首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We assessed deforestation in Southeast Mexico (a surface area of 29 000 km2 in seven states) through the comparison of land use/land cover maps at a scale of 1:250 000. This facilitated mapping of the land use/land cover change (LULCC) processes and calculation of the rates of change and the change matrix for the period 1978–2000. An original method was used to assess the accuracy of the LULCC map. The verification sites were selected through a stratified random sampling and were corroborated with aerial photographs for 1978 and 2000. Error matrices were elaborated using both hard and fuzzy set approaches in order to take into account the errors related to generalization of the map in fragmented landscapes. The results showed an average annual deforestation rate of 1.1 per cent which represents an average annual loss of 190 000 ha of forest, or an estimated total reduction of 4.2 million ha over 22 years. Furthermore, deforestation processes are concentrated in some areas such as Yucatan and Chiapas states, which registered major forest conversions to grassland and slash‐burning. The overall accuracy of the LULCC map, assessed with hard and fuzzy set approaches, was 72 per cent and 88 per cent respectively.  相似文献   

2.
Land cover change is one of the major contributors to global change, but long-term, broad-scale, detailed and spatially explicit assessments of land cover change are largely missing, although the availability of historical maps in digital formats is increasing. The problem often lies in efficiency of analyses of historical maps for large areas. Our goal was to assess different methods to reconstruct land cover and land use from historical maps to identify a time-efficient and reliable method for broad-scale land cover change analysis. We compared two independent forest cover reconstruction methods: first, regular point sampling, and second, wall-to-wall mapping, and tested both methods for the Polish Carpathians (20,000 km2) for the 1860s, 1930s and 1970s. We compared the two methods in terms of their reliability for forest change analysis, relative to sampling error, point location and landscape context including local forest cover, area of the spatial reference unit and forest edge-to-core ratio. Our results showed that the point-based analysis overestimated forest cover in comparison to wall-to-wall mapping by 1–3%, depending on the mapping period. The reasons for the differences were mainly the backdating approach and map generalisation rather than the point grid position or sampling error. When we compared forest cover trajectories over time, we found that the point-based reconstruction captured forest cover dynamics with a comparable accuracy to the wall-to-wall mapping. More broadly, our assessment showed that historical maps can provide valuable data on long-term land cover trends, and that point-based sampling can be an efficient and accurate way to assess forest area and change trends. We suggest that our point-based approach could allow land cover mapping across much of Europe starting in the 1800s. Our findings are important because they suggest that land cover change, a key component of global change, can be assessed over large areas much further back in time than it is commonly done. This would allow to truly understand path dependencies, land use legacies, and historical drivers of land cover change.  相似文献   

3.
This study aimed at characterizing land cover dynamics for four decades in Eastern Mau forest and Lake Nakuru basin, Kenya. The specific objectives were to: (i) identify and map the major land cover types in 1973, 1985, 2000 and 2011; (ii) detect and determine the magnitude, rates and nature of the land cover changes that had occurred between these dates, and; (iii) establish the spatial and temporal distribution of these changes. Land cover types were discriminated through partitioning, hybrid classification and spatial reclassification of multi-temporal Landsat imagery. The land cover products were then validated and overlaid in post-classification comparison to detect the changes between 1973 and 2011. The accuracies of the land cover maps for 1973, 1985, 2000 and 2011 were 88%, 95%, 80% and 89% respectively. Six land cover classes, namely forests-shrublands, grasslands, croplands, built-up lands, bare lands and water bodies, were mapped. Forests-shrublands dominated in 1973, 1985 and 2000 covering about 1067 km2, 893 km2 and 797 km2 respectively, but were surpassed by croplands (953 km2) in 2011. Bare lands occupied the least area that varied between 2 km2 and 7 km2 during this period. Overall, forests-shrublands and grasslands decreased by 428 km2 and 258 km2 at the annual average rates of 1% each, whereas croplands and built-up lands expanded by 660 km2 and 24 km2 at the annual rates of 6% and 16% respectively. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to assess the impacts of the land cover changes on ecosystem services and to project the future patterns of land cover changes.  相似文献   

4.
This study presents a detailed spatial, quantitative assessment of the land use/cover changes (LUCC) in the savanna region of Llanos Orientales in Colombia. LUCC was determined from multitemporal satellite imagery (Landsat and CBERS) from 1987 to 2007. Systematic landscape transitions were identified and put in the context of population change and economic activity. The results showed that during the period 1987 to 2007, 14% of the study area underwent some kind of land use/cover change, with most change occurring in the last decade. Systematic transitions were observed from flooded savannas to crops and exotic pastures. An important land cover change was linked to the expansion of palm oil plantations from 31 km2 in 1987 to 162 km2 in 2007. The observed changes are shown to be related to the economic and market-oriented-development from before 1970 to the present day. Based on the future economic development plans, the Llanos Orientales will continue to undergo significant change as an estimated 70% of the 17,000 km2 have been identified for conversion to plantation, or for petroleum and mining purposes. We provide recommendations for future economy integrated conservation, by proposing the implementation of a Llanos ecological network.  相似文献   

5.
Despite many studies on land degradation in the Highlands of Northern Ethiopia, quantitative information regarding long-term changes in land use/cover (LUC) is rare. Hence, this study aims to investigate the LUC changes in the Geba catchment (5142 km2), Northern Ethiopia, over 80 years (1935–2014). Aerial photographs (APs) of the 1930s and Google Earth (GE) images (2014) were used. The point-count technique was utilized by overlaying a grid on APs and GE images. The occurrence of cropland, forest, grassland, shrubland, bare land, built-up areas and water body was counted to compute their fractions. A multivariate adaptive regression spline was applied to identify the explanatory factors of LUC and to create fractional maps of LUC. The results indicate significant changes of most types, except for forest and cropland. In the 1930s, shrubland (48%) was dominant, followed by cropland (39%). The fraction of cropland in 2014 (42%) remained approximately the same as in the 1930s, while shrubland significantly dropped to 37%. Forests shrank further from a meagre 6.3% in the 1930s to 2.3% in 2014. High overall accuracies (93% and 83%) and strong Kappa coefficients (89% and 72%) for point counts and fractional maps respectively indicate the validity of the techniques used for LUC mapping.  相似文献   

6.
基于GIS的山洪灾害风险区划   总被引:65,自引:1,他引:64  
唐川  朱静 《地理学报》2005,60(1):87-94
通过探讨应用地理信息系统技术编制山洪灾害风险区划图的方法。以1:25万地理底图为基础,对影响山洪形成与泛滥的地形坡度、暴雨天数、河网缓冲区、标准面积洪峰流量、泥石流分布密度和洪灾历史统计六项因子进行了分析和叠合评价,完成了红河流域的山洪灾害危险评价图。以人口密度、房屋资产、耕地百分比、单位面积工农业产值作为指标进行了易损性分析,并借助于GIS分析工具,将危险评价图与易损性图进行叠加分析,完成了红河流域的山洪灾害风险区划图。区划结果表明GIS方法能够有效地对影响山洪形成与泛滥的因子数据层进行空间集成分析。该风险区划图可通过对山洪易泛区的不同风险地带的土地利用规划的决策而减轻山洪灾害;此外,也为山洪易泛区的居民提供有关山洪风险信息。  相似文献   

7.
Forest fire frequency in Mediterranean countries is expected to increase with land cover and climate changes as temperatures rise and rainfall patterns are altered. Although the cause of many Mediterranean fires remains poorly defined, most fires are of anthropogenic origin and are located in the wildland urban interface (WUI), so fire ignition risk depends on both weather and land cover characteristics. The objectives of this study were to quantify the overall trends in forest fire risk in the WUI of the Alpes-Maritimes department in SE France over a period of almost 50 years (about 1960–2009) and relate these to changes in land cover and temperature changes. Land cover for two contrasting reference catchments (236 km2 and 289 km2, respectively) was mapped from available aerial photographs. Changes in fire risk over time were estimated using statistical relationships defined for each type of WUI, where isolated and scattered housing present a greater risk than dense and very dense housing. Summer monthly temperatures and spring and summer precipitation were quantified over the same temporal period as land cover. Finally, trends in fire frequency and burned area were analyzed over a shorter 37 year period (1973–2009) due to the lack of available fire data before 1973. Fire risk associated with WUI expansion increased by about 18%–80% over the 1960–2009 period (depending on the catchment). Similarly, mean summer minimum and maximum monthly temperatures increased by 1.8 °C and 1.4 °C, respectively, over the same period. Summer rainfall appears to decrease over time since about the 1970's but remains highly variable. Land cover and weather changes both suggest an overall increase in fire risk. However, the number of fires and burned area have decreased significantly since about 1990. This paradoxical result is due to a change in fire-fighting strategy which reinforced the systematic extinction of fires in their early stages. Technical support in the form of improved radio communication and helicopters contributed greatly to reducing fire frequency and burned area. Surveillance and legal reforms included the introduction of field patrols and restricted access to forests during high risk periods. Although this has proven highly successful in the short term, the risk of fuel load accumulation over time remains a risk which might contribute to the development of mega-fires in extreme climatic conditions in the future.  相似文献   

8.
Lahars are hazardous events that can cause serious damage to people who live close to volcanic areas; several were registered at different times in the last century, such as at Mt St Helens (USA) in 1980, Nevado del Ruiz (Colombia) in 1985 and Mt Pinatubo (Philippines) in 1990. Risk maps are currently used by decision‐makers to help them plan to mitigate the hazard‐risk of lahars. Risk maps are acquired based on a series of tenets that take into account the distribution and chronology of past lahar deposits, and basically two approaches have been used: (1) The use of Flow Simulation Software (FSS), which simulates flows along channels in a Digital Elevation Model and (2) The Geochronological Method (GM), in which the mapping is based on the evaluation of lahar magnitude and frequency. This study addresses the production of a lahar risk map using the two approaches (FSS and GM) for a study area located at Popocatépetl volcano – Central Mexico. Santiago Xalitzintla, a town located on the northern flank of Popocatépetl volcano, where volcanic activity in recent centuries has triggered numerous lahars that have endangered local inhabitants, has been used for the case study. Results from FSS did not provide satisfactory findings because they were not consistent with lahar sediment observations made during fieldwork. By contrast, the GM produced results consistent with these observations, and therefore we use them to assess the hazard and produce the risk map for the study area.  相似文献   

9.
Land cover is the most evident landscape signal to characterize the influence of human activities on terrestrial ecosystems. Since the industrial revolution, the expansion of construction land has profoundly changed the status of land use coverage and changes. This study is proposed to reconstruct the spatial pattern of construction land (urban construction land and rural settlement land) for five historical periods over the past 200 years in Jiangsu Province with 200 m × 200 m grids on the basis of quantitative estimation. Urban construction land is estimated based on data about city walls, four gates along walls, and other socio-economic factors. Rural settlement land is calculated based on the rural population and per capita housing allowance. The spatial pattern of historical construction land is simulated based on the distribution of modern construction land in 1985 with a quantitative-boundarysuitability control method and thorough consideration over connectivity of different land use types. The study concludes that: (1) the amount of construction land in Jiangsu Province is estimated at 963.46 km2 in 1820, 1043.46 km2 in 1911, 1672.40 km2 in 1936, 1980.34 km2 in 1952 and 10,687.20 km2 in 1985; and (2) the spatial distribution of construction land features the great proclivity to water bodies and main roads and the strong polarization of existent residence. The results are verified directly and indirectly by applying the trend verification of construction land changes and patterns, the correlation analysis between rural settlement land and local arable land, and quantitative accuracy test of the reconstructed construction land to actual historical survey maps covering four sample regions in 1936.  相似文献   

10.
This study compares two types of intermediate soft-classified maps. The first type uses land use/cover suitability maps based on a multi-criteria evaluation (MCE). The second type focuses on the transition potential between land use/cover categories based on a multi-layer perceptron (MLP). The concepts and methodological approaches are illustrated in a comparable manner using a Corine data set from the Murcia region (2300 km2, Spain) in combination with maps of drivers that were created with two stochastic, discretely operating, commonly used tools (MCE in CA_MARKOV and MLP in Land Change Modeler). The importance of the different approaches and techniques for the obtained results is illustrated by comparing the specific characteristics of both approaches by validating the suitability versus transition potential maps to each other using a Spearman correlation matrix and, between the Corine maps, using classical ROC (receiver operating characteristic) statistics. Then, we propose a new use of ROC statistics to compare these intermediate soft-classified maps with their respective hard-classified maps of the models for each category. The validation of these results can be beneficial in choosing a suitable model and provide a better understanding of the implications of the different modeling steps and the advantages and limitations of the modeling tools.  相似文献   

11.
基于GIS的山洪灾害风险区划   总被引:1,自引:0,他引:1  
1 Introduction Torrent is sudden surface runoff with sharp rises or falls (Tang, 1994; Zhao, 1996), resulting from rainfall in small basins of mountainous areas. It has features of violent coming force, rapid formation and strong destructivity which rende…  相似文献   

12.
Soil formation depends upon several factors such as parent material, soil biota, topography and climate. It is difficult to use conventional soil survey methods for mapping the depth of soil in complex mountainous terrains. In this context, the present study aimed to estimate the soil depth for a large area (330.35 km2) using different geo-environmental factors through a soil-landscape regression kriging (RK) model in the Darjeeling Himalayas. RK with seven predictor variables such as elevation, slope, aspect, general curvature, topographic wetness index, distance from the streams and land use, was used to estimate the soil depth. While topographic parameters were derived from an 8-m resolution digital elevation model, the ortho-rectified Cartosat-1 satellite image was used to prepare the land use map. Soil depth measured at 148 sites within the study area was used to calibrate and validate the RK model. The result showed that the RK model with the seven predictors could explain 67% spatial variability of soil depth with a prediction variance between 0.23 and 0.42 m at the test site. In the regression analysis, land use (0.133) and slope (–0.016) were identified as significant determinants of soil depth. The prediction map showed higher soil depth in south-facing slopes and near valleys in comparison to other areas. Mean, mean absolute and root mean-square errors were used to access the reliability of the prediction, which indicated a goodness-of-fit of the RK model.  相似文献   

13.
1990—2010年黄河宁蒙段所处流域土地利用变化   总被引:1,自引:0,他引:1  
以Landsat TM和ETM+遥感影像为基础数据源,应用地理信息系统技术,对黄河宁蒙段所处流域1990-2010年土地利用变化进行了监测,并结合气候变化、人类活动和政策因素探讨了土地利用变化的驱动力,初步分析了土地利用/覆被变化对流域水-沙关系的影响。结果表明:(1)20年来研究区建设用地面积增加了1 310.04 km2,耕地面积增加了611.15 km2,水域和草地面积分别减少了1 499.51 km2和474.93 km2;(2)20年来黄河宁蒙段所处流域土地利用变化速度经历了缓慢变化-显著变化-急剧变化的过程。各土地利用类型在后10 年(2000-2010年)的变化速度均比前10年(1990-2000年)大;(3)研究时段内草地和未利用地转化为林地,草地和耕地被开发为建设用地,未利用地和草地被开垦为耕地;(4)人类活动和政策因素是影响20年来土地利用变化的主要驱动因子,但人口数量的增加、经济的发展及环境政策的调整对研究区土地利用变化的影响更为显著;(5)1990-2010年流域耕地和林地面积分别增加了611.15 km2和543.19 km2,植被覆盖度由1990年的34.7%增加到2010年的40.8%。林地和耕地面积的增加均使得流域总蒸发量增加,灌溉用水增加,从而径流量减少,植被覆盖度的增加使得流域径流量和输沙量均降低。  相似文献   

14.
Causes of land salinization were determined via land cover and hydrological process change detection in a typical part of Songnen Plain. The area of saline land increased from 4627 km2 in 1980 to 5416 km2 in 2000, and then decreased to 5198 km2 in 2015. The transformation between saline land and other land covers happened mainly before 2000, and saline land had transformation relationship mainly with cropland, grassland, and water body. From 1979 to 2007, groundwater depth fluctuated to increase and was mainly deeper than 3.3 m. Spatially, the area of the region where groundwater depth was deeper than 3.3 m increased from 46.7% in 1980 to 84% in 2000, while the area of the region almost occupied the whole region after 2000. Precipitation and evaporation changed little, while runoff decreased substantially. Shallow groundwater, change of cropland, grassland, and water body induced from human activities and decrease of runoff and increase of irrigation and water transfer from outer basin were the main reasons for land salinization before 2000. After 2000, groundwater with relatively great depth could not exert great influence on land salinization. Protection of grassland and wetland prevented the increase of the area of saline land.  相似文献   

15.
基于遥感和GIS的中国20世纪90年代毁林开荒状况分析   总被引:10,自引:0,他引:10  
毁林开荒过程是一种林地变为耕地的土地利用变化过程,可以通过遥感和GIS技术对这一过程进行监测。本文通过覆盖全国的TM影像数据,对20世纪90年代林地转为耕地的面积及其空间分布进行分析,从而对全国毁林开荒过程进行遥感监测。结果表明,该时期有17630km2的林地被开垦为耕地。不同面积等级的开垦过程在不同流域分布也不同:面积小于10hm2和介于10~100hm2的被开垦林地较广泛地分布于各大流域;而面积介于100~1000hm2的被开垦林地主要分布于松辽流域、黑龙江流域和东北东部流域、长江流域、珠江流域和云南省所在流域;大于1000hm2的被开垦林地则几乎全部分布于松辽流域、黑龙江流域和东北东部流域。坡度大于3°的毁林开荒地面积占总面积的295%;对土壤侵蚀背景的分析表明,土壤侵蚀强度以微度和轻度为主  相似文献   

16.
This study was conducted to quantify agricultural land degradation in the Ruba Gered watershed, Ethiopia. The watershed was divided into 12 land mapping units (LMU) after superimposing maps of soil, slope, land use/cover, and elevation. Subsequently, cultivated land was delineated to assess degradation types and severity based on standard approaches. Sheet erosion was estimated using the revised universal soil loss equation. Composite soil samples were collected from each LMU to quantify key soil nutrients (OM, total nitrogen, available phosphorus, and available potassium) lost by sheet erosion. The annual average soil loss due to sheet erosion was estimated to be 17.4 t ha?1 yr?1, with average annual nutrient losses estimated as 246.5 kg ha?1 organic matter, 12.4 kg ha?1 total nitrogen, 0.1 kg ha?1 available phosphorus, and 1.6 kg ha?1 available potassium. The study revealed that substantial quantities of soil and nutrients are lost every year in the study area due to severe sheet erosion. This amount of nutrient loss severely degrades soil and reduces soil fertility.  相似文献   

17.
Accurate and realistic characterizations of flood hazards on desert piedmonts and playas are increasingly important given the rapid urbanization of arid regions. Flood behavior in arid fluvial systems differs greatly from that of the perennial rivers upon which most conventional flood hazard assessment methods are based. Additionally, hazard assessments may vary widely between studies or even contradict other maps. This study's chief objective was to compare and evaluate landscape interpretation and hazard assessment between types of maps depicting assessments of flood risk in Ivanpah Valley, NV, as a case study. As a secondary goal, we explain likely causes of discrepancy between data sets to ameliorate confusion for map users. Four maps, including three different flood hazard assessments of Ivanpah Valley, NV, were compared: (i) a regulatory map prepared by FEMA, (ii) a soil survey map prepared by NRCS, (iii) a surficial geologic map, and (iv) a flood hazard map derived from the surficial geologic map, both of which were prepared by NBMG. GIS comparisons revealed that only 3.4% (33.9 km2) of Ivanpah Valley was found to lie within a FEMA floodplain, while the geologic flood hazard map indicated that ~ 44% of Ivanpah Valley runs some risk of flooding (Fig. 2D). Due to differences in mapping methodology and scale, NRCS data could not be quantitatively compared, and other comparisons were complicated by differences in flood hazard class criteria and terminology between maps. Owing to its scale and scope of attribute data, the surficial geologic map provides the most useful information on flood hazards for land-use planning. This research has implications for future soil geomorphic mapping and flood risk mitigation on desert piedmonts and playas. The Ivanpah Valley study area also includes the location of a planned new international airport, thus this study has immediate implications for urban development and land-use planning near Las Vegas, NV.  相似文献   

18.
Li  Zhuo  Jiang  Weiguo  Wang  Wenjie  Lei  Xuan  Deng  Yue 《地理学报(英文版)》2019,29(8):1363-1380

Urban agglomeration is caused by the continuous acceleration of the urbanization process in China. Studying the expansion of construction land can not only know the changes and development of urban agglomeration in time, but also obtain the great significance of the future management. In this study, taking Changsha-Zhuzhou-Xiangtan (Chang-Zhu-Tan) urban agglomeration in Hunan province as a study area, Landsat images from 1995 to 2014 and Autologistic-CLUE-S model simulation data were used. Moreover, several factors including gravity center, direction, distance and landscape index were considered in the analysis of the expansion. The results revealed that the construction area increased by 132.18%, from 372.28 km2 in 1995 to 864.37 km2 in 2014. And it might even reach 1327.23 km2 in 2023. Before 2014, three cities had their own respective and discrete development directions. However, because of the integration policy implementation in 2008, the Chang-Zhu-Tan began to gather, the gravity center moved southward after 2014, and the distance between cities decreased, which was in line with the development plan of urban expansion. The research methods and results were relatively reliable, and these results could provide some reference for the future land use planning and spatial allocation in the urbanization process of Chang-Zhu-Tan urban agglomeration.

  相似文献   

19.
Cultivated land change in the Belt and Road Initiative region   总被引:2,自引:1,他引:2  
The Belt and Road Initiative (BRI)–a development strategy proposed by China – provides unprecedented opportunities for multi-dimensional communication and cooperation across Asia, Africa and Europe. In this study, we analyse the spatio-temporal changes in cultivated land in the BRI countries (64 in total) to better understand the land use status of China along with its periphery for targeting specific collaboration. We apply FAO statistics and GlobeLand30 (the world’s finest land cover data at a 30-m resolution), and develop three indicator groups (namely quantity, conversion, and utilization degree) for the analysis. The results show that cultivated land area in the BRI region increased 3.73×104 km2 between 2000 and 2010. The increased cultivated land was mainly found in Central and Eastern Europe and Southeast Asia, while the decreased cultivated land was mostly concentrated in China. Russia ranks first with an increase of 1.59×104 km2 cultivated land area, followed by Hungary (0.66×104 km2) and India (0.57×104 km2). China decreased 1.95×104 km2 cultivated land area, followed by Bangladesh (–0.22×104 km2) and Thailand (–0.22×104 km2). Cultivated land was mainly transferred to/from forest, grassland, artificial surfaces and bare land, and transfer types in different regions have different characteristics: while large amount of cultivated land in China was converted to artificial surfaces, considerable forest was converted to cultivated land in Southeast Asia. The increase of multi-cropping index dominated the region except the Central and Eastern Europe, while the increase of fragmentation index was prevailing in the region except for a few South Asian countries. Our results indicate that the negative consequence of cultivated land loss in China might be underestimated by the domestic- focused studies, as none of its close neighbours experienced such obvious cultivated land losses. Nevertheless, the increased cultivated land area in Southeast Asia and the extensive cultivated land use in Ukraine and Russia imply that the regional food production would be greatly improved if China’ “Go Out policy” would help those countries to intensify their cultivated land use.  相似文献   

20.
土地利用空间格局的图形信息表达初步研究   总被引:15,自引:1,他引:15  
刘湘南  许红梅 《地理研究》2001,20(6):752-760
土地利用表现为在自然要素和人类活动的综合作用下的一系列异质性的图形。不同的土地利用空间格局的地学形成机制、生态功能、演化方向和对环境的影响各不相同,其空间图形也千差万别。运用景观生态学原理、地理图形信息理论,以位于中国北方农牧交错带的吉林省前郭县作为研究区,在GIS的支持下,归纳、抽象了各主要土地利用类型斑块形状及其描述参数,探讨了土地利用空间格局和空间分布的表达方法(VCM曲线),实现了土地利用空间格局图形的数量化描述和分析。其结果为从图形信息机理的角度研究土地利用格局的地学形成机制及生态功能、时空演化等方面奠定了基础  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号