首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
China’s continental crust (CCC) has an average thickness of 47km, with the upper continental crust (CUCC) being 31 km and the sedimentary layer(CSL) 5 km in thickness. The CCC, CUCC and CSL measure 12.437 × 10−17, 8.005 × 10−17 and 1.146 × 1017 metric tons in mass, respectively. The mass ratio of the upper continental crust to the lower one is 1.8:1. The element abundances were calculated for the CCC, CUCC and CSL respectively in terms of the chemical compositions of 2246 samples of various types and some complementary trace element data. The total abundance of 13 major elements accounts for 99.6% of the CCC mass while the other minor elements only account for 0.4%. REE characteristics, the abundance ratios of element pairs and the amounts of ore-forming elements are also discussed in the present paper.  相似文献   

2.
The viscosity of a silicate melt of composition NaAlSi2O6 was measured at pressures from 1.6 to 5.5 GPa and at temperatures from 1,350 to 1,880°C. We employed in situ falling sphere viscometry using X-ray radiography. We found that the viscosity of the NaAlSi2O6 melt decreased with increasing pressure up to 2 GPa. The pressure dependence of viscosity is diminished above 2 GPa. By using the relationship between the logarithm of viscosity and the reciprocal temperature, the activation energies for viscous flow were calculated to be 3.7 ± 0.4 × 102 and 3.7 ± 0.5 × 102 kJ/mol at 2.2 and 2.9 GPa, respectively.  相似文献   

3.
Conditions for indentation and channelised flow are investigated with two-dimensional thermomechanical models of Alpine-type continental collision. The models mimic the development of an orogen at an initial central portion of weakened lithosphere 150 km wide, coherent with several geological reconstructions. We study in particular the role of lower crustal strength in developing peculiar geometries after 20 Ma of shortening at 1 cm/year. Crustal layers produce geometries of imbricate layers, which result from two contrasted mechanisms of either channelised ductile lateral flow or horizontal rigid-like indentation:
– Channelised lateral flow develops when the lateral lower crust has a viscosity less than 1021 Pa s, exhibiting velocities opposite to the direction of convergence. This mechanism of deformation produces subhorizontal shear zones at the boundaries between the lower crust and the more competent upper crust and lithospheric mantle. It is also associated with a topographic plateau that equilibrates with a wide (about 200 km) but quasi-constant crustal root about 50 km deep.
– In contrast, indentation occurs with lateral lower crust layers that have a viscosity greater than about 1023 Pa s, producing significant shortening and thickening of the central crust. In this case topography develops steep and narrow (around 100 km wide), associated with a thickened crust exceeding 60 km depth. A crustal-scale pop-up forms bounded by subvertical shear zones that root into the mantle lithosphere.
Keywords: Continental collision indentation; Channel flow; Lower crust; Elastic–viscous–plastic rheology  相似文献   

4.
We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates < 0.5 × 10−2 s−1, while other modelling clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.  相似文献   

5.
We investigated the electrical conductivity of amphibole-bearing rocks under the conditions of the middle to lower crust. Alternating current measurements were performed in the frequency range of 10–106 Hz in a cubic-anvil high-pressure apparatus at 0.5–1.0 GPa and 373–873 K. The electrical conductivity of these rocks is weakly temperature dependent below ~800 K with modest anisotropy and relatively low conductivity (~5 × 10−3 S/m at ~750 K with the activation enthalpy of 64–67 kJ/mol). However, the electrical conductivity starts to increase with temperature more rapidly above ~800 K (activation enthalpy of 320–380 kJ/mol). The infrared spectroscopy observations indicate that dehydration occurs in this high temperature regime. The observed high activation enthalpy and the reproducibility suggest that the enhanced conductivity is not due to the direct effect caused by the generation of conductive fluids. Dehydration of amphibole is associated with the oxidation of iron (from ferrous to ferric), and we suggest that the increased conductivity associated with dehydration is caused by oxidation. This effect may explain high electrical conductivity observed in some regions of the continental crust.  相似文献   

6.
Li  Weiqiang  Li  Shilei  Beard  Brian L. 《中国地球化学学报》2019,38(4):508-516

Shales are a major sink for K into seawater delivered from continental weathering, and are potential recorders of K cycling. High precision K isotope analyses reveal a > 0.6 ‰ variation in δ41K values (41K/39K relative to NIST SRM 3141a) from a set of well characterized post-Archean Australian shale (PAAS) samples. By contrast, loess samples have relatively homogenous δ41K values (− 0.5 ± 0.1 ‰), which may represent the average K composition of upper continental crust. Most of the shales analyzed in this study have experienced K enrichment relative to average continental crust, and the majority of them define a trend of decreasing δ41K value (from − 0.5 to − 0.7 ‰) with increasing K content and K/Na ratio, indicating cation exchange in clays minerals is accompanied by K isotope fractionation. Several shale samples do not follow the trend and have elevated δ41K values up to − 0.1 ‰, and these samples are characterized by variable Fe isotope compositions, which reflect post-depositional processes. The K isotope variability observed in shales, in combination with recent findings about K isotope fractionation during continental weathering, indicates that K isotopes fractionate during cycling of K between different reservoirs, and K isotopes in sediments may be used to trace geological cycling of K.

  相似文献   

7.
We report δ7Li, Li abundance ([Li]), and other trace elements measured by ion probe in igneous zircons from TTG (tonalite, trondhjemite, and granodiorite) and sanukitoid plutons from the Superior Province (Canada) in order to characterize Li in zircons from typical Archean continental crust. These data are compared with detrital zircons from the Jack Hills (Western Australia) with U–Pb ages greater than 3.9 Ga for which parent rock type is not known. Most of the TTG and sanukitoid zircon domains preserve typical igneous REE patterns and CL zoning. [Li] ranges from 0.5 to 79 ppm, typical of [Li] in continental zircons. Atomic ratios of (Y + REE)/(Li + P) average 1.0 ± 0.7 (2SD) for zircons with magmatic composition preserved, supporting the hypothesis that Li is interstitial and charge compensates substitution of trivalent cations. This substitution results in a relatively slow rate of Li diffusion. The δ7Li and trace element data constrain the genesis of TTGs and sanukitoids. [Li] in zircons from granitoids is significantly higher than from zircons in primitive magmas in oceanic crust. TTG zircons have δ7Li (3 ± 8‰) and δ18O in the range of primitive mantle-derived magmas. Sanukitoid zircons have average δ7Li (7 ± 8‰) and δ18O higher than those of TTGs supporting genesis by melting of fluid-metasomatized mantle wedge. The Li systematics in sanukitoid and TTG zircons indicate that high [Li] in pre-3.9-Ga Jack Hills detrital zircons is a primary igneous composition and suggests the growth in proto-continental crust in magmas similar to Archean granitoids.  相似文献   

8.
A 3-D density model for the Cretan and Libyan Seas and Crete was developed by gravity modelling constrained by five 2-D seismic lines. Velocity values of these cross-sections were used to obtain the initial densities using the Nafe–Drake and Birch empirical functions for the sediments, the crust and the upper mantle. The crust outside the Cretan Arc is 18 to 24 km thick, including 10 to 14 km thick sediments. The crust below central Crete at its thickest section, has values between 32 and 34 km, consisting of continental crust of the Aegean microplate, which is thickened by the subducted oceanic plate below the Cretan Arc. The oceanic lithosphere is decoupled from the continental along a NW–SE striking front between eastern Crete and the Island of Kythera south of Peloponnese. It plunges steeply below the southern Aegean Sea and is probably associated with the present volcanic activity of the southern Aegean Sea in agreement with published seismological observations of intermediate seismicity. Low density and velocity upper mantle below the Cretan Sea with ρ  3.25 × 103 kg/m3 and Vp velocity of compressional waves around 7.7 km/s, which are also in agreement with observed high heat flow density values, point out at the mobilization of the upper mantle material here. Outside the Hellenic Arc the upper mantle density and velocity are ρ ≥ 3.32 × 103 kg/m3 and Vp = 8.0 km/s, respectively. The crust below the Cretan Sea is thin continental of 15 to 20 km thickness, including 3 to 4 km of sediments. Thick accumulations of sediments, located to the SSW and SSE of Crete, are separated by a block of continental crust extended for more than 100 km south of Central Crete. These deep sedimentary basins are located on the oceanic crust backstopped by the continental crust of the Aegean microplate. The stretched continental margin of Africa, north of Cyrenaica, and the abruptly terminated continental Aegean microplate south of Crete are separated by oceanic lithosphere of only 60 to 80 km width at their closest proximity. To the east and west, the areas are floored by oceanic lithosphere, which rapidly widens towards the Herodotus Abyssal plain and the deep Ionian Basin of the central Mediterranean Sea. Crustal shortening between the continental margins of the Aegean microplate and Cyrenaica of North Africa influence the deformation of the sediments of the Mediterranean Ridge that has been divided in an internal and external zone. The continental margin of Cyrenaica extends for more than 80 km to the north of the African coast in form of a huge ramp, while that of the Aegean microplate is abruptly truncated by very steep fractures towards the Mediterranean Ridge. Changes in the deformation style of the sediments express differences of the tectonic processes that control them. That is, subduction to the northeast and crustal subsidence to the south of Crete. Strike-slip movement between Crete and Libya is required by seismological observations.  相似文献   

9.
10.
拉萨地块中北部形成于90~88Ma的拔拉扎含矿斑岩具有明显的埃达克质岩特征:高SiO2(>69%)、Al2O3(平均为15.89%)、Sr (平均为354×10-6),低Y(平均为12.97×10-6)、Yb(平均为0.95×10-6)含量,轻重稀土强烈分异((La/Yb)N平均为19.8);同时它们有着高Mg#(平均为65)、Cr(平均为107×10-6)、Ni(平均为13×10-6)含量。研究区这些具有埃达克质岩特征的含矿斑岩并非源于俯冲洋壳、底侵或加厚下地壳部分熔融的产物,也不是玄武质岩浆结晶分异的产物,而很可能是拆沉下地壳部分熔融的结果。另一方面,南向俯冲的Slainajap洋壳或班公湖-怒江洋壳的断离也可能诱发板片窗上部的壳幔物质发生部分熔融而形成研究区的含矿斑岩。  相似文献   

11.
Subduction erosion, which occurs at all convergent plate boundaries associated with magmatic arcs formed on crystalline forearc basement, is an important process for chemical recycling, responsible globally for the transport of ~1.7 Armstrong Units (1 AU = 1 km3/yr) of continental crust back into the mantle. Along the central Andean convergent plate margin, where there is very little terrigenous sediment being supplied to the trench as a result of the arid conditions, the occurrence of mantle-derived olivine basalts with distinctive crustal isotopic characteristics (87Sr/86Sr ≥ 0.7050; εNd ≤ −2; εHf ≤ +2) correlates spatially and/or temporally with regions and/or episodes of high rates of subduction erosion, and a strong case can be made for the formation of these basalts to be due to incorporation into the subarc mantle wedge of tectonically eroded and subducted forearc continental crust. In other convergent plate boundary magmatic arcs, such as the South Sandwich and Aleutian Islands intra-oceanic arcs and the Central American and Trans-Mexican continental margin volcanic arcs, similar correlations have been demonstrated between regions and/or episodes of relatively rapid subduction erosion and the genesis of mafic arc magmas containing enhanced proportions of tectonically eroded and subducted crustal components that are chemically distinct from pelagic and/or terrigenous trench sediments. It has also been suggested that larger amounts of melts derived from tectonically eroded and subducted continental crust, rising as diapirs of buoyant low density subduction mélanges, react with mantle peridotite to form pyroxenite metasomatites that than melt to form andesites. The process of subduction erosion and mantle source region contamination with crustal components, which is supported by both isotopic and U-Pb zircon age data implying a fast and efficient connectivity between subduction inputs and magmatic outputs, is a powerful alternative to intra-crustal assimilation in the generation of andesites, and it negates the need for large amounts of mafic cumulates to form within and then be delaminated from the lower crust, as required by the basalt-input model of continental crustal growth. However, overall, some significant amount of subducted crust and sediment is neither underplated below the forearc wedge nor incorporated into convergent plate boundary arc magmas, but instead transported deeper into the mantle where it plays a role in the formation of isotopically enriched mantle reservoirs. To ignore or underestimate the significance of the recycling of tectonically eroded and subducted continental crust in the genesis of convergent plate boundary arc magmas, including andesites, and for the evolution of both the continental crust and mantle, is to be on the wrong side of history in the understanding of these topics.  相似文献   

12.
The origin of high-Mg adakitic granitoids in collisional orogens can provide important information about the nature of the lower crust and upper mantle during the orogenic process. Late-Triassic high-Mg adakitic granite and its mafic enclaves from the Dongjiangkou area, the Qinling orogenic belt, central China, were derived by partial melting of subducted continental crust and underwent interaction with the overlying mantle wedge peridotite. Adakitic affinity of the different facies of the Dongjiangkou granite body are: high Sr, Ba, high La/Yb and Sr/Y, low Y,Yb, Yb/Lu and Dy/Yb, and no significant Eu anomalies, suggesting amphibole + garnet and plagioclase-free restite in their source region. Evolved Sr-Nd-Pb isotopic compositions [(87Sr/86Sr)i = 0.7050 to 0.7055,εNd(t) = –6.6 to –3.3; (206Pb/204Pb)i = 17.599 to 17.799, (207Pb/204Pb)i = 15.507 to 15.526, (208Pb/204Pb)i = 37.775 to 37.795] and high K2O, Rb, together with a large variation in zircon Hf isotopic composition (εHf(t) = ?9.8 to + 5.0), suggest that the granite was derived from reworking of the ancient lower continental crust. CaO, P2O5, K2O/Na2O, Cr, Ni, Nb/Ta, Rb/Sr and Y increase, and SiO2, Sr/Y and Eu/Eu* decrease with increasing MgO, consistent with interaction of primitive adakitic melt and overlying mantle peridotite. Zircons separated from the host granites have U-Pb concordia ages of 214 ± 2 Ma to 222 ± 2 Ma, compatible with exhumation ages of Triassic UHP metamorphic rocks in the Dabie orogenic belt. Mafic microgranular enclaves and mafic dykes associated with the granite have identical zircon U-Pb ages of 220 Ma, and are characterized by lower SiO2, high TiO2, Mg# and similar evolved Sr-Nd-Pb isotopic composition. Zircons from mafic microgranular enclaves (MMEs) and mafic dykes also show a large variation in Hf isotopic composition with εHf(t) between ?11.3 and + 11.3. It is inferred that they were formed by partial melting of enriched mantle lithosphere and contaminated by the host adakitic granite magma.In combination with the regional geology, high-Mg# adakitic granitoid rocks in the Dongjiangkou area are considered to have resulted from interaction between subducted Yangtze continental crust and the overlying mantle wedge. Triassic continental collision caused detachment of the Yangtze continental lithosphere subducted beneath the North China Craton, at ca. 220 Ma causing asthenosphere upwelling and exhumation of the continental crust. Triassic clockwise rotation of the Yangtze Craton caused extension in the Dabie area which led to rapid exhumation of the subducted continental lithosphere, while compression in the Qinling area and high-P partial melting (amphibole ± garnet stability field) of the subducted continental crust produced adakitic granitic magma that reacted with peridotite to form Mg-rich hybrid magma.  相似文献   

13.
The Lanping–Simao Basin (LSB) is a Mesozoic–Cenozoic continental margin rift basin in Western China. It formed during the opening and closing of the Tethys Ocean. This basin is also known as a “metal belt” as it hosts several metal deposits, besides, the Mengye potash deposit. However, the exact dates of the formation either in the Paleocene or the Cretaceous, and thus the origins of the marine, continental or mixed origins of the Mengye deposits, remain disputed. Based on the basin's evolution, materials of marine origin and/or remnant seawater should be present, but instead the salt layers of the Mengye potash deposit present typically continental lithological features. This study examines and reviews evaporative minerals, Br/Cl and I/Cl molar ratios, and isotopes of S, B, and Sr·I and I/Cl data for this area has not been previously reported. The basin's evaporative minerals are dominated by halite and sylvite. The amounts of anhydrite, chlorocalcite, langbeinite, glaserite, tachyhydrite and glauberite are small. All of these form in both marine and continental environments. The values of I and the I/Cl molar ratios of halite and sylvite are from 0.07 to 0.27 ppm, and from 0.03 to 0.11 × 10 6, respectively, dependent on organic substances. Br and molar Br/Cl values are from 89.08 to 555.45 ppm and from 0.06 × 10 3 to 0.38 × 10 3, respectively. All of the Br/Cl molar ratios are lower than those of seawater, and most of them are < 0.1, suggesting continental or mixed origin. Previously published δ34S, δ11B and 87Sr/86Sr values for evaporative minerals indicate a continental origin for the Mengye potash deposit. However, materials of hydrothermal origin are widely distributed in the basin and may have played an active role for the formation of the potash deposit. Thus the Mengye potash deposit could be of continental origin, with a remnant seawater trace.  相似文献   

14.
Active or passive continental rifting is associated with thinning of the lithosphere, ascent of the asthenosphere, and decompressional melting. This melt may percolate within the partially molten source region, accumulate and be extracted. Two-dimensional numerical models of extension of the continental lithosphere–asthenosphere system are carried out using an Eulerian visco-plastic formulation. The equations of conservation of mass, momentum and energy are solved for a multi-component (crust–mantle) and two-phase (solid–melt) system. Temperature-, pressure-, and stress-dependent rheologies based on laboratory data for granite, pyroxenite and olivine are used for the upper and lower crust, and mantle, respectively. Rifting is modelled by externally prescribing a constant rate of widening with velocities between 2.5 and 40 mm/yr. A typical extension experiment is characterized by 3 phases: 1) distributed extension, with superimposed pinch and swell instability, 2) lithospheric necking, 3) continental break up, followed by oceanization. The timing of the transition from stages 1) to 2) depends on the presence and magnitude of a localized perturbation, and occurs typically after 100–150 km of total extension for the lithospheric system studied here. This necking phase is associated with a pronounced negative topography (“rift valley”) and a few 100 m of rift flanks. The dynamic part of this topography amounts to about 1 km positive topography. This means, if rifting stops (e.g. due to a drop of external forces), immediate additional subsidence by this amount is predicted. Solidification of ascended melt beneath rift flanks leads to basaltic enrichment and underplating beneath the flanks, often observed at volcanic margins. After continental break up, a second time-dependent upwelling event off the rift axis beneath the continental margins is found, producing further volcanics. Melting has almost no or only a small accelerating effect on the local extension value (β-value) for a constant external extension rate. Melting has an extremely strong effect on the upwelling velocity within asthenospheric wedge beneath the new rift. This upwelling velocity is only weakly dependent on the rifting velocity. The melt induced sublithospheric convection cell is characterized by downwelling flow beneath rift flanks. Melting increases the topography of the flanks by 100–200 m due to depletion buoyancy. Another effect of melting is a significant amplification of the central subsidence due to an increase in localized extension/subsidence. Modelled magma amounts are smaller than observed for East African Rift System. Increasing the mantle temperature, as would be the case for a large scale plume head, better fits the observed magma volumes. If extension stops before a new ocean is formed, melt remains present, and convection remains active for 50–100 Myr, and further subsidence is significant.  相似文献   

15.
圆头山黑云母花岗斑岩位于尼勒克县城南,岩体普遍发育的铜矿化,以中部碎裂带中矿化最强。岩石具有典型的斑状结构,斑晶由碱性长石和黑云母组成,基质以长石、云母和石英为主,并含有少量的硫化物。圆头山黑云母花岗斑岩的轻重稀土分馏明显,并且明显富集大离子亲石元素(LILE) (除Sr外)和Pb,同时亏损高场强元素(HFSE)和Nb、Ta、P、Ti,显示出弧火山岩的地球化学特征。圆头山黑云母花岗形成年龄为269±3Ma,其源区以具有弧火山岩特征的下地壳为主,同时含有少量的幔源物质,而且在岩体的侵位过程中有高(87Sr/86Sr)i (0.706054~0.709228)和高Pb含量(5.05×10-6~32.5×10-6)的陆壳物质混染。在下地壳物质熔融过程中,位于下地壳底部的富水和成矿元素的MASH带物质也被圈入,使原始岩浆富水和成矿物质。圆头山黑云母花岗斑形成于碰撞后阶段,岩石的形成主要受岩石圈地幔拆沉作用的控制,而岩石圈地幔的拆沉可能与中亚造山带的垮塌或塔里木地幔柱活动有关。  相似文献   

16.
This paper reports a new 1° × 1° global thermal model for the continental lithosphere (TC1). Geotherms for continental terranes of different ages (> 3.6 Ga to present) constrained by reliable data on borehole heat flow measurements (Artemieva, I.M., Mooney, W.D. 2001. Thermal structure and evolution of Precambrian lithosphere: a global study. J. Geophys. Res 106, 16387–16414.), are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low-quality heat flow data (ca. 60% of the continents). These data are supplemented by cratonic geotherms based on electromagnetic and xenolith data; the latter indicate the existence of Archean cratons with two characteristic thicknesses, ca. 200 and > 250 km. A map of tectono-thermal ages of lithospheric terranes complied for the continents on a 1° × 1° grid and combined with the statistical age relationship of continental geotherms (z = 0.04  t + 93.6, where z is lithospheric thermal thickness in km and t is age in Ma) formed the basis for a new global thermal model of the continental lithosphere (TC1). The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle, with the strongest lateral temperature variations (as large as 800 °C) in the shallow mantle. A map of the depth to a 550 °C isotherm (Curie isotherm for magnetite) in continental upper mantle is presented as a proxy to the thickness of the magnetic crust; the same map provides a rough estimate of elastic thickness of old (> 200 Ma) continental lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle.Statistical analysis of continental geotherms reveals that thick (> 250 km) lithosphere is restricted solely to young Archean terranes (3.0–2.6 Ga), while in old Archean cratons (3.6–3.0 Ga) lithospheric roots do not extend deeper than 200–220 km. It is proposed that the former were formed by tectonic stacking and underplating during paleocollision of continental nuclei; it is likely that such exceptionally thick lithospheric roots have a limited lateral extent and are restricted to paleoterrane boundaries. This conclusion is supported by an analysis of the growth rate of the lithosphere since the Archean, which does not reveal a peak in lithospheric volume at 2.7–2.6 Ga as expected from growth curves for juvenile crust.A pronounced peak in the rate of lithospheric growth (10–18 km3/year) at 2.1–1.7 Ga (as compared to 5–8 km3/year in the Archean) well correlates with a peak in the growth of juvenile crust and with a consequent global extraction of massif-type anorthosites. It is proposed that large-scale variations in lithospheric thickness at cratonic margins and at paleoterrane boundaries controlled anorogenic magmatism. In particular, mid-Proterozoic anorogenic magmatism at the cratonic margins was caused by edge-driven convection triggered by a fast growth of the lithospheric mantle at 2.1–1.7 Ga. Belts of anorogenic magmatism within cratonic interiors can be caused by a deflection of mantle heat by a locally thickened lithosphere at paleosutures and, thus, can be surface manifestations of exceptionally thick lithospheric roots. The present volume of continental lithosphere as estimated from the new global map of lithospheric thermal thickness is 27.8 (± 7.0) × 109 km3 (excluding submerged terranes with continental crust); preserved continental crust comprises ca. 7.7 × 109 km3. About 50% of the present continental lithosphere existed by 1.8 Ga.  相似文献   

17.
Magmatism at Andean Central Volcanic Zone (CVZ), or Central Andes, is strongly influenced by differentiation and assimilation at high pressures that occurred at lower levels of the thick continental crust. This is typically shown by high light to heavy rare earth element ratios (LREE/HREE) of the erupted lavas at this volcanic zone. Increase of these ratios with time is interpreted as a change to magma evolution in the presence of garnet during evolution of Central Andes. Such geochemical signals could be introduced into the magmas be high-pressure fractionation with garnet on the liquidus and/or assimilation from crustal rocks with a garnet-bearing residue. However, lavas erupted at San Pedro–Linzor volcanic chain show no evidence of garnet fractionation in their trace element patterns. This volcanic chain is located in the active volcanic arc, between 22°00S and 22°30S, over a continental crust ∼70 km thick. Sampled lavas show Sr/Y and Sm/Yb ratios <40 and <4.0, respectively, which is significantly lower than for most other lavas of recent volcanoes in the Central Andes. In addition, 87Sr/86Sr ratios from San Pedro–Linzor lava flows vary between 0.7063 and 0.7094. This is at the upper range, and even higher than those observed at other recent Central Andean volcanic rocks (<0.708). The area in which the San Pedro–Linzor volcanic chain is located is constituted by a felsic, Proterozoic upper crust, and a thin mafic lower crustal section (<25 km). Also, the NW–SE orientation of the volcanic chain is distinctive with respect to the N–S orientation of Central Andean volcanic front in northern Chile. We relate our geochemical observations to shallow crustal evolution of primitive magmas involving a high degree of assimilation of upper continental crust. We emphasize that low pressure AFC- (Assimilation Fractional Crystallization) type evolution of the San Pedro–Linzor volcanic chain reflects storage, fractionation, and contamination of mantle-derived magmas at the upper felsic crust (<40 km depth). The ascent of mantle-derived magmas to mid-crustal levels is related with the extensional regime that has existed in this zone of arc-front offset since Late-Miocene age, and the relatively thin portion of mafic lower crust observed below the volcanic chain.  相似文献   

18.
Lavas from the South Shetland Islands volcanic arc (northern Antarctic Peninsula) have been investigated in order to determine the age, petrogenesis and compositional evolution of a long-lived volcanic arc constructed on 32-km-thick crust, a thickness comparable with average continental crust. New 40Ar–39Ar ages for the volcanism range between 135 and 47 Ma and, together with published younger ages, confirm a broad geographical trend of decreasing ages for the volcanism from southwest to northeast. The migration pattern breaks down in Palaeogene time, with Eocene magmatism present on both Livingston and King George islands, which may be due to a change in both subduction direction and velocity after c. 60 Ma. The lavas range from tholeiitic to calc-alkaline, but there is no systematic change with age or geographic location. The compositions of lavas from the north-eastern islands indicate magma generation in a depleted mantle wedge with relatively low Sr and high Nd isotopic compositions and low U/Nb, Th/Nd and Ba/Nb ratios that was metasomatized by hydrous fluids from subducted basaltic oceanic crust. Lavas from the south-western islands show an additional sedimentary influence most likely due to fluid release from subducted sediments into the mantle wedge. Although magmatic activity in the South Shetland arc extended over c. 100 m.y., there is no evolution towards more enriched or evolved magmas with time. Few South Shetland arc lavas are sufficiently enriched with incompatible elements to provide a potential protolith for the generation of average continental crust. We conclude that even long-established subduction zones with magmatic systems founded on relatively thick crust do not necessarily form continental crustal building blocks. They probably represent only the juvenile stages of continental crust formation, and additional re-working, for example during subsequent arc-continental margin collision, is required before they can evolve into average continental crust.  相似文献   

19.
Thermal and petrologic models of the crust and upper mantle are used for calculating effective viscosities on the basis of constant creep rates. Viscosity—depth models together with pressure—depth models are calculated for continental and oceanic blocks facing each other at continental margins. It is found from these “static models” that the overburden pressure in the lower crust and uppermost mantle causes a stress which is directed from the ocean to the continent. The generally low viscosity of 1020–1023 poise in this region should permit a creep process which could finally lead to a “silent” subduction. In the upper crust static stresses act in the opposite direction, i.e. from the continent to the ocean, favouring tension which could produce normal faulting in the continent. Differences between observations and the results obtained from the static models are attributed to dynamical forces.  相似文献   

20.
In order to understand the vertical structure of the Dabie–Sulu ultrahigh-pressure metamorphic (UHPM) belt, common Pb isotopic compositions of omphacites in eclogites and feldspars in gneisses from the Chinese Continental Scientific Drilling (CCSD) project (100–5000 m) have been investigated in this study. Samples from 0 to 800 m (unit 1) in the drilling core have moderately high radiogenic Pb isotopes with small variations of 206Pb/204Pb (16.82–17.38), 207Pb/204Pb (15.37–15.49), and 208Pb/204Pb (37.21–37.72), indicating either high µ (238U/204Pb) or high initial Pb isotope ratios of their protoliths. In contrast, the samples from 1600 to 2040 m (unit 3) and most of samples from 3200 to 5000 m (unit 5) have moderately or very unradiogenic Pb (unit 3: 206Pb/204Pb from 16.05 to 16.46, 207Pb/204Pb from 15.22 to 15.29, and 208Pb/204Pb from 36.68 to 37.48; unit 5: 206Pb/204Pb from 15.52 to 15.69, 207Pb/204Pb from 15.15 to 15.27, and 208Pb/204Pb from 36.48 to 37.20), indicating either low µ or low initial Pb isotope ratios of their protoliths. Pb isotopes of samples from 800 to 1600 m (unit 2) and from 2040 to 3200 m (unit 4) in the drilling core with abundant ductile shear zones are intermediate between those of units 1 and 3 or 5 and display larger variations. Pb isotopes combined with the published oxygen isotope data of the CCSD samples reveal the original positions of the five units before the Triassic continental subduction. Units 1, 3, and 5 as three UHPM rock slabs could be derived from the subducted upper continental crust, upper–middle continental crust and lower–middle continental crust, respectively. The ductile shearing zones in units 2 and 4 could be the interfaces where the detachment and decoupling took place between the upper, upper–middle and lower–middle continental crusts. The detachment between the upper slab and subducting continental lithosphere probably occurred during continental subduction, and the upper slab (unit 1) was uplifted to a shallow depth along the detachment surface by thrusting. Units 3 and 5 may be detached later from the subducted middle and lower crust and uplifted to a shallow level underneath unit 1. The low δ18O values (? 4.0 to ? 7.4‰) [Xiao, Y.-L., Zhang, Z.-M., Hoefs, J., Kerkhof, A., 2006. Ultrahigh-pressure Metamorphic Rocks from the Chinese Continental Drilling Project-II Oxygen Isotope and Fluid Inclusion Distributions through Vertical Sections. Contribution Mineral Petrology 152, 443–458.; Zhang, Z.-M., Xiao, Y.-L., Zhao, X.-D., Shi, C., 2006. Fluid-rock interaction during the continental deep subduction: oxygen isotopic profile of the main hole of the CCSD project. Acta Petrologica Sinica 22 (7), 1941–1951.] in units 2 and 4 suggest that the detachment interfaces could be developed along an ancient fault zones which were the channels of meteoric water activity during the Neoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号