共查询到20条相似文献,搜索用时 15 毫秒
1.
S.V. Andryushchenko A.A. Vorontsov V.V. Yarmolyuk I.V. Sandimirov 《Russian Geology and Geophysics》2010,51(7):734-749
The Khambin volcanotectonic complex is a horst framing the Late Cretaceous Lake Gusinoe basin in the northwest. This complex is due to the intracontinental rift conditions which existed in western Transbaikalia in the Late Mesozoic. They gave rise to a system of subparallel grabens and horsts in present-day topography. The magmatic evolution of this complex spans from 159 to 117 Ma and is divided into three stages. The first stage (159–156 Ma) witnessed the formation of thick (up to 1500 m) volcanic masses of trachybasalts, basaltic trachyandesites, trachytes, trachydacites, trachyrhyolites, and pantellerites. The next two stages were the formation of isolated ancient volcanoes (127–124 Ma) composed of trachybasalts, basaltic trachyandesites, phonotephrites, tephriphonolites, and alkali trachytes and the formation of the Murtoi (Lake Gusinoe) essexite dike (122–117 Ma). The main trends for igneous associations from early to late stages are reduced magmatism and reduced rock diversity because of the decreasing portion of felsic volcanic rocks. Mafic rocks show an increase in total alkalinity, the content of incompatible elements (Th, U, K, Rb, Pb, Nb, Ta, Zr, Hf), total REE content, and the LREE/HREE ratio. The Sr–Nd isotopic composition of these rocks remained nearly constant and corresponds to that of OIB-EMII mantle sources. Compositional variations are attributed to a time-dependent decrease in the degree of partial melting of a similar magma source. 相似文献
2.
《International Geology Review》2012,54(12):1523-1540
The Sanandaj–Sirjan Zone (SSZ) of western Iran is characterized by numerous granitoids of mainly calc-alkaline affinities. Several leucogranite and monzonite bodies crop out in the eastern Sanandaj. Whole-rock Rb–Sr isochrons demonstrate that the Mobarak Abad monzonite (MAM) formed in two phases at 185 and 131 Ma. Low 87Sr/86Sr(i) (i represents initial) and high 143Nd/144Nd(i) ratios, resulting in positive ?t Nd, imply that the source magma originated from a depleted mantle; large ion lithophile element (LILE) and light rare earth element (LREE) enrichments imply that slab fluid was involved in the evolution of the parent magma. Geochemical characteristics of the MAM rocks show an affinity with I- and A-type granites, and the positive values of ?t Nd (+2 to +6), confirm that the MAM represents juvenile granite. Therefore, the MAM rocks are different from Himalayan, Hercynian, and Caledonian granites. Based on the geology of granitic host rocks that form the protoliths of metamorphic rocks, it is likely that the mafic part of the MAM formed in an island arc setting on Neo-Tethyan oceanic crust during Early to Middle Jurassic time. Subsequent collision of the island arc with the western part of the SSZ occurred in the Late Jurassic to Early Cretaceous. Metamorphism, accompanied by partial melting, occurred during collision. Finally, leucogranite magmas of the young Mobarak Abad dikes and the Suffi Abad body were generated in this collision zone. This new model suggests a Late Jurassic–Early Cretaceous arc–continental collision before final closing of the Neo-Tethys. 相似文献
3.
A palynological analysis of a Late Jurassic–Early Cretaceous succession in the Himalayan Tethys, Gyangzê County, southern Xizang (Tibet) provides, for the first time, evidence of changing palynofloras through the Jurassic/Cretaceous (J/K) boundary. Species that are stratigraphically important and potential markers for delineating the boundary include both miospores and dinoflagellate cysts. The presence of the spores Crybelosporites sp. cf. stylosus, Foraminisporis wonthaggiensis, Jiaohepollis verus and Toroisporis welzowense and the cysts Cassiculosphaeridia delicata and Rhynchodiniopsis serrata imply that the J/K boundary is between samples 06-21-1 and 06-21-3. The occurrence of Aequitriradites spinulosus and Cicatricosisporites spp. a little below this level and of ?Dictyotosporites sp. cf. speciosus slightly above it is also significant. These results show that it is possible to locate the J/K boundary in the Himalayan Tethys near top of the Weimei Formation and the lower part of the Gyabula Formation in southern Xizang. This succession also contains various marine invertebrate fossils, including ammonites, bivalves and belemnites, and thus has considerable potential for erecting an integrated biostratigraphy around the J/K boundary in the eastern Tethyan realm. Palynofloristic correlation implies a more northerly location for the fossil locality at Gyangzê than that of northwest Australia during the latest Jurassic and earliest Cretaceous, which can be further constrained to around 43°S. 相似文献
4.
This study reports new zircon U–Pb ages, Lu–Hf isotope data, and oxygen isotope data for Mesozoic Mo-bearing granitoids in the eastern Xing–Meng Orogenic Belt (XMOB) of Northeast China, within the eastern Central Asian Orogenic Belt. Combining these new laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U–Pb ages with the results of previous research indicates that two stages of Mo-bearing granitoid magmatism occurred in the eastern XMOB, during the Early–Middle Jurassic (200–165 Ma) and the Early Cretaceous (ca. 111 Ma). The eastern XMOB also contains Mo-bearing granitoids with variable δ18O compositions that record variations in source oxygen isotopic compositions. Combining δ18O data with zircon U–Pb and Hf isotopic data provides evidence of the origin of these granitoids. Three types of zircon have been identified within these granitoids. Type 1 zircons formed during the Mesozoic and having high δ18O values (5.71–7.05‰) that are consistent with the compositions of magmatic zircons from the Luming, Jiapigou, and Kanchuangou areas. These zircons suggest that the Mo-bearing granitoids were derived from a source containing supracrustal materials. The type 2 zircons have extremely low and heterogeneous δ18O values (4.64–4.89‰) that are consistent with the compositions of magmatic zircons from the Jidetun and Fuanpu areas. These magmas were generated by the remelting of juvenile crustal material that was previously significantly modified by interaction with fluids. Type 3 zircons generally have mantle-like δ18O values (5.42–5.57‰), with several zircons yielding higher δ18O values, suggesting that these intrusions formed from mantle-derived magmas that assimilated and were metasomatized by crustal material. Combining these geochemical data with the geology of this region indicates that the Mo-bearing granitoids were generated as a result of subduction of the Palaeo-Pacific Plate beneath the Eurasian continent. 相似文献
5.
《Journal of Asian Earth Sciences》2002,20(3):277-287
Radiolarian biostratigraphic research has been carried out along two continuous sections through the Xialu Chert, one of the accreted sheets included in the Yarlung-Zangbo Suture Zone. Six radiolarian zones have been identified as follows: Laxtorum(?) jurassicum Zone (Aalenian), Tricolocapsa plicarum Zone (Bajocian–lower Bathonian), Stylocapsa(?) spiralis Zone (upper Callovian–Oxfordian), Hsuum maxwelli Zone (Kimmeridgian), Pseudodictyomitra carpatica Zone (upper Tithonian–lower Valanginian), and Turbocapsula costata Zone (Aptian).A reconstructed stratigraphy of the Xialu Chert, based on lithological succession and radiolarian dating, indicates that the chert exhibits a long depositional history, at least from early Middle Jurassic (Aalenian) to late Early Cretaceous (Aptian). The separation of the Lhasa Block from the northern Gondwana margin must, therefore, be dated before the Aalenian. The absence of calcareous sediments in the Xialu Chert indicates that the oceanic basin was deeper than the CCD throughout the depositional history. The transition from chert to siliceous mudstone is recorded sometime in Early Cretaceous, most probably around the Barremian/Aptian boundary. This means that the oceanic plate had already started being consumed at a trench by that time. The accretion of the Xialu Chert occurred after the Aptian time. 相似文献
6.
The Taoxihu deposit (eastern Guangdong, SE China) is a newly discovered Sn polymetallic deposit. Zircon U-Pb dating yielded 141.8 ± 1.0 Ma for the Sn-bearing granite porphyry and 145.5 ± 1.6 Ma for the biotite granite batholith it intruded. The age of the granite porphyry is consistent (within error) with the molybdenite Re–Os isochron age (139.0 ± 1.1 Ma) of the Sn mineralization, indicating a temporal link between the two. Geochemical data show that the granite porphyry is weakly peraluminous, contain high Si, Na and K, low Fe, Mg, Ca and P, and relatively high Rb/Sr and low K/Rb values. The rocks are enriched in Rb, Th, U, K, and Pb and depleted in Ba, Sr, Ti and Eu, resembling highly fractionated I-type granites. They contain bulk rock initial 87Sr/87Sr of 0.707371–0.707730 and εNd(t) of −5.17 to −4.67, and zircon εHf(t) values from −6.67 to −2.32, with late Mesoproterozoic TDM2 ages for both Nd and Hf isotopes. This suggests that the granite porphyry was likely formed by the partial melting of the crustal basement of Mesoproterozoic overall residence age with minor mantle input.δ34SCDT values of the Taoxihu chalcopyrite and pyrite range from 0.1 to 2.1‰ (average: 0.9‰), implying a dominantly magmatic sulfur source. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the Taoxihu sulfide ores are 18.497–18.669, 15.642–15.673 and 38.764–38.934, respectively, indicating a mainly upper continental crustal lead source with minor mantle contribution. The highly fractionated and reduced (low calculated zircon Ce4+/Ce3+ and EuN/EuN1 values) nature of the ore-forming granitic magma may have facilitated the Sn enrichment and played a key role in the Sn mineralization. We propose that the ore-forming fluids at Taoxihu were of magmatic-hydrothermal origin derived from the granite porphyry, and that both the granite porphyry and the Sn mineralization were likely formed in an extensional setting, possibly related to the subduction slab rollback of the Paleo-Pacific Plate. 相似文献
7.
Upper Jurassic–Lower Cretaceous transitional successions are widely distributed in the Tethyan Himalaya, southeast of Yangzuoyong Co Lake, southern Tibet. In ascending order, these include the Weimei (J3, Tithonian), Sangxiu/Jiabula formations (K1, Berriasian). The J/K boundary is located between the Weimei Formation and Sangxiu/Jiabula Formations. Ammonites found in J/K boundary sections in the research area have been classified into three assemblages: Valanginites–Phyllopachyceras assemblage zone (Valanginian), Spiticeras–Thurmanniceras assemblage zone (Berriasian) and Haplophylloceras–Blanfordiceras–Himalayites assemblage zone (Tithonian). Six nannofossil zones: Calcicalathina oblongata assemblage zone, Speetonia colligate zone, N. st. steinmannii zone, N. st. minor zone, P. beckmanni–N. st. minor interval zone, Conusphaera–Polycostella–Nannoconus–Watznaueria assemblage zone were recognized as well.On the basis of lithology, biostratigraphy and geochronology of the J/K transitional deposition succession, this study suggests that the J/K boundary, in southern Tibet, is located on the bottom of P. beckmanni–N. st. minor interval zone, which is further definited as and disappear of Polycostella beckmanni. To address the paucity of previously reported reliable ages for the J/K boundary, this study reports four U–Pb zircon ages (140–142 Ma) obtained with Secondary Ion Mass Spectrometry (SIMS) from the volcanic rocks interbedded in the lower Sangxiu Formation, which is expected to provides a direct date reference for the J/K boundary in the Tethyan Himalaya, southern Tibet. From integration of our new (SIMS) U–Pb zircon ages with calcareous nannofossils and ammonites, the age of the N. st. minor zone (NK-D) directly above the P. beckmanni-N. st. minor interval zone (NJK-C) of the basal Berriasian in the Tethyan realm is estimated to be 141–142 Ma. This research is not only helpful to improve the isotopic determination of absolute age for the J/K boundary, but also implies that the Tethyan Himalaya of southern Tibet may be an ideal location in which to explore the J/K boundary in both biostratigraphy and geochronology in future. 相似文献
8.
《International Geology Review》2012,54(4):508-528
The nature of the Namco–Renco ophiolites in the northern Lhasa subterrane is widely disputed. To investigate their formation age, petrogenesis, and tectonic setting, the harzburgites, basalts, and metagabbros of the Namco ophiolite and the harzburgites, lherzolites, gabbros, and diabasic dikes of the Renco ophiolite were selected for whole-rock geochemical and zircon U-Pb dating and in situ Lu-Hf isotopic analyses. The geochemical and geochronological data indicate that the Namco metagabbros were generated at 178.0 ± 2.9 Ma, along with the Namco–Renco peridotites formed in the initial stage of a continental margin basin; whereas the Renco gabbros were developed at 149.7 ± 1.6 Ma, along with the Renco diabasic dikes and Namco basalts formed later in a mature back-arc basin. The Namco–Renco ophiolites were derived from a depleted mantle source with involvement of minor older crustal materials. Combined with the regional geological background, the Namco–Renco ophiolites were likely formed mainly associated with the southward subduction of the Bangong–Nujiang oceanic lithosphere beneath the Lhasa terrane. This study provides new constraints on the formation ages of the Namco–Renco ophiolites and the tectonic evolution of the Namco–Renco Ocean. 相似文献
9.
《International Geology Review》2012,54(10):1202-1219
We report results of laser ablation inductively coupled plasma-mass spectrometry-based dating, as well as the analysis of bulk-rock major and trace elements, and Sr–Nd isotopes to address the genesis and tectonic settings of the Yanshanian granitoids in neighbouring sections of Zhejiang, Jiangxi, and Anhui provinces (the WZG region) within the Yangtze block. Geochronological results indicate that intense magmatic activity took place during Jurassic to Cretaceous time in the WZG region. Three episodes can be clearly distinguished by their bulk-rock geochemistry. (1) Early–Middle Jurassic granitoids (180–170 Ma) have high Sr and low Yb content, high ?Nd(t) and low initial 87Sr/86Sr ratios, and weakly negative Eu anomalies. These granitoids are strongly enriched with LREE, Rb, K, and Th but are depleted of HREE, Nb, and Ta. (2) Late Jurassic to Early Cretaceous granitoids (165–140 Ma) have relatively low Sr and low Yb contents, as well as low ?Nd(t) and high initial 87Sr/86Sr ratios, with characteristics similar to those of the Early–Middle Jurassic granitoids in terms of the rare earth element and trace element patterns. (3) Early Cretaceous granitoids (140–120 Ma) have extremely low Sr and high Yb concentrations, as well as high SiO2 but low MgO, CaO, and Al2O3 content, with strong negative anomalies in Eu, Ba, Sr, P, and Ti. These characteristics indicate that the WZG Jurassic granitoids were related to northwestward subduction of the Izanagi plate, whereas the Early Cretaceous granitoids formed in a within-plate extensional setting. The time of transition between the two tectonic environments can be constrained to ~140 Ma. This tectonic transition may be attributed to progressive slab roll-back of the Izanagi plate. The presence of two A-type granite belts in the WZG region probably reflects lithospheric thinning. The NE trend of the A-type granite belts indicates that this extension in Southeast China was controlled by underflow of the Izanagi plate. 相似文献
10.
11.
Given that the Duobuza deposit was the first porphyry Cu–Au deposit discovered in central Tibet, the mineralization and mineralized porphyry in this area have been the focus of intensive research, yet the overall porphyry sequence associated with the deposit remains poorly understood. New geological mapping, logging, and sampling of an early granodiorite porphyry, an inter-mineralization porphyry, and a late-mineralization diorite porphyry were complemented by LA–ICP–MS zircon dating, whole-rock geochemical and Sr–Nd isotopic analyses, and in situ Hf isotopic analyses for both inter- and late-mineralization porphyry intrusions. All of the porphyry intrusions are high-K and calc-alkaline, and were emplaced at ca. 120 Ma. The geochemistry of these intrusions is indicative of arc magmatism, as all three porphyry phases are enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. These similar characteristics of the intrusions, when combined with the relatively high (87Sr/86Sr)i, negative εNd(t), and positive εHf(t) values, suggest that the magmas that formed the porphyries were derived from a common source region and shared a single magma chamber. The magmas were generated by the mixing of upwelling metasomatized mantle-wedge-derived mafic magmas and magmas generated by partial melting of amphibolite within the lower crust.The inter-mineralization porphyry has the lowest εNd(t) and highest (87Sr/86Sr)i values, suggesting that a large amount of lower-crust-derived material was incorporated into the melt and that metals such as Cu and Au from the enriched lower crust were scavenged by the parental magma. The relative mafic late-mineralization diorite porphyry phase was formed by the residual magma in the magma chamber mixing with upwelling mafic melt derived from metasomatized mantle. The magmatic–hydrothermal evolution of the magma in the chamber released ore-forming fluid that was transported mainly by the inter-mineralization porphyry phase during the mineralization stage, which ultimately formed the Duobuza porphyry Cu–Au deposit.These porphyritic intrusions of the Duobuza deposit have high Mg# and low (La/Yb)N values, and show some high LILE/HFSE ratios, indicating the magma source was enriched by interaction with slab-derived fluids. Combined with age constraints on the regional tectonic evolution, these dating and geochemical results suggest that the Duobuza porphyry Cu–Au deposit formed in a subduction setting during the final stages of the northward subduction of the Neo-Tethyan Ocean. 相似文献
12.
《International Geology Review》2012,54(15):1842-1863
ABSTRACTThe late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean. 相似文献
13.
The West Qinling Orogen (WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits (>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic (T3–J1) and one only recently identified in the Late Jurassic to Early Cretaceous (J3–K1). Few studies have focused on the origin and geotectonic setting of the J3–K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3–K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3–K1 hydrothermal gold systems. Pyrite in breccia- and dyke-hosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3–K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni- and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO (East Qinling Orogen), J3–K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE- and EW-trending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3–K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior. 相似文献
14.
Yun Zhong Wei-Liang Liu Bin Xia Xiao Zhang Wei Huang 《International Geology Review》2018,60(10):1244-1266
The Jurassic–Early Cretaceous Yilashan mafic–ultramafic complex is located in the middle part of the Bangong–Nujiang suture zone, central Tibet. It features a mantle sequence composed of peridotites and a crustal sequence composed of cumulate peridotites and gabbros that are intruded by diabases with some basalts. This article presents new whole-rock geochemical and geochronological data for peridotites, gabbros, diabases and basalts to revisit the petrogenesis and tectonic setting of the Yilashan mafic–ultramafic complex. Zircon laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) U–Pb ages of three diabase samples are 169.6 ± 3.3 Ma, 132.5 ± 2.5 Ma, and 133.6 ± 4.9 Ma, respectively. These ages together with previous studies indicate that the Yilashan mafic–ultramafic complex probably formed during the Jurassic–Early Cretaceous. The peridotites exhibit nearly U-shaped REE patterns and are distinct from abyssal peridotites. The diabase and basalt samples show arc features with selective enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILEs; e.g. Rb, U, and Sr) and depletion in high field strength elements (HFSEs; e.g. Nb, Ta, and Ti). The gabbro samples display cumulate features with selective enrichment in LILEs (e.g. Rb, Ba, and Sr) but depletion in LREEs and HFSEs (e.g. Nb, Zr, and Ti). Combing the positive εNd(t) values (+6.1 to +10.0) and negative zircon εHf(t) values (–16.5 to –11.7 and –13.6 to –0.4) with older Hf model ages for the mafic rocks, these signatures suggest that the Yilashan mafic and ultramafic rocks likely originated from an ancient lithospheric mantle source with the addition of asthenospheric mantle materials and subducted fluids coupled with limited crustal contamination in a continental arc setting as a result of the southward subduction of the Bangong–Nujiang Tethys Ocean beneath the Lhasa terrane during the Jurassic–Early Cretaceous. 相似文献
15.
An-Bo Luo Jian-Jun Fan Bo-Chuan Zhang Jian-Zhen Zhang Hang Li Meng-Long Duan 《地学前缘(英文版)》2021,12(5):309-326
One of most hotly debated topics concerning the Late Mesozoic evolution of Tethyan and the Tibetan Plateau is the timing of the closure of the Meso-Tethys ocean, which is represented by the Bangong–Nujiang suture zone. The Upper Jurassic–Lower Cretaceous Shamuluo Formation, which unconformably overlies the older Mugagangri Group accretionary complex, provides important information on the closure of the Meso-Tethys Ocean. This paper precisely confines the depositional age of the Shamuluo Formation in the western segment of the Bangong–Nujiang suture zone, extending it from the Late Jurassic to the Albian. Combined with the results of previous studies, we suggest that the Shamuluo Formation in the Awengco–Baerqiong region mainly contains a bathyal Berriasian–Hauterivian subunit and a shallow-marine Albian subunit. Provenance analysis indicates that the Berriasian–Hauterivian subunit was mainly derived from the Jurassic southern Qiangtang magmatic arc, while the Albian subunit was derived from the coeval volcanic rocks and the Upper Carboniferous–Upper Permian strata in the southern Qiangtang terrane. Thus, the two subunits of the Shamuluo Formation have significant distinct sedimentary facies and provenances, indicating that they were deposited in different tectonic settings.Based on the regional geological data, we suggest that the bathyal Berriasian–Hauterivian subunit and the shallow-marine Albian subunit of the Shamuluo Formation should be interpreted as a record of the oceanic arc-continent collision and the Lhasa–Qiangtang soft-collision, respectively. Thus, the closure time of the Meso-Tethys Ocean is at least limited to the Albian. 相似文献
16.
《Journal of Asian Earth Sciences》2003,21(4):397-412
The Sanandaj–Sirjan Zone contains the metamorphic core of the Zagros continental collision zone in western Iran. The zone has been subdivided into the following from southwest to northeast: an outer belt of imbricate thrust slices (radiolarite, Bisotun, ophiolite and marginal sub-zones, which consist of Mesozoic deep-marine sediments, shallow-marine carbonates, oceanic crust and volcanic arc, respectively) and an inner complexly deformed sub-zone (late Palaeozoic–Mesozoic passive margin succession). Rifting and sea-floor spreading of Tethys occurred in the Permian to Triassic but in the Sanandaj–Sirjan Zone extension-related successions are mainly of Late Triassic age. Subduction of Tethyan sea floor in the Late Jurassic to Cretaceous produced deformation, metamorphism and unconformities in the marginal and complexly deformed sub-zones. Deformation climaxed in the Late Cretaceous when a major southwest-vergent fold belt formed associated with greenschist facies metamorphism and post-dated by abundant Palaeogene granitic plutons. In the southwest of the zone a Late Cretaceous island arc—passive margin collision occurred with ophiolite emplacement onto the northern Arabian margin similar to that in Oman. Final closure of Tethys was not completed until the Miocene when Central Iran collided with the northeast Arabian margin. 相似文献
17.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt in the Sanjiang Tethyan metallogenic province. A series of sediment-hosted Himalayan Cu–Ag–Pb–Zn polymetallic deposits have been discovered in the western part of the basin, controlled by a thrust–nappe system. In the thrust–nappe system, the Cu orebodies mainly occur in the western and relatively deep part of the mineralization system (the root zone), whereas the Pb–Zn–Ag (± Cu) orebodies occur in the eastern and relatively shallow part of the system (the front zone), both as vein-type mineralization.In this paper we present new data, combined with existing data on fluid inclusions, isotopes and geologic characteristics of representative deposits, to provide the first study that contrasts mineralizing fluids in the Cu–Ag (Mo) and Pb–Zn–Ag (Cu) polymetallic deposits.Fluid inclusion and isotope studies show that the Cu–Ag (Mo) mineralization in the root zone formed predominantly from deep crustal fluids, with the participation of basinal brines. The deep crustal fluids are marked by high CO2 content, relatively high temperatures (280 to 340 °C) and low salinities (1 to 4 wt.% NaCl equivalent), whereas the basinal brine shows relatively low temperatures (160 °C to 220 °C) and high salinities (12 to 22 wt.% NaCl equivalent), containing almost no CO2. In comparison, hydrothermal activity associated with the Pb–Zn–Ag (± Cu) deposits in the front zone is characterized by basinal brine, with relatively low temperatures (130 °C to 180 °C), high salinities (9 to 24 wt.% NaCl equivalent), and low CO2 concentrations. Although evolved meteoric waters have predominantly been proposed as the source for deep crustal fluids, magmatic and metamorphic components cannot be completely excluded. The basinal brine was predominantly derived from meteoric water.The δ34S values of sulfides from the Cu–Ag (Mo) deposits and Pb–Zn–Ag (± Cu) deposits range from − 17.9 to 16.3‰ and from 2.5 to 11.2‰, respectively. These ranges may relate to variations in physicochemical conditions or compositional variation of the sources. Lead isotope compositions indicate that the ore-forming metals were predominantly derived from sedimentary rocks of the Lanping basin. 相似文献
18.
Thamer Khazaal Al-Ameri Nagham Mohammed Al-Jubouri Murtadha J. Isa Rami Eidan Al-Azzawi 《Arabian Journal of Geosciences》2013,6(10):3725-3735
Organic geochemical analysis and palynological studies of the organic matters of subsurface Jurassic and Lower Cretaceous Formations for two wells in Ajeel oil field, north Iraq showed evidences for hydrocarbon generation potential especially for the most prolific source rocks Chia Gara and Sargelu Formations. These analyses include age assessment of Upper Jurassic (Tithonian) to Lower Cretaceous (Berriasian) age and Middle Jurassic (Bathonian–Tithonian) age for Chia Gara and Sargelu Formations, respectively, based on assemblages of mainly dinoflagellate cyst constituents. Rock-Eval pyrolysis have indicated high total organic carbon (TOC) content of up to 18.5 wt%, kerogen type II with hydrogen index of up to 415 mg HC/g TOC, petroleum potential of 0.70–55.56 kg hydrocarbon from each ton of rocks and mature organic matter of maximum temperature reached (Tmax) range between 430 and 440 °C for Chia Gara Formation, while Sargelu Formation are of TOC up to 16 wt% TOC, Kerogen type II with hydrogen index of 386 mg HC/g TOC, petroleum potential of 1.0–50.90 kg hydrocarbon from each ton of rocks, and mature organic matter of Tmax range between 430 and 450 °C. Qualitative studies are done in this study by textural microscopy used in assessing amorphous organic matter for palynofacies type belonging to kerogen type A which contain brazinophyte algae, Tasmanites, and foraminifera test linings, as well as the dinoflagellate cysts and spores, deposited in dysoxic–anoxic environment for Chia Gara Formation and similar organic constituents deposited in distal suboxic–anoxic environment for Sargelu Formation. The palynomorphs are of dark orange and light brown, on the spore species Cyathidites australis, that indicate mature organic matters with thermal alteration index of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation by Staplin's scale. These characters have rated the succession as a source rock for very high efficiency for generation and expulsion of oil with ordinate gas that charged mainly oil fields of Baghdad, Dyala (B?aquba), and Salahuddin (Tikrit) Governorates. Oil charge the Cretaceous-Tertiary total petroleum system (TPS) are mainly from Chia Gara Formation, because most oil from Sargelu Formation was prevented passing to this TPS by the regional seal Gotnia Formation. This case study of mainly Chia Gara oil source is confirmed by gas chromatography–mass spectrometry analysis for oil from reservoirs lying stratigraphically above the Chia Gara Formation in Ajeel and Hamrine oil fields, while oil toward the north with no Gotnia seal could be of mainly Sargelu Formation source. 相似文献
19.
造山带岩浆作用记录了从大洋俯冲消减到陆陆碰撞的一系列地质过程,同时也蕴含了关于大陆地壳生成、生长的重要信息,其中,与俯冲相关的弧岩浆作用被认为是大陆地壳生长的主要机制。本文通过对西藏南部拉萨地体曲水县至贡嘎县一带出露的黑云母二长花岗岩、镁铁质微粒包体以及石英闪长岩开展同位素年代学、矿物学和岩石地球化学研究,探讨了该岩石组合的成因和弧岩浆的分异演化过程。锆石U-Pb定年结果表明,这些岩石的形成时代为91~88Ma。其中,黑云母二长花岗岩属中钾钙碱性偏铝质岩石系列(A/CNK=0.77~0.99),具高SiO 2(68.90%~69.18%)和Al_(2)O_(3)(15.21%~15.48%),低MgO(1.15%~1.16%)和Mg#值(~44),高Sr/Y比值(60~82),其地球化学特征与埃达克质岩石相似;镁铁质微粒包体的SiO 2含量为54.75%~54.96%,具有较高MgO含量(3.92%~5.40%)和Mg#值(52~61),并具弱的负Eu异常(δEu=0.79~0.82)。石英闪长岩为中钾钙碱性偏铝质岩石(A/CNK=0.84~0.88),其SiO 2含量为58.55%~63.32%,具有较高的Mg#值(44~48)和弱的负Eu异常(δEu=0.68~0.81)。另外,所有黑云母二长花岗岩、镁铁质微粒包体以及石英闪长岩样品的Sr-Nd同位素和锆石εHf(t)值相近((87 Sr/86 Sr)i=0.703594~0.703939,εNd(t)=+4.6~+4.8,εHf(t)=+10.9~+15.6)。矿物成分分析表明,黑云母二长花岗岩和镁铁质微粒包体中发育环带的斜长石An值由中心向边部逐渐下降,未发育反环带结构;石英闪长岩中的辉石为单斜辉石,所分析角闪石均为钙质角闪石,黑云母为镁质黑云母。综合上述特征,本文认为黑云母二长花岗岩、镁铁质微粒包体以及同生石英闪长岩分别代表了源自亏损地幔的母岩浆通过分离结晶作用所派生的不同阶段的产物:其中,石英闪长岩最先由基性岩浆发生以辉石、Ti-Fe氧化物和磷灰石为主的分离结晶作用形成,继而作为母岩浆进一步分异演化;镁铁质微粒包体是岩浆早期结晶的堆晶产物;而黑云母二长花岗岩代表了包体形成后残余熔体的组分。本文的研究表明,冈底斯岩浆岩带晚白垩世发生了富水条件下的岩浆分离结晶和堆晶作用,俯冲带弧岩浆分异对于大陆地壳的形成和演化发挥着重要的作用。 相似文献
20.
The Late Jurassic–Early Cretaceous Wandashan accretionary complex (AC) in NE China is a key region for constraining the subduction and accretion of the Palaeo-Pacific Ocean; however, the protoliths and structure of the region remain poorly understood, resulting in debates regarding crustal growth mechanisms and subduction-related accretionary processes in Northeast China. In this contribution, we integrate detailed field observations, ocean plate stratigraphy (OPS) reconstruction, and associated geological data to determine the structure and tectonic evolution of the Wandashan AC. The Wandashan AC formed through the progressive incorporation of OPS units along an oceanic trench. The observed OPS comprises, in ascending order, Permian basalt and limestone, Middle Triassic–Early Jurassic chert, Middle Jurassic siliceous shale and mudstone, and Late Jurassic–Early Cretaceous turbidite. Numerous NNE–SSW-striking thrust faults have segmented the OPS into a series of bedding-parallel tectonic slices that were successively thrust over the Jiamusi massif along a basal thrust (the Yuejinshan Fault), producing a large-scale imbricate thrust system. The Wandashan AC underwent oceanward accretion via multiple deformational processes. The OPS units were detached and rearranged along or within a decollement through offscraping, underplating, thrusting, and duplexing. The units were then emplaced over the Jiamusi massif along the basal thrust. The timing of accretion and thrusting is constrained to the latest Middle Jurassic to earliest Early Cretaceous (ca. 167–131 Ma). Reconstructed accretion-related structural lines within the Wandashan AC trend dominantly NE–SW, close to the direction of Jurassic extension at the eastern Asian continental margin. Large-scale left-lateral strike-slip movement on the Dunmi Fault during the late Early Cretaceous resulted in the folding of structural lines within the Wandashan AC, producing their present-day westward-convex orientation. 相似文献