern Mediterranean Sea during the MEDFLUX program were used to evaluate the relative importance of biotic and abiotic degradation processes on marine organic matter. Alkenone concentrations decreased much more rapidly (~ 500 fold) between 5 and 800 m than Δ5-sterols (~ 100-fold) or POC (~ 100-fold). The diverse functional groups attached to the stable tetracyclic carbon skeleton of Δ5-sterols appeared to be useful for estimating the relative effects of biotic vs. abiotic (photooxidation and autoxidation) degradation. Products of abiotic degradation predominated over products of biotic degradation in suspended particles in the NW Mediterranean. For alkenones, the U37K′ index increased from 0.43 to 0.55 with increasing water depth, and a good correlation between variations of U37K′ and concentrations of specific Δ5-sterol autoxidation products points to selective autoxidation of alkenones in suspended particles. Stereomutated alkenones (with cis double bonds) were detected in the surface sediment, allowing us to estimate that stereomutation resulted in a + 0.05 increase in U37K′. Therefore, abiotic degradation may be another factor effect on alkenone-derived paleothermometry.  相似文献   

13.
In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These results may explain the distribution pattern of this species in natural habitats, where it is generally restricted to tide pools in the intertidal zone of wave-swept rocky shores which could provide shelter from desiccation stress during low tide.  相似文献   

14.
We investigated a year-long (September 1992 to August 1993) time series of total mass, calcium carbonate, organic carbon, opal, and alkenone fluxes in sinking particles collected with sediment traps moored at 1770 and 4220 m in the central equatorial Pacific. The total mass fluxes varied from 14.7 to 68.7 mg/m2/day at 1770 m, with greater fluxes in October–November and February–April, and from 14.6 to 50.4 mg/m2/day with peak fluxes during October–November at 4220 m. High flux in the spring season shown at 1770 m was not indicated at 4220 m; instead, a slight increase was shown during a broad period from March to June. The calcium carbonate fluxes varied from 10.8 to 49.1 mg/m2/day with higher fluxes in October–November and March–April at 1770 m, and from 8.9 to 37.0 mg/m2/day with a higher flux in October–November at 4220 m. The organic carbon fluxes varied from 0.36 to 5.91 mg/m2/day, with higher fluxes in October–November and March–April at 1770 m, and from 0.72 to 2.58 mg/m2/day at 4220 m. The annual mean organic carbon flux was 1.84 and 1.28 mg/m2/day at 1770 and at 4220 m, respectively. These values were less than half of those reported for the EqPac sediment trap experiment. The opal fluxes varied from 0.55 to 4.4 mg/m2/day at 1770 m and from 1.23 to 2.95 mg/m2/day at 4220 m. Alkenone fluxes varied significantly from 0.05 to 0.84 μg/m2/day, with high values in November, February–March, and June at 1770 m. For the 4220 m trap, these values ranged from 0.05 to 0.25 μg/m2/day, with slightly higher fluxes in April–May and June–July, which followed periods of high alkenone fluxes observed in February–April and June–July, respectively, at 1770 m depth. These values were remarkably low compared with those reported by the previous studies at other sites. U37K′ values were constantly high >0.95 throughout the collection period. However, relatively low U37K′ values (0.92 and 0.93) were occasionally observed during February to March. Estimated alkenone temperatures from those U37K′ values were about 27–29°C and consistent with the observed temperature of the upper layer at ca.100 m depth. The seasonal change of the U37K′ values could be affected by not only water temperature but also the relative amount of ‘warm’ and ‘cold’ types of alkenone producer in the central equatorial Pacific.  相似文献   

15.
We conducted full-depth hydrographic observations between 8°50′ and 44°30′N at 165°W in 2003 and analyzed the data together with those from the World Ocean Circulation Experiment and the World Ocean Database, clarifying the water characteristics and deep circulation in the Central and Northeast Pacific Basins. The deep-water characteristics at depths greater than approximately 2000 dbar at 165°W differ among three regions demarcated by the Hawaiian Ridge at around 24°N and the Mendocino Fracture Zone at 37°N: the southern region (10–24°N), central region (24–37°N), and northern region (north of 37°N). Deep water at temperatures below 1.15 °C and depths greater than 4000 dbar is highly stratified in the southern region, weakly stratified in the central region, and largely uniform in the northern region. Among the three regions, near-bottom water immediately east of Clarion Passage in the southern region is coldest (θ<0.90 °C), most saline (S>34.70), highest in dissolved oxygen (O2>4.2 ml l?1), and lowest in silica (Si<135 μmol kg?1). These characteristics of the deep water reflect transport of Lower Circumpolar Deep Water (LCDW) due to a branch current south of the Wake–Necker Ridge that is separated from the eastern branch current of the deep circulation immediately north of 10°N in the Central Pacific Basin. The branch current south of the Wake–Necker Ridge carries LCDW of θ<1.05 °C with a volume transport of 3.7 Sv (1 Sv=106 m3 s?1) into the Northeast Pacific Basin through Horizon and Clarion Passages, mainly through the latter (~3.1 Sv). A small amount of the LCDW flows northward at the western boundary of the Northeast Pacific Basin, joins the branch of deep circulation from the Main Gap of the Emperor Seamounts Chain, and forms an eastward current along the Mendocino Fracture Zone with volume transport of nearly 1 Sv. If this volume transport is typical, a major portion of the LCDW (~3 Sv) carried by the branch current south of the Wake–Necker and Hawaiian Ridges may spread in the southern part of the Northeast Pacific Basin. In the northern region at 165°W, silica maxima are found near the bottom and at 2200 dbar; the minimum between the double maxima occurs at a depth of approximately 4000 dbar (θ~1.15 °C). The geostrophic current north of 39°N in the upper deep layer between 1.15 and 2.2 °C, with reference to the 1.15 °C isotherm, has a westward volume transport of 1.6 Sv at 39–44°30′N, carrying silica-rich North Pacific Deep Water from the northeastern region of the Northeast Pacific Basin to the Northwest Pacific Basin.  相似文献   

16.
We describe experiments with multi-directional focused waves interacted with a vertical circular cylinder in a 3D wave basin. The focus of this study is on the run-up of multi-directional focused waves, wave forces, and wave pressures on the cylinder. Part I, the study on wave run-up, has already been presented by Li et al. (2012). In this paper, the analysis of the wave force on the vertical cylinder is presented.In this experiment, a cylinder with 0.25 m in diameter was adopted and different wave parameters, such as focused wave amplitude, peak frequency, frequency bandwidth and directional spreading index, are considered. The model scale kpa (kp is the wave number corresponding to peak frequency, a is the radium of the cylinder) varies from 0.32 to 0.65. The maximum forces of multi-directional focused wave on cylinder were measured and investigated. The results showed that the wave parameters have a significant influence on the wave force, and that the spatial profile of the surface of multi-directional focused wave can also affect its force on the cylinder, which is different from two-dimensional wave. In addition, the ‘secondary loading cycle’ phenomenon was also observed and discussed. In our experiments, the ‘secondary loading cycles’ occur when kA > 0.36 for all cases. While in some referred small scale experiments, the secondary load cycles are observed even for kA = 0.2, when the waves are longer enough. To larger model scale, the pronounced secondary load cycle occurs with larger wave steepness waves.  相似文献   

17.
18.
The venerid clam Ruditapes philippinarum is the most prominent suspension-feeding bivalve inhabiting muddy intertidal seagrass beds in Arcachon Bay (SW France). It is exploited by fishermen, and Arcachon Bay ranks number one in France in terms of production and total biomass of this species. Previous studies revealed a decrease in the standing stock of R. philippinarum since 2003 and unbalanced length–frequency distributions with a lack of juveniles and of adults > 40 mm. Consequently, the population dynamics of this bivalve were studied at four intertidal sites and one oceanic site in Arcachon Bay. As clam size structure did not allow classical dynamics computations, field monitoring was coupled with field experiments (tagging–recapture) over two years. Monitoring of condition index and gonadal maturation stages highlighted a high variability in spawning number and intensity between sites. Recruitment events in the exploited area varied spatially but with uniformly low values. Von Bertalanffy Growth Function (VBGF) parameters (K, L) were determined using Appeldoorn and ELEFAN methods. In the exploited sites in the inner lagoon, K was relatively high (mean = 0.72 yr? 1) but L was low (mean = 41.1 mm) resulting in a moderate growth performance index (Φ′ = 2.99). Growth parameters were not correlated with immersion time and L was different between sites. Comparison of mortality coefficients (Z) between cage experiments and field monitoring suggested that fishing accounts for 65–75% of total adult mortality. Low recruitment, a low growth rate and a normal mortality rate led to low somatic production (4.1 and 8.7 g Shell-Free Dry Weight (SFDW) m? 2 yr? 1) and an annual P/B ratio from 0.44 to 0.92 yr? 1. Under current conditions, the possibility of a sustainable population in Arcachon Bay will strongly depend on recruitment success and fishing management.  相似文献   

19.
《Marine Chemistry》2007,103(1-2):30-45
The chemistry of dissolved Fe(III) was studied in the Scheldt estuary (The Netherlands). Two discrete size fractions of the dissolved bulk (< 0.2 μm and < 1 kDa) were considered at three salinities (S = 26, 10 and 0.3).Within the upper estuary, where fresh river water meets seawater, the dissolved Fe concentration decreases steeply with increasing salinity, for the fraction < 0.2 μm from 536 nM at S = 0.3 to 104 nM at S = 10 and for the fraction < 1 kDa from 102 nM to 36 nM Fe. Further downstream, in the middle and lower estuary, this decrease in the Fe concentration continues, but is far less pronounced. For all samples, the traditionally recognised dissolved strong organic Fe-binding ligand concentrations are lower than the dissolved Fe concentrations.Characteristics of dissolved Fe-binding ligands were determined by observing kinetic interactions with adsorptive cathodic stripping voltammetry. From these kinetic experiments we concluded that apart from the well-known strong Fe-binding organic ligands (L, logK = 19–22) also weak Fe-binding ligands (P) existed with an α value (binding potential = K · [P]) varying between 1011.1 and 1011.9. The presence of this relatively weak ligand explained the high concentrations of labile Fe present in both size fractions in the estuary. This weak ligand can retard or prevent a direct precipitation after an extra input of Fe.The dissociation rate constants of the weak ligand varied between 0.5 × 10 4 and 4.3 × 10 4 s 1. The rate constants of the strong organic ligand varied between kd = 1.5 × 10 3–17 × 10 2 s 1 and kf = 2.2 × 108–2.7 × 109 M 1 s 1. The dissociation rate constant of freshly amorphous Fe-hydroxide was found to be between 4.3 × 10 4 and 3.7 × 10 3 s 1, more labile or equal to the values found by Rose and Waite [Rose, A.L., Waite, T.D., 2003a. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol., 37, 3897–3903.] for freshly precipitated Fe in seawater.Kinetic rate constants of Fe with the ligand TAC (2-(2-Thiazolylazo)-p-cresol) were also determined. The formation rate constant of Fe(TAC)2 varied between 0.1 × 108 and 3.6 × 108 M 1 s 1, the dissociation rate constant between 0.2 × 10 5 and 17 × 10 5 s 1 for both S = 26 and S = 10. The conditional stability constant of Fe(TAC)2 (βFe(TAC)2′) varied between 22 and 23.4 for S = 10 and S = 26 more or less equal to that known from the literature (logβFe(TAC)2 = 22.4; [Croot, P.L., Johansson, M., 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis, 12, 565–576.]). However, at S = 0.3 the logβFe(TAC)2′ was 25.3, three orders of magnitude higher. Apparently the application of TAC to samples of low salinity can only be done when the correct βFe(TAC)2′ is known.  相似文献   

20.
The formation time of alongshore morphological variability in surf zone sand bars has long been known to differ from one beach to the other and from one post-storm period to another. Here we investigate whether the type of sea state, i.e. distant swell waves or locally generated short period wind sea, affects the formation time of the emerging alongshore topographic variability.A numerical modeling approach is used to examine the emergence of alongshore variability under different shore-normal wave forcing. A research version of Delft3D, operating on the time-scale of wave groups, is applied to a schematised bathymetry with a single bar. The model is then used to investigate several wave scenarios, examining the impact of peak period, frequency spread and directional spread on the formation time of alongshore variability.Results show that an increase in wave period has a large effect, changing the formation time up to O (250%) in case the wave period is changed from a representative value for the Dutch coast (Tp ~ 5–6 s) to an Australian South East coast value (Tp ~ 10–12 s). In contrast, modifications in the directional and frequency spread of the wave field result only in a minor change in the formation time.Examination of hydrodynamics and potential sediment transport shows that the variations in formation time are primarily related to changes in the magnitude of the time-averaged flow conditions. Variations in the magnitude of very low frequency (f < 0.004 Hz) or infragravity (0.004 < f < 0.04 Hz) surf zone flow velocities do not affect the mean sediment transport capacity. Consequently the formation speed of patterns is primarily governed by positive feedback between mean flow and morphology, and low frequency flow fluctuations are of minor importance.These findings indicate that the development of alongshore topographic variability may be faster at swell dominated open coasts, primarily due to the occurrence of longer period swell. Also, at a given site, the arrival of a long wave period swell after a storm can accelerate the emergence of variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号