首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

2.
The Inata gold deposit is hosted in the Bouroum greenstone belt of northern Burkina Faso and contains ca. 5 Moz of gold resource. The greenstone belt is divided into 4 distinct domains: The Pali West, Pali-Minfo and Fété Kolé domains comprised of variable proportions of mafic to intermediated volcanic, volcaniclastic and sedimentary rocks, and the Sona Basin comprised of feldspathic sandstones and turbidites. Potential Tarkwaian-like conglomerates are rarely observed on the eastern margin of the basin. The stratigraphy is crosscut by a series of intrusions between 2172 ± 15 Ma and 2122 ± 4 Ma. A complex deformation sequence is recorded in the rocks and has been interpreted in a five stage scheme: early syn-depositional basin margin faults reactivated through time and partitioning all subsequent regional deformation (DeB); N–S compression (D1B > 2172 Ma); E-W compression (D2B, < ca 2122 Ma); NW–SE compression (D3B), and a late N–S compression (D4B). D2B-D4B overprint all rocks, including those of the Sona Basin and Tarkwaian-like conglomerates. Peak metamorphism is mid- to upper-greenschist facies.Mineralisation at Inata is hosted in black shales and volcaniclastic rocks of the Pali-Minfo domain and comprises shear-zone hosted quartz-tourmaline-ankerite veins with associated sulphides dominated by pyrite and arsenopyrite. Three generations of pyrite (py1, py2, py3) and one generation of arsenopyrite (apy2) have been identified. Py1 is parallel to bedding and early D1B foliation and not associated with gold. Py2 and apy2 are coeval, contain up to 1 ppm gold and are spatially associated with auriferous quartz veins. Py3 locally overprints previous assemblages and is also associated with Au. Fluid inclusions in quartz indicate H2O to H2O–CO2–NaCl fluids in auriferous quartz veins.Microscopic to macroscopic observation of fabric-mineral-vein crosscutting relationships indicate that mineralisation is syn-D2B, disrupted and remobilised during D3B. All observations and data are consistent with Inata representing an orogenic style of gold mineralisation formed relatively late in the evolution of the host terrane.  相似文献   

3.
The Tamlalt–Menhouhou gold deposit belongs to the Neoproterozoic–Palaeozoic Tamlalt inlier located in the Eastern High-Atlas (Morocco). It occurs in altered Upper Neoproterozoic bimodal volcanic and volcano-sedimentary units outcropping in the Tamlalt–Menhouhou area. Gold mineralization has been identified in quartz veins related to shear-zones associated with a strong quartz-phyllic-argillic alteration. Visible free gold is related to goethite–malachite–barite boxworks in quartz veins. The other alteration minerals accompanying gold mineralization are mainly carbonates, chlorite, hematite, albite and pyrite whose relative proportion defines three alteration types. 40Ar/39Ar geochronology performed on phengite grains from phyllic alteration and the auriferous quartz veins, yields plateau ages ranging from 300 ± 5 Ma to 284 ± 12 Ma with a weighted mean age of 293 ± 7 Ma. This identifies a Late Variscan age for the Tamlalt–Menhouhou “shear zones-related” gold deposit and emphasizes the consequences of the Variscan orogeny for gold mineralization in the High-Atlas and Anti-Atlas Neoproterozoic inliers.  相似文献   

4.
The Ar Rjum goldfield is an example of late Neoproterozoic Au mineralization that is hosted by submarine arc assemblage and syn-anorogenic intrusive rocks. Apart from ancient workings, recent exploration in the goldfield defined three main targets along 3 km N–S corridor (Um Na'am, Ghazal and Wasema), and indicated that Wasema alone hosts 11.8 Mt @ 2.5 g/t Au. The majority of gold and sulfide mineralization is confined to diorite, where gold content increases with shearing, pyrite–sericite–carbonate alteration and development stockworks of quartz–carbonate–pyrite veins and stringers. Generally, the concentration of gold increases in the diorite samples that experienced variable degrees of hydrothermal alterations near local shear zones. Anomalous gold content (up to 11.76 g/t) in some metachert is the result of the remobilization of volcanogenic lattice-bound (refractory) Au into free Au due to post-metamorphic hydrothermal alterations. The chemistry of pyrite from the mineralized veins and stringers indicates considerable amounts of gold that reaches ~ 0.3 wt.%.Chlorite that co-exists with pyrite in the hydrothermally altered metavolcanics is mostly sheridanite with up to ~ 25 wt.% FeOt and minor amounts of ripidolite. Chlorite geothermometry suggests that two temperature ranges affecting the area. The first temperature range (290–334 °C) is consistent with regional greenschist facies metamorphism, and the second (306–355 °C) is interpreted to be related to recrystallization-submarine hydrothermal alteration related to the gold mineralization. Stable isotope (δ34S, δ18O and δ13C) data suggest an original volcanogenic arc signature that has been slightly modified by low-grade metamorphism, and finally by the late interaction of hydrothermal fluids. Ore evolution model for the Ar Rjum goldfield includes seafloor sulfide alteration, several deformation episodes and intrusive effects, and in this context the ore resulted from the reduction of seawater sulfates. The gold-rich veins interpreted as orogenic lode deposits are confined to localized shear zones in a syn-orogenic diorite.  相似文献   

5.
The Xiongcun district, located in the western segment of the Gangdese porphyry copper belt (GPCB), hosts the only known Jurassic mineralization in the GPCB, Tibet, PRC. The No. I deposit in the Xiongcun district is related to the Middle Jurassic quartz diorite porphyry (167–161 Ma) and the mineralization was formed at ca. 161.5 ± 2.7 Ma. Ore-bearing Middle Jurassic quartz diorite porphyry emplaced into the Early Jurassic volcano-sedimentary rock sequences of the Xiongcun Formation. Veinlets and disseminated mineralization developed within the Middle Jurassic quartz diorite porphyry and the surrounding metamorphosed tuff, hosting a measured and indicated resource of 1.04 Mt copper, 143.31 t gold and 900.43 t silver with an average grade of 0.48% copper, 0.66 g/t gold, and 4.19 g/t silver. The mineralization can be assigned to four stages, including three main stages of hypogene mineralization and one epigenetic stage. The main alteration associated with mineralization is potassic. Seven mineralization-related hydrothermal veins have been recognized, including quartz–sulfide, biotite–sulfide, magnetite–sulfide, quartz–molybdenite–sulfide, chalcopyrite–pyrite–pyrrhotite, pyrite and polymetallic veins. The S and Pb isotopic compositions of the ore sulfides and the Re contents of the molybdenite suggest a mantle source for the ore-forming materials with minor contamination from the subducted sediments. Hydrogen and oxygen isotope compositions of quartz in the ores suggest that both magmatic and meteoric waters were involved in the ore-forming process. The ore-bearing porphyry (167–161 Ma) and ore-forming (161.5 ± 2.7 Ma) ages of the No. I deposit correspond to the time of northward subduction of Neo-Tethys oceanic slab. The geochemical data of the ore-bearing porphyry indicate that the No. I deposit formed in an intra-oceanic island arc setting and the ore-bearing porphyry originated from the partial melting of mantle with limited contribution of subducted sediments. The genesis of the ore-bearing porphyry and No. I deposit is interpreted as being related to northward intra-oceanic subduction of Neo-Tethys oceanic slab in the Middle Jurassic time (167–161 Ma).  相似文献   

6.
《Gondwana Research》2014,26(4):1469-1483
China's largest gold resource is located in the highly endowed northwestern part of the Jiaodong gold province. Most gold deposits in this area are associated with the NE- to NNE-trending shear zones on the margins of the 130–126 Ma Guojialing granite. These deposits collectively formed at ca. 120 ± 5 Ma during rapid uplift of the granite. The Dayingezhuang deposit is a large (> 120 t Au) orogenic gold deposit in the same area, but located along the eastern margin of the Late Jurassic Linglong Metamorphic Core Complex. New 40Ar/39Ar geochronology on hydrothermal sericite and muscovite from the Dayingezhuang deposit indicate the gold event is related to evolution of the core complex at 130 ± 4 Ma and is the earliest important gold event that is well-documented in the province. The Dayingezhuang deposit occurs along the Linglong detachment fault, which defines the eastern edge of the ca. 160–150 Ma Linglong granite–granodiorite massif. The anatectic rocks of the massif were rapidly uplifted, at rates of at least 1 km/m.y. from depths of 25–30 km, to form the metamorphic core complex. The detachment fault, with Precambrian metamorphic basement rocks in the hangingwall and the Linglong granitoids and migmatites in the footwall, is characterized by early mylonitization and a local brittle overprinting in the footwall. Gold is associated with quartz–sericite–pyrite–K-feldspar altered footwall cataclasites at the southernmost area of the brittle deformation along the detachment fault. Our results indicate that there were two successive, yet distinct gold-forming tectonic episodes in northwestern Jiaodong. One event first reactivated the detachment fault along the edge of the Linglong massif between 134 and 126 Ma, and then a second reactivated the shears along the margins of the Guojialing granite. Both events may relate to a component of northwest compression after a middle Early Cretaceous shift from regional NW–SE extension to a NE–SW extensional regime.  相似文献   

7.
The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo–Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U–Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M’Papa gold fields, dominantly N–S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE–SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re–Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite–chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ~483 Ma assemblage yields a chondritic initial 187Os/188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW–NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW–SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.  相似文献   

8.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

9.
Copper–gold–bismuth–tellurium mineralization in the Stanos area, Chalkidiki Peninsula, Greece, occurs in the Proterozoic- to Silurian-aged Serbomacedonian Massif, which tectonically borders the Mesozoic Circum-Rhodope metamorphic belt to the west and crystalline rocks of the Rhodope Massif to the east. This area contains the Paliomylos, Chalkoma, and Karambogia prospects, which are spatially related to regional NW–SE trending shear zones and hosted by marble, amphibolite gneiss, metagabbro, and various muscovite–biotite–chlorite–actinolite–feldspar–quartz schists of the Silurian Vertiskos Unit. Metallic minerals occur as disseminated to massive aggregates along foliation planes and in boudinaged quartz veins. Iron-bearing sulfides (pyrite, arsenopyrite, and pyrrhotite) formed prior to a copper-bearing stage that contains chalcopyrite along with galena, sphalerite, molybdenite, and various minerals in the system Bi–Cu–Pb–Au–Ag–Te. Fluid inclusion homogenization temperatures of primary aqueous liquid–vapor inclusions in stage I quartz veins range from 170.1 °C to 349.6 °C (peak at ~ 230 °C), with salinities of 4.5 to 13.1 wt.% NaCl equiv. Calculated isochores intersect P–T conditions associated with the upper greenschist facies caused by local overpressures during late-stage tectonic movement along the shear zone in the Eocene, which produced stretching and unroofing of rocks in the region. Values of δ34S for sulfides in the Stanos shear zone range from 2.42 to 10.19‰ and suggest a magmatic sulfur source with a partially reduced seawater contribution. For fluids in equilibrium with quartz, δ18O at 480 °C varies from 5.76 to 9.21‰ but does not allow for a distinction between a metamorphic and a magmatic fluid.A 187Re–187Os isochron of 19.2 ± 2.1 Ma for pyrite in the Paliomylos prospect overlaps ages obtained previously from intrusive rocks spatially-related to the Skouries porphyry Cu–Au, the Asimotrypes Au, and the intrusion-related Palea Kavala Bi–Te–Pb–Sb ± Au deposits in northern Greece, as well as alteration minerals in the carbonate-replacement Madem Lakkos Pb–Zn deposit. Ore-forming components of deposits in the Stanos area were likely derived from magmatic rocks at shallow depth that intruded an extensional shear environment at ~ 19 Ma.  相似文献   

10.
Vein-type gold deposits in the Atud area are related to the metagabbro–diorite complex that occurred in Gabal Atud in the Central Eastern Desert of Egypt. This gold mineralization is located within quartz veins and intense hydrothermal alteration haloes along the NW–SE brittle–ductile shear zone, as well as along the contacts between them. By using the mass balance calculations, this work is to determine the mass/volume gains and losses of the chemical components during the hydrothermal alteration processes in the studied deposits. In addition, we report new data on the mineral chemistry of the alteration minerals to define the condition of the gold deposition and the mineralizing fluid based on the convenient geothermometers. Two generations of quartz veins include the mineralized grayish-to-white old vein (trending NW–SE), and the younger, non-mineralized milky white vein (trending NE–SW). The ore minerals associated with gold are essentially arsenopyrite and pyrite, with chalcopyrite, sphalerite, enargite, and goethite forming during three phases of mineralization; first, second (main ore), and third (supergene) phases. Three main hydrothermal alteration zones of mineral assemblages were identified (zones 1–3), placed around mineralized and non-mineralized quartz veins in the underground levels. The concentrations of Au, Ag, and Cu are different from zone to zone having 25–790 ppb, 0.7–69.6 ppm, and 6–93.8 ppm; 48.6–176.1 ppb, 0.9–12.3 ppm, and 39.6–118.2 ppm; and 53.9–155.4 ppb, 0.7–3.4 ppm, and 0.2–79 ppm for zones 1, 2, and 3, respectively.The mass balance calculations and isocon diagrams (calculated using the GEOISO-Windows program) revealed the gold to be highly associated with the main mineralized zone as well as sericitization/kaolinitization and muscovitization in zone 1 more than in zones 2 and 3. The sericite had a higher muscovite component in all analyzed flakes (average XMs = 0.89), with 0.10%–0.55% phengite content in wall rocks and 0.13%–0.29% phengite content in mineralized quartz veins. Wall rocks had higher calcite (CaCO3) contents and lower MgCO3 and FeCO3 contents than the quartz veins. The chlorite flakes in the altered wall rocks were composed of pycnochlorite and ripidolite, with estimated formation temperatures of 289–295 °C and 301–312 °C, respectively. Albite has higher albite content (95.08%–99.20%) which occurs with chlorite in zone 3.  相似文献   

11.
The studied Mokrsko-West (90–100 t Au), Mokrsko-East (30 t Au) and Čelina (11 t Au) deposits represent three spatially and genetically interrelated deposits of supposed affiliation to the intrusion-related gold deposit type. The deposits differ in their dominant host rocks, which are represented by ca 354 Ma old biotite tonalite (Mokrsko-West) and Neoproterozoic volcanic and volcanosedimentary rocks (Mokrsko-East, Čelina). Another difference lies in the style of veining — densely spaced networks of 0.1–5 mm thin veins (Q2) within the tonalite, compared to thick (usually 5–20 cm; Q1–2) and widely spaced veins within the Neoproterozoic rocks.Five generations of quartz veins, referred to as Q0 through Q4 were distinguished: Q0 veins are the oldest and ore-barren, Q1 veins mark the onset of the Au-ore formation, Q2 veins its culmination and Q3 veins its fading. Late quartz gangue (Q4) is associated with uneconomic Ag–Pb–Zn vein-type ores hosted by calcite–barite–(quartz) veins.Quartz vein thickness (~ 0.3 to ~ 300 mm), spacing (~ 3 mm to ~ 500 mm), distribution, and related extensional strain (ca. 3–25%) evolve systematically across the studied ore district, reflecting both the major host rock and other tectonic factors. Detailed study of vein dimension parameters (thickness, length, width, aspect ratios) allowed estimation of the probable depth of the fluid source reservoir (~ 2 km or ~ 4 km) below the present surface. The depth to the fluid source seems to increase through time, being the shallowest for the Q0 veins and the deepest for the Q2 veins. Two independent methods of estimating fluid overpressure are discussed in the paper. Fluid overpressure during vein formation decreases from the Q0 through the Q2 veins, from 10 to 4 MPa or from 26 to 10 MPa, depending on the assumed tensile strength of the tonalite (5.5 and 15 MPa, respectively).The origin of joints and veins is discussed in terms of the stress orientation and crack-seal and crack-jump mechanisms. Field relationships unambiguously indicate that the veins hosted by Neoproterozoic rocks originated by reopening of the pre-existing extension joints (J1) due to fluid overpressure. The origin of the densely-spaced thin veins (Q2) hosted by the tonalite at the Mokrsko-West deposit is, however, less certain. It is probable that the tonalite was already affected by microfracturing analogous to the J1 joints prior to the formation of quartz veins.The formation of the Q1–2 veins at the Mokrsko-East deposit was constrained by the Re–Os dating of molybdenite to 342.9 ± 1.4 Ma. The ore-bearing hydrothermal system is thus ca 12 Ma younger than the tonalite that hosts the Mokrsko-West deposit. A similar ca 15–2 Ma difference between the age of the host-intrusion and the age of the hydrothermal event was encountered in several other gold deposits in the vicinity of the Central Bohemian Plutonic Complex. Two hypotheses to explain this are discussed in the paper.  相似文献   

12.
A new high sulfidation epithermal Cu–Au occurrence (Nadun) has been discovered adjacent to the Cretaceous Duolong porphyry Cu–Au deposit within the Bangong–Nujiang metallogenic belt, central Tibet. The Nadun Cu–Au mineralization is hosted in a tectonic–hydrothermal breccia with advanced argillic alteration, which occurs above sandstone, associated with quartz–pyrite veins. The granodiorite porphyry with strong argillic alteration yields a zircon U–Pb age of 119.1 ± 1.3 Ma, whereas the weakly argillic granodiorite porphyry intruded into the breccia has a younger age of 116.1 ± 1.3 Ma. This indicates that Cu–Au epithermal mineralization likely occurred between ~ 116 Ma and ~ 119 Ma, consistent with the duration of magmatic–hydrothermal activity at Duolong (~ 115–118 Ma), and providing evidence that Nadun and Duolong were formed during the same event. Moreover, the Nadun and Duolong porphyries have similar Hf isotopic compositions (εHf(t) values ranging from − 8.8 to 8.1; mean = 5.0 ± 1.1, n = 32), likely indicating that the deposits are comagmatic. In addition, boiling assemblages in vapor-rich inclusions coexisting with brines occur in early stage quartz–pyrite veins, and likely record phase separation at a temperature of > 550–300 °C and pressure of 700–110 bars. Most liquid-rich fluid inclusions formed at the breccia stage show similar salinity (1.7–19.3 wt.% NaCl equiv) to vapor-rich inclusions from the underlying quartz–pyrite veins, likely indicating vapor contraction during cooling at elevated presssure. This suggests that quartz–pyrite veins may act as conduits for ore-forming fluid traveling from the porphyry to the epithermal hydrothermal system. O and H isotopic compositions (δ18Ofluid = 0.42–9.71‰ and δD =  102 to − 66‰) suggest that ore-forming fluids are dominantly from a magmatic source with a minor addition of meteoric water at a later stage. The S and Fe isotope compositions of sulfides (δ34S =  5.9 to 0.5‰ and δ57Fe =  2.15 to 0.17‰) decrease from the quartz–pyrite vein to breccia ore, indicating that ore-forming fluids gradually become SO42-enriched and relatively oxidized. This body of evidence suggests that the Nadun Cu–Au mineralization may represent the root of a high sulfidation epithermal deposit.  相似文献   

13.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

14.
Turbidite hosted orogenic gold mineralization in the Archean Gadag greenstone belt of the Western Dharwar Craton, forms a major auriferous zone (Central Auriferous Zone) extending over a strike length of about 12 km in the Gadag duplex. The turbidite sequence comprises thick inter-bedded, medium to coarse grained lithic graywacke and thin laminated layers of fine grained carbonaceous phyllite. Gold bearing quartz veins impregnate preferentially along the en-echelon shear planes, fractures and schistosity planes. Auriferous quartz veins are enveloped by the altered wall rocks.Mineralogy of the auriferous zone is dominated by gangue minerals like quartz, ankerite, chlorite, sericite and carbonaceous matter, with subordinate plagioclase. Monazite and xenotime are the important accessory minerals. Arsenopyrite and pyrite are the major sulfide minerals, but pyrrhotite, chalcopyrite, sphalerite, galena and scheelite are also present. Gold in native state occurs within quartz, silicates and arsenopyrite.Notable distinctions in mineral assemblage, texture and in chemical compositions of altered wall rocks compared to the precursor host rock in the study area implies that the metasomatism and wall rock alterations are the results of pervasive infiltration and intense interaction between hydrothermal fluids and the surrounding host rocks over a prolonged period.Sulfides, carbonates, carbonaceous matter, K2O, MgO, CaO, Cr, Ni, Cu, Pb, Zn, As and higher values of gold (0.98–4.72 ppm) are added into the altered wall rocks, immediately enveloping the auriferous quartz vein bodies. The chondrite normalized REE pattern of altered wall rocks exhibits enriched LREE (LaN/YbN = av. 9.54), with prominent negative Eu anomaly. The observed variation in geochemical characteristics and mineral assemblages in the alteration zones indicates differential response of the host rock and intensity of alteration depending on the composition of host rocks and hydrothermal fluids.The auriferous hydrothermal fluids were of low salinity (2.0 to 6.6 wt.% NaCl), dominated by CO2–H2O (about 30 mol% CO2) with moderate densities (0.7 to 1.04 g/cm3), and gold deposition occurred over a wide temperature range between 175 °C and 325 °C. Gold deposition was influenced by fluid mixing, phase separation and redox reactions. Mixing between CO2–H2O fluids and more reduced fluids, which evolved during fluid reaction with adjacent carbonaceous wall rocks, was the key factor causing gold deposition.The formation of the Gadag duplex, deformation, folds and reverse strike slip faults (discontinuities) was caused by the compression associated with subduction related tectonic processes. During the initial period of intrusive magmatism (2,555 ± 6 Ma), regional metamorphism occurred in the entire greenstone belt, while during later period, hydrothermal fluids responsible for gold mineralization probably were derived from metamorphic processes as well as from intrusive granites. Such fluids channeled through the thrust in host turbidite sequence carrying dissolved gold, associated metals and sulfur, ultimately were precipitated in a reducing environment in the splays to the thrust in the Gadag duplex at about 2,522 ± 6 Ma, resulting in retrograde alteration assemblages.  相似文献   

15.
The North Atlantic craton of southwestern Greenland hosts several orogenic gold occurrences, although, to date, none is in production. Four gold provinces are distinguished and include Godthåbsfjord, Tasiusarsuaq, Paamiut, and Tartoq. In the Godthåbsfjord gold province, the hypozonal gold occurrences are aligned along the major ca. 2660–2600 Ma Ivinnguit fault. Orogenic gold mineralization correlates temporally with, and is related to, ductile deformation along this first-order structure. The northern part of the Tasiusarsuaq gold province is characterized by small hypozonal gold occurrences that are controlled by 2670–2610 Ma folds and shear zones. Auriferous fluids were focused into the structures in both gold provinces during west-directed accretion of the Kapisilik terrane (2650–2580 Ma) to the already amalgamated terranes of the North Atlantic craton. In the southern part of the Tasiusarsuaq gold province, hypozonal gold mineralization is hosted in back-thrusts (Sermilik prospect) and thrusts (Bjørnesund prospect) that formed at 2740 Ma and 2860–2830 Ma, respectively. The deformation is related to the ca. 2850 Ma accretion of the Sioraq block and the Tasiusarsuaq terrane, and the 2800–2700 Ma accretion of the Tasiusarsuaq terrane and the Færingehavn and Tre Brødre terranes.Mesozonal orogenic gold mineralization is hosted in an accretionary complex in the Paamiut and Tartoq gold provinces. Gold occurrences cluster over a strike extent of approx. 40 km in thrusts and complex strike-slip settings in lateral ramps. The timing of the E-vergent terrane accretion in both areas is unknown, and could either be at ca. 2850 Ma or 2740 Ma. In the eastern part of the Paamiut gold province, quartz veins and associated alteration zones were overprinted by granulite facies metamorphism and show evidence for partial melting. These outermost parts of the accretionary complex were involved in burial-exhumation tectonics during crustal accretion.Mainly three different orogenic stages related to gold mineralization are distinguished in the North Atlantic craton between ca. 2850 Ma and 2610 Ma. These are generally accretionary tectonic episodes, and gold mineralization is hosted either in reactivated fault systems between terranes or accretionary complex structures along the deformed cratonic margin. The larger orogenic gold occurrences formed at ca. 2740–2600 Ma that appears to be a period of orogenic gold mineralization globally, although significant gold resources in the North Atlantic craton have yet to be identified.  相似文献   

16.
《Precambrian Research》2004,128(1-2):105-142
The Kanowna Belle Gold Mine is a Late Archaean orogenic lode-gold deposit hosted by felsic volcaniclastic and intrusive rocks (porphyries) of the Kalgoorlie Terrane, Western Australia. Rare gold occurs in fragments of veins and alteration that form clasts within the Black Flag Group volcaniclastic rocks at the Kanowna Belle mine, indicating that epithermal gold mineralisation accompanied Black Flag Group volcanism. The SHRIMP U–Pb zircon age of the volcaniclastic unit is 2668±9 Ma, and xenocrystic zircons with ∼2.68, 2.70 and 2.71 Ga age groupings are common. The Black Flag Group rocks are faulted by a D1 thrust, and ∼2670 Ma is thus an older limit for regional D1 deformation. Although SHRIMP U–Pb zircon ages of felsic porphyries commonly give the best constraints on the timing of deformation and structurally controlled gold mineralisation, the data are complex and dates from single samples can be ambiguous. Four Porphyry samples from the Kanowna Belle Gold Mine were analysed. Backscattered electron and cathodoluminescence imaging show that most magmatic zircon in the porphyries is either high-U and metamict, or restricted to rims on older xenocrysts that are too narrow to be dated by SHRIMP. Some porphyries appear to have been saturated with zircon at source and contain only xenocrystic zircons. Zircons that are interpreted to be magmatic in a sample of the mineralised Kanowna Belle Porphyry gives a mean age of 2655±6 Ma. The Kanowna Belle Porphyry is cross cut by regional D2 fabrics and ∼2655 Ma is thus the maximum age for regional D2 deformation. This is a maximum age for epigenetic lode-gold mineralisation. The age of resetting of high-U zircon grains (2.63 Ga) and the age of ore-related Pb–Pb galenas (2.63 Ga) serves as an approximate date for lode-gold mineralisation. If the complex zircon history of the felsic porphyries at Kanowna Belle is typical of this suite throughout the Eastern Goldfields Province, it is clear that existing single zircon dates from this Province require reevaluation, backed up by careful backscattered and cathodoluminescence imaging and textural studies.  相似文献   

17.
New 40Ar/39Ar geochronological data suggest orogenic gold mineralisation at the Ballarat East deposit, southeast Australia, occurred in three main episodes at ca. 445–435 Ma, ca. 420–415 Ma and ca. 380–370 Ma. The gold mineralisation is localised in muscovite-bearing quartz and quartz-carbonate veins hosted in the steep faults (70–90°), on limbs of tight and isoclinal folds in an Ordovician turbidite sequence, and within west-dipping (≤45°) faults, historically known as leather jacket lodes. Initiation of the ≤45° faults that are confined to fold culminations, begins at ca. 445 Ma, with peak metamorphic conditions at 440 Ma. The earliest vein sets (V1), were emplaced on limb thrusts at ca. 445–435 Ma and are characterised by arsenopyrite-dominated quartz veins. These V1 veins parallel arsenopyrite-rich shale units, historically referred to as ‘indicator beds’. Both the steep and ≤45° faults were reactivated during fold amplification with deposition of the V2 auriferous veins at ca. 420–415 Ma. A later set of auriferous veins (V3–V4) with ages of 380–370 Ma, dominated by pyrite-sphalerite-galena-white-mica quartz-(V3) or carbonate-rich (V4) veins are predominantly associated with reactivation of the ≤45° west-dipping faults. This new geochronological data constrains the local kinematic history of the Ballarat East deposit and has regional implications. The V1–V2 vein development appears to be synchronous across the entire western section of the Lachlan Orogen, where previous studies have suggested that initial gold mineralisation was linked to orogenesis at ∼440 Ma, as a result of metamorphic devolatilisation reactions in the lower crust. In contrast, a close spatial and temporal relationship exists between the felsic dykes and the mineralisation recognised in the V3–V4 veins. The deformation that accompanies V3–V4 vein development is attributed to small, localised events during east-west shortening, utilising pre-existing fold and fault structures. The origin of the fluids producing the V3–V4 veins may be metamorphic devolatilisation associated with widespread felsic magmatism that occurred at this time across central Victoria.  相似文献   

18.
The Kalatag Cu–Zn–Au district contains a number of economically important Cu deposits in eastern Tianshan in Xinjiang, NW China. Due to the lack of precise mineralization ages, the metallogenesis of this area has long been a matter of debate. In this study, chalcopyrite Re–Os isotope methods are used to date the South Meiling Cu–Zn and Hongshi Cu deposits in the eastern part of Kalatag area.The South Meiling Cu–Zn deposit is hosted in volcanic-sedimentary rocks of the Late Ordovician to Early Silurian Daliugou Formation. The deposit consists of two parts: a concordant massive sulfide ores and discordant vein-type ores located in the footwall strata. The principal ore minerals are pyrite, chalcopyrite, sphalerite, minor tetrahedrite, galena and pyrrhotite. Gangue minerals include quartz, sericite and barite, and minor chlorite, plagioclase and carbonate minerals. The Hongshi Cu deposit represents a hydrothermal vein system hosted in the mafic volcanic rocks of Daliugou Formation. The orebodies are associated with quartz veins and controlled by subsidiary faults of the Kalatag fault. The ore-forming process can be divided into the early, middle and late stages and is characterized by quartz–pyrite, quartz–chalcopyrite–pyrite and quartz–carbonate–gypsum veins, respectively.Re–Os analyses of chalcopyrite from the South Meiling Cu–Zn deposit yield an isochron age of 434.2 ± 3.9 Ma and initial 187Os/188Os ratio of 0.647 ± 0.098 (MSWD = 0.59). Re–Os analyses of chalcopyrite from the Hongshi Cu deposit yield an isochron age of 431.8 ± 2.7 Ma and initial 187Os/188Os ratio of − 0.165 ± 0.075 (MSWD = 0.77). Since chalcopyrite is the primary copper mineral, we interpret these isochron ages as the timing of Cu mineralization, based on field geology and petrographic evidence. These results suggest that the Re–Os ages presented here provide, for the first time, a direct constraint on an early Paleozoic Cu mineralization event of the eastern Tianshan Orogen. The high initial 187Os/188Os ratios (0.647 ± 0.098) ratio of ~ 434 Ma chalcopyrite from the South Meiling deposit suggest that the metal was sourced from a two end-member mixing of crust and mantle materials. Moreover, we propose that the VMS mineral system and hydrothermal vein system of the Kalatag district were related to the south-dipping subduction of the Kalamaili oceanic plate during the Late Ordovician–Silurian.  相似文献   

19.
The Fairview and Sheba mines are two of the major gold mines in the Paleoarchean Barberton Greenstone Belt of Southern Africa. At these mines, gold is associated with quartz–carbonate ± rutile veins and occurs both as “invisible” gold finely dispersed in sulfides (primarily pyrite and arsenopyrite), and as visible electrum grains hosted in pyrite. Up to approximately 1000 ppm Au are contained in pyrite, and up to approximately 1700 ppm in arsenopyrite. Mapping of trace element distribution in sulfide minerals using electron microprobe and proton probe techniques revealed multiple events of ore formation and Au mineralisation. At Fairview mine, three stages of pyrite formation were identified, the last of which is associated with arsenopyrite, electrum and other sulfide minerals (sphalerite, chalcopyrite, galena, gersdorffite, and Sb-sulfides). At Sheba mine, pyrite was deposited in two stages, and electrum is associated with the second stage. At both mines, the last stage of sulfide formation is the main stage of Au deposition, and is associated with mobilisation of Au, As, Sb, Cu, Zn, and Ni. The host rock composition seems to have affected the composition of pyrite, since higher Ni and Co concentrations (up to 1.4 and 1.6 wt.%, respectively) have been measured in meta-(ultra)mafic host rocks in comparison with chert and metagreywacke. Arsenopyrite is chemically zoned, and has Sb- and S-rich cores and As- and Ni-rich rims. This zoning indicates variations in fluid compositions (decreasing Sb and increasing Ni), and crystallisation conditions (increasing As content for increasing temperature). Geothermometric estimates based on the As content of arsenopyrite (As ≤ 32 at.%) indicate temperatures up to ~ 420 °C for the crystal rims. Petrographic and cathodoluminescence observations of quartz associated with gold mineralisation show only local brittle deformation, and no plastic deformation. This supports the notion that the ore-transporting veins were emplaced late in the deformation history. Variations of cathodoluminescence of quartz are correlated with changing Al contents (Al ≤ 0.16 wt.%), and can be related to fluctuations in the pH of the mineralising fluids.  相似文献   

20.
The Aitik Cu–Au–Ag deposit in the Gällivare area in northern Sweden is Sweden's largest sulphide mine with an annual production of 35 Mt of ore, and the biggest open pit operation in northern Europe. It is proposed in the present study that the Aitik deposit represents a Palaeoproterozoic, strongly metamorphosed porphyry copper deposit that was affected ca. 100 Ma later by a regional IOCG-type hydrothermal event. Consequently, the Aitik deposit might represent a mixed ore system where an early copper mineralisation of porphyry type has been overprinted by later regional IOCG mineralisation.Several attempts have previously been made to genetically classify the Aitik Cu–Au–Ag deposit as a distinct ore type. New geochemical, petrographic, structural, and fluid inclusion results combined with published data have provided the opportunity to present new ideas on the genesis and evolution of the Aitik Cu–Au–Ag deposit. The emplacement of a ca. 1.9 Ga quartz monzodiorite that host the ore at Aitik was related to subduction processes and volcanic arc formation, and synchronous with quartz vein stockwork formation and porphyry copper mineralisation. Highly saline aqueous (38 wt.% NaCl) fluid inclusions in the stockwork veins suggest entrapment at 300 °C and a pressure of nearly 3 kbar, a high pressure for a typical porphyry copper ore, but consistent with conditions at associated deep root zones of intrusion-related magmatic–hydrothermal systems. The highly saline fluid formed disseminated and vein-type ore of mainly chalcopyrite and pyrite within comagmatic volcaniclastic rocks, and caused potassic alteration (biotite, microcline) of the host rocks. The early porphyry copper mineralising event was followed, and largely overprinted, by CO2 and aqueous medium- to high-salinity (16–57 wt.% salts) fluids related to a ca. 1.8 Ga tectonic and metamorphic event (peak conditions 500–600 °C and 4–5 kbar). Extensive deformation of rocks and redistribution of metals occurred. Magnetite enrichment locally found within late veins, and late amphibole–scapolite and K feldspar alterations within the deposit, are some of the features at Aitik implying that aqueous fluids responsible for IOCG-mineralisation (200–500 °C and ~ 1 kbar) and extensive Na–Ca alteration in the region during the 1.8 Ga tectonic event also affected the Aitik rocks, possibly leading to addition of copper ± gold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号