首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新疆天山成矿带铁磷矿地质及成矿专属性   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对成矿带内的岩浆岩杂岩体进行了含矿性研究,划分出4个含矿杂岩带与5个矿床成因类型。成矿专属性研究表明:岩浆岩型铁磷矿受古地台边缘深大断裂控制;容矿岩石为主要偏碱性-铁质及铁镁质岩系列;容矿岩石主微量元素明显不和谐;岩石类型共生组合主要表现为黑云母透辉石岩、辉石岩、碱性辉长岩、斜长岩、碳酸岩的共伴生;矿物共生组合主要表现为透辉石+磷灰石+磁铁矿+黑云母,斜长石+磷灰石+磁铁矿+钠黝帘石组合,辉石+磷灰石+磁铁矿等特征;元素的共生组合主要表现为P、Fe、Ti、V、REE具显著相关性。通过预测研究,进行了找矿远景区的划分,划分出具有成矿条件的9个找矿远景区。  相似文献   

2.
内蒙古赤峰碾子沟钼矿位于华北克拉通北缘兴蒙造山带中段.通过对矿区容矿花岗岩地球化学研究,发现该花岗岩以高硅、富Al2O3、K2O、Na2O,贫MgO、CaO、Fe2O3T为特征.微量元素组成表现为富集LILE、亏损HFSE,尤其以Sr、Ti、P负异常为特征.稀土元素组成总量高、轻稀土富集,Eu负异常较明显.主、微量元素地球化学特征总体显示该花岗岩为碱钙性-碱性、准铝质A型花岗岩.Sr-Nd-Pb同位素地球化学研究表明,容矿花岗岩的(87Sr/86Sr);比值较低(0.70516~0.70519),εNd(t)值为负值(-3.8~-7.4),Pb同位素组成具有下地壳铅的特征.综合上述信息,本文认为该区准铝质A型花岗岩原始岩浆来源于壳幔过渡带,同时在岩浆上升过程中还可能遭受陆壳物质的混染.实际测得研究区容矿花岗岩全岩Rb-Sr等时线年龄为167.1±1.5 Ma,结合区域构造演化,本文认为该花岗岩形成于造山后伸展阶段.  相似文献   

3.
环巴尔喀什-西准噶尔成矿省地处中亚成矿域核心区,古生代构造和岩浆活动强烈,成矿作用丰富多样,发育许多大型-超大型乃至世界级的金属矿床,包括斑岩型铜矿床、斑岩-石英脉-云英岩型钨钼矿床、矽卡岩型铜(多金属)矿床、火山成因块状硫化物型(VMS)多金属矿床、浅成低温热液型金矿床、石英脉-蚀变岩型中温热液金矿床、与花岗岩有关的Be-U矿床、岩浆熔离型铜镍硫化物矿床和豆荚状铬铁矿等,这些矿床集中分布,形成多处成矿带,包括哈萨克斯坦的扎尔玛-萨吾尔、波谢库尔-成吉斯和北巴尔喀什等成矿带以及新疆西准噶尔的萨吾尔、谢米斯台-沙尔布提和巴尔鲁克-克拉玛依等成矿带。哈萨克斯坦包含大型-超大型和世界级金属矿床的成矿带向东是否延入新疆西准噶尔?能否实现新疆西准噶尔找矿重大突破?都是备受关注的重大地质找矿问题。本文在前人研究并结合作者工作基础上,根据成矿带的成矿构造环境、矿床类型、成矿特点和成矿时代,总结出成矿省至少发育九类成矿系统,即(1)奥陶纪-志留纪岛弧斑岩型Cu-Au成矿系统;(2)奥陶纪岛弧VMS型多金属成矿系统;(3)泥盆纪岛弧岩浆熔离型铜镍硫化物成矿系统;(4)泥盆纪与蛇绿岩有关的豆荚状铬铁矿成矿系统;(5)早石炭世岛弧斑岩-浅成低温热液型Cu-Au成矿系统;(6)石炭纪岛弧斑岩型-矽卡岩型Cu-Mo-Au成矿系统;(7)晚石炭世弧后盆地与花岗岩有关的Be-U成矿系统;(8)早二叠世岛弧或岛弧和陆缘弧过渡弧斑岩-石英脉-云英岩型Mo-W成矿系统;(9)早二叠世岛弧石英脉-蚀变岩型中温热液金成矿系统。对比研究发现境内外相邻成矿带具有相同或相似的成矿系统,二者可以对接,新疆西准噶尔三条成矿带分别是哈萨克斯坦三条成矿带的东延部分,构成了成矿省北部的扎尔玛-萨吾尔Cu-Au成矿带、中部的波谢库尔-成吉斯-谢米斯台Cu-Au-Be-U多金属成矿带和南部的北巴尔喀什-克拉玛依Cu-Mo-W-Au-Cr成矿带。新疆西准噶尔具有形成大型-超大型矿床的成矿系统和成矿条件,有望实现找矿勘探的更大突破。  相似文献   

4.
The Tethyan Eurasian metallogenic belt (TEMB) was formed during Mesozoic and post-Mesozoic times in the area of the former Tethyan ocean on the southern margin of Eurasia, with the Afro-Arabian and Indian plates to the south. It extends from western Mediterranean via the Alps and southeastern Europe through the Lesser Caucasus, the Hindu Kush, and the Tibet Plateau to Burma and SW Indonesia, linking with the West Pacific metallogenic belt. The Carpatho-Balkan region is one of the sectors of the TEMB, characterized by some specific features. The emplacement of ore deposits is related to a definite time interval, and to specific tectonic settings such as: 1. Late Permian-Triassic intracontinental rifting along the northern margin of Gondwanaland and/or fragments already separated. This setting involves volcanogenic and volcano-sedimentary deposits (iron, lead/zinc, manganese, antimony, mercury, barite), skarn deposits associated with volcano-plutonic complexes of bimodal magmatism, and low temperature carbonate-hosted lead/zinc deposits. 2. Jurassic intraoceanic rifting – ophiolite complexes: This setting hosts major magmatic (particularly podiform chrome deposits) and volcano-sedimentary deposits, mainly of the Cyprus type. 3. Subduction-related setting involves porphyry copper deposits, lesser skarn deposits (iron, locally Pb-Zn), massive sulphide Cu (e.g. Bor) accompanied locally by Pb-Zn of replacement type, epithermal gold deposits, associated with calc-alkaline igneous complexes of the Early Tertiary-Late Cretaceous, and the Neogene gold/silver and base metals deposits. 4. Post-collision continent-continent setting includes deposits of Pb-Zn, Sb, As, Au-Cu associated with volcano-plutonic complexes of calc-alkaline affinity. Several major Alpine metallogenic units are developed in the Carpatho-Balkanides and adjacent area, each characterized by specific development, mineral associations, and types of ore deposits. Received: 3 June 1996 / Accepted: 10 January 1997  相似文献   

5.
GIS在阿尔金成矿带铜矿成矿预测中的应用   总被引:1,自引:0,他引:1  
在野外地质调查和室内综合研究的基础上,通过地质、地球化学、地球物理等成矿地质背景研究,应用GIS软件建立了基础数据库.利用非线性矿产资源评价模型和MRAS等软件叠加分析,对阿尔金成矿带铜矿进行了成矿预测,证明基于GIS的成矿预测是行之有效的,为本区成矿规律研究提供了更多重要的找矿信息和方法.  相似文献   

6.
复合造山和复合成矿系统:三江特提斯例析   总被引:4,自引:26,他引:4  
邓军  王庆飞  李龚健 《岩石学报》2016,32(8):2225-2247
提出复合造山定义,认为复合造山指多期次造山以及其它类型壳幔过程(裂谷作用、地幔柱活动、克拉通减薄等)在同一构造带先后发生或者多类型过程同时同位发生的地质事件;复合造山是大洋闭合-大陆拼贴过程的必然演化结果、地质历史时期普遍存在的地质过程,其具有不同属性板块拼接、多条蛇绿岩套与岛弧带并列、构造格架继承与改造、物质活化与循环运动以及构造体制转换突出等特征;复合造山带成矿时代长,类型多样,金属富集强度大,大型矿集区集中。复合成矿系统指在特定时-空域中,不同时期多种成矿作用或者同一时期不同成矿作用复合形成的成矿系统。复合成矿表现为成矿物质继承改造或成矿作用融合交叉,导致成矿元素多幕式富集,成矿空间广,成矿强度大,成矿概率增加。复合成矿系统分为多期复合和同期复合两类。复合造山驱动了复合成矿系统的形成,其是中国区域成矿典型特色。复合造山和复合成矿系统在特提斯构造带最为典型,中国西南三江造山带是典型解剖区。构建了古生代与中生代原-古-中-新特提斯洋闭合引发的增生造山和新生代印度-欧亚大陆汇聚导致的碰撞造山过程,厘定了增生造山海底喷流型Cu-Pb-Zn-Ag、增生-碰撞造山岩浆热液型CuMo-Sn-W、碰撞造山盆地卤水-岩浆热液型Pb-Zn-Ag-Cu和碰撞造山斑岩-矽卡岩型Au-Cu-Mo四类典型复合成矿系统。  相似文献   

7.
额尔齐斯成矿带萨尔布拉克金矿床的构造-成矿流体   总被引:1,自引:0,他引:1       下载免费PDF全文
萨尔布拉克金矿床位于准噶尔盆地北东缘之喀拉通克岛弧带,北邻呈北西西向展布的额尔齐斯构造挤压带,矿体受次级断裂萨尔布拉克韧性剪切带控制。据构造变形-热液蚀变-矿物共生组合特征,构造-成矿阶段划分为4个:Ⅰ韧性变形-黄铁矿化-硅化阶段;Ⅱ韧脆性变形-黄铁矿-毒砂-石英阶段;Ⅲ网脉状石英阶段(多金属硫化物阶段);Ⅳ石英-碳酸...  相似文献   

8.
Tectonically, the Sanjiang Tethyan Metallogenic Domain (STMD) is located within the eastern Himalayan–Tibetan Orogen in the Sanjiang Tethys, southwestern China. Although this metallogenic domain was initiated in the Early Palaeozoic, extensive metallogenesis occurred in the Late Palaeozoic, Late Triassic and Himalayan (Tertiary) epochs. Corresponding tectonic settings and environments in the domain are: an arc-basin system related to the subduction of the Palaeo-Tethyan oceanic slabs; a post-collision crustal extension setting caused by the lithospheric delamination or slab breakoff underneath the Sanjiang Tethys during the Late Triassic; large-scale strike-slip faulting and thrusting systems due to the Indo-Asian continent collision since the Palaeocene. In this metallogenic domain important gold, copper, base metals, rare metals and tin ore belts, incorporating a large number of giant deposits, were developed. The main types of deposits include: (1) porphyry copper deposits, controlled by a large-scale strike-slip fault system, (2) VHMS deposits, mainly occurring in intra-arc rift basins and post-collision crustal extensional basins, (3) shear-zone type gold deposits in the ophiolitic mélange zone along the thrusting–shearing system, (4) hydrothermal silver-polymetallic deposits in the Triassic intra-continental rift basins and Tertiary strike-slip pull-apart basins, and (5) Himalayan granite-related greisen-type tin and rare-metallic deposits. Within the metallogenic epochs of the Late Palaeozoic to Cenozoic, the styles and types of the ore deposits changed from VHMS types in the Late Palaeozoic through exhalative-sedimentary type deposits in the Late Triassic, to porphyry-type copper deposits, shear-zone type gold deposits, hydrothermal vein-type silver-polymetallic deposits, greisen-type tin and rare-metal deposits in the Cenozoic. Correspondingly, ore-forming metals also changed from a Pb–Zn–Cu–Ag association through Ag–Cu–Pb–Zn, Fe–Ag–Pb and Ag–Au–Hg associations, to Ag–Cu–Pb–Zn, Cu–Mo, Au, Sn, and Li–Rb–Cs–Nb–Zr–Hf–Y–Ce–Sc associations.  相似文献   

9.
扎西康铅锌锑多金属矿床产出于特提斯喜马拉雅炭质板岩的断裂带内,是特提斯喜马拉雅铅锌锑金成矿带内典型的热液脉型矿床。由于含炭质岩石和金属硫化物都呈现出相似的低阻高极化电性特征,加之热液脉型矿床的矿体普遍较小,使得在含炭质岩石中对金属硫化物矿体进行电法勘探存在较大困难。本文通过对扎西康矿床已知矿体的音频大地电磁测深和激电中梯测量,发现矿区的炭质板岩呈现低电阻率(10-0.4~100Ω·m)和高极化率(9%~20%)特征,而矿体呈现出高电阻率(102~103Ω·m)和低极化率(1%~5%)的特征。经研究分析,认为造成这种现象的原因有两方面:(1)扎西康炭质板岩中的炭质物质量分数平均为0.79%,变质温度约在300±25℃~340±25℃,炭质物电阻率为6.1×10-5~6.8×10-4Ω·m,显示极好的导电性;此外,炭质板岩中存在大量黏土矿物,黏土矿物的吸水性促进了炭质物的连通性,因此炭质物高导电性与连通性的耦合使得炭质板岩呈现低阻高极化电性特征;(2)扎西康矿床的脉型矿体除包含金属硫化物外,还产出大量的脉石矿物,脉石矿物普遍具有高阻低极化电性特征,是造成整个矿体在炭质板岩中呈现高阻低极化异常的根本原因。据此,本文提出在炭质板岩中通过识别脉石矿物引起的高阻低极化异常带间接找矿的新思路,相应的技术方法组合为:利用激电中梯测量定位高阻低极化带的平面位置,再利用音频大地电磁测深探测其深部产状。  相似文献   

10.
Tethyan evolution of Turkey: A plate tectonic approach   总被引:9,自引:0,他引:9  
The Tethyan evolution of Turkey may be divided into two main phases, namely a Palaeo-Tethyan and a Neo-Tethyan, although they partly overlap in time. The Palaeo-Tethyan evolution was governed by the main south-dipping (present geographic orientation) subduction zone of Palaeo-Tethys beneath northern Turkey during the Permo-Liassic interval. During the Permian the entire present area of Turkey constituted a part of the northern margin of Gondwana-Land. A marginal basin opened above the subduction zone and disrupted this margin during the early Triassic. In this paper it is called the Karakaya marginal sea, which was already closed by earliest Jurassic times because early Jurassic sediments unconformably overlie its deformed lithologies. The present eastern Mediterranean and its easterly continuation into the Bitlis and Zagros oceans began opening mainly during the Carnian—Norian interval. This opening marked the birth of Neo-Tethys behind the Cimmerian continent which, at that time, started to separate from northern Gondwana-Land. During the early Jurassic the Cimmerian continent internally disintegrated behind the Palaeo-Tethyan arc constituting its northern margin and gave birth to the northern branch of Neo-Tethys. The northern branch of Neo-Tethys included the Intra-Pontide, Izmir—Ankara, and the Inner Tauride oceans. With the closure of Palaeo-Tethys during the medial Jurassic only two oceanic areas were left in Turkey: the multi-armed northern and the relatively simpler southern branches of Neo-Tethys. The northern branch separated the Anatolide—Tauride platform with its long appendage, the Bitlis—Pötürge fragment from Eurasia, whereas the southern one separated them from the main body of Gondwana-Land. The Intra-Pontide and the Izmir—Ankara oceans isolated a small Sakarya continent within the northern branch, which may represent an easterly continuation of the Paikon Ridge of the Vardar Zone in Macedonia. The Anatolide-Tauride platform itself constituted the easterly continuation of the Apulian platform that had remained attached to Africa through Sicily. The Neo-Tethyan oceans reached their maximum size during the early Cretaceous in Turkey and their contraction began during the early late Cretaceous. Both oceans were eliminated mainly by north-dipping subduction, beneath the Eurasian, Sakaryan, and the Anatolide- Tauride margins. Subduction beneath the Eurasian margin formed a marginal basin, the present Black Sea and its westerly prolongation into the Srednogorie province of the Balkanides, during the medial to late Cretaceous. This resulted in the isolation of a Rhodope—Pontide fragment (essentially an island arc) south of the southern margin of Eurasia. Late Cretaceous is also a time of widespread ophiolite obduction in Turkey, when the Bozkir ophiolite nappe was obducted onto the northern margin of the Anatolide—Tauride platform. Two other ophiolite nappes were emplaced onto the Bitlis—Pötürge fragment and onto the northern margin of the Arabian platform respectively. This last event occurred as a result of the collision of the Bitlis—Pötürge fragment with Arabia. Shortly after this collision during the Campanian—Maastrichtian, a subduction zone began consuming the floor of the Inner Tauride ocean just to the north of the Bitlis—Pötürge fragment producing the arc lithologies of the Yüksekova complex. During the Maastrichtian—Middle Eocene interval a marginal basin complex, the Maden and the Çüngüş basins began opening above this subduction zone, disrupting the ophiolite-laden Bitlis—Pötürge fragment. The Anatolide-Tauride platform collided with the Pontide arc system (Rhodope—Pontide fragment plus the Sakarya continent that collided with the former during the latest Cretaceous along the Intra Pontide suture) during the early to late Eocene interval. This collision resulted in the large-scale south-vergent internal imbrication of the platform that produced the far travelled nappe systems of the Taurides, and buried beneath these, the metamorphic axis of Anatolia, the Anatolides. The Maden basin closed during the early late Eocene by north-dipping subduction, synthetic to the Inner-Tauride subduction zone that had switched from south-dipping subduction beneath the Bitlis—Pötürge fragment to north dipping subduction beneath the Anatolide—Tauride platform during the later Palaeocene. Finally, the terminal collision of Arabia with Eurasia in eastern Turkey eliminated the Çüngüş basin as well and created the present tectonic regime of Turkey by pushing a considerable piece of it eastwards along the two newly-generated transform faults, namely those of North and East Anatolia. Much of the present eastern Anatolia is underlain by an extensive mélange prism that accumulated during the late Cretaceous—late Eocene interval north and east of the Bitlis—Pötürge fragment.  相似文献   

11.
班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景   总被引:2,自引:1,他引:2  
早古生代—泥盆纪,研究区沉积环境以陆棚碎屑岩相和碳酸盐台地相为主,代表冈瓦纳大陆北缘和特提斯南侧的被动大陆边缘。石炭纪—二叠纪,本区进入特提斯南、北缘弧盆系统演化阶段,龙木错-双湖带北部、金沙江带南部和冈底斯带分别在石炭纪、二叠纪形成岩浆弧。中生代是特提斯南缘弧盆演化阶段,SSZ型蛇绿岩形成岩浆熔离型铬、镍、铂族金属矿床和热液型金矿。班公湖-怒江带特提斯在中侏罗世至早白垩世向南、北两侧俯冲并形成岩浆弧,该岩浆弧是重要的成矿带,形成斑岩铜矿、矽卡岩型磁铁矿和热液型多金属矿床。北羌塘东段侏罗纪弧后前陆盆地有利于形成沉积型、沉积-热液改造型和热液型铁、铜、锑、金矿床。晚白垩世碰撞作用主要与热液型矿床有关,分布范围较大,也可能存在晚白垩世至新生代碰撞阶段的斑岩铜矿。  相似文献   

12.
甲玛铜多金属矿床的成因问题一直影响着地质工作者的找矿思路.勘查项目组在前人地质工作的基础上,经多次实地踏勘,初步建立了甲玛-驱龙-邦铺矿集区的区域成矿系列,通过深入研究矿区的大地构造背景、深大断裂以及次级小断裂、大规模岩浆作用、地层等有利的成矿地质条件,解决了长期以来制约勘查进展的两个关键科学问题:是否为斑岩成矿;成矿...  相似文献   

13.
特提斯成矿域主要金属矿床类型与成矿过程   总被引:13,自引:5,他引:13  
作为全球三大巨型成矿域之一的特提斯成矿域目前尚缺少系统的研究和总结。特提斯构造带是欧亚大陆南部一条全球性纬向展布的构造带,夹持于东欧、哈萨克、塔里木、华北、扬子、印度支那地块和印度、阿拉伯、非洲板块之间,由若干个小陆块,如Anatolides、外高加索、Alborz、伊朗中部、鲁特、阿富汗、帕米尔、南羌塘、北羌塘、拉萨、保山、中缅马苏、西缅甸等,及陆块中间的造山带组成,是在晚古生代到新生代期间,古、新特提斯洋扩张与闭合过程中,历经两次大规模的板块俯冲、碰撞形成的。这一过程可主要概括为冈瓦纳大陆的裂解以及欧亚大陆的增生,其中欧亚主动大陆边缘和冈瓦纳被动大陆边缘起了主要的控制作用。特提斯成矿域复杂的地质演化过程注定了其成矿具多金属、多类型的特征,漫长的空间展布决定了其金属堆积的连续成带性,其中的一些重要成矿带全球著名。文章在特提斯成矿域中识别出了6种主要的成矿作用,分别形成斑岩型Cu-Mo-Au、与岩浆热液有关的Sn-W、岩浆型铬铁矿、VMS型Cu-Pb-Zn、浅成低温热液型Au-Hg-Sb及与沉积岩有关的Pb-Zn等矿床。这些矿床都是在洋盆扩张、洋陆俯冲、大陆碰撞等地球动力学背景中形成的。与环太平洋、古亚洲等增...  相似文献   

14.
西藏冈底斯罗布真铅锌矿床成矿流体特征   总被引:3,自引:0,他引:3  
西藏罗布真铅锌矿床位于冈底斯西缘,其矿体主要产于古新世林子宗群英安岩及斑状二长花岗岩中,并受断裂控制。成矿过程可分为石英-黄铁矿阶段(Ⅰ)和石英-多金属硫化物阶段(Ⅱ)。Ⅰ阶段石英中分布三种类型的包裹体,即:纯气相包裹体(成分为CO2或CH4)、水溶液包裹体(液相组分主要为H2O,含微量CO2,气相组分主要为H2O和CO2)和含子矿物多相包裹体。Ⅱ阶段石英中的包裹体类型及对应的成分与Ⅰ阶段石英大体相似,但部分水溶液包裹体气液相成分均为H2O;Ⅱ阶段闪锌矿中分布水溶液包裹体和含子矿物多相包裹体,二者液相组分和气相组分主要为H2O,子矿物为方解石。Ⅰ阶段包裹体均一温度集中在200~320℃,盐度集中在8%~16%Na Cleqv,Ⅱ阶段包裹体均一温度集中在180~240℃和280~320℃两个区间,盐度集中在6%~12%Na Cleqv。成矿流体为中温、中低盐度的H2O-Na Cl±CO2体系。成矿流体的δDH2O值为-91‰~-125‰,δ18OH2O值为3.9‰~6.6‰,表明其来源主要为岩浆水。以气液相分离为标志的流体不混溶是矿区硫化物沉淀的重要机制。  相似文献   

15.
陈喜峰 《矿产与地质》2009,23(4):291-296
狼山-渣尔泰山多金属成矿带位于华北地台北缘西段的中元古代被动陆缘裂陷槽内,其产出的多处大型-超大型铜、铅、锌、铁多金属硫化物矿床的矿床特征具相似性和可对比性。通过分析该成矿带的区域地质背景、含矿建造特征及其产出的典型矿床(东升庙、炭窑口、霍各乞、甲生盘)的矿床地质特征,得出该成矿带内铜铅锌铁多金属硫化物矿床的以下特征:①盆地控矿特征十分明显;②成矿过程中伴有与成矿作用关系密切的同生断裂活动和同沉积期火山活动;③成矿元素具分带性和规律性组合的特征;④各典型矿床具鲜明的“时控”、“层控”和“岩控”特点;⑤成矿作用具有间歇性和多期演化成矿的特征;⑥含矿建造具有典型地球化学剖面结构序列特征;⑦矿体的产状与含矿岩系一致,且相应类型的矿石对应相应的容矿岩性。  相似文献   

16.
耿全如  潘桂棠  王立全  彭智敏  张璋 《地质通报》2011,30(08):1261-1274
早古生代—泥盆纪,研究区沉积环境以陆棚碎屑岩相和碳酸盐台地相为主,代表冈瓦纳大陆北缘和特提斯南侧的被动大陆边缘。石炭纪—二叠纪,本区进入特提斯南、北缘弧盆系统演化阶段,龙木错-双湖带北部、金沙江带南部和冈底斯带分别在石炭纪、二叠纪形成岩浆弧。中生代是特提斯南缘弧盆演化阶段,SSZ型蛇绿岩形成岩浆熔离型铬、镍、铂族金属矿床和热液型金矿。班公湖-怒江带特提斯在中侏罗世至早白垩世向南、北两侧俯冲并形成岩浆弧,该岩浆弧是重要的成矿带,形成斑岩铜矿、矽卡岩型磁铁矿和热液型多金属矿床。北羌塘东段侏罗纪弧后前陆盆地有利于形成沉积型、沉积-热液改造型和热液型铁、铜、锑、金矿床。晚白垩世碰撞作用主要与热液型矿床有关,分布范围较大,也可能存在晚白垩世至新生代碰撞阶段的斑岩铜矿。  相似文献   

17.
班公湖-怒江带、羌塘地块特提斯演化 与成矿地质背景   总被引:30,自引:2,他引:30  
早古生代—泥盆纪,研究区沉积环境以陆棚碎屑岩相和碳酸盐台地相为主,代表冈瓦纳大陆北缘和特提斯南侧的被动大陆边缘。石炭纪—二叠纪,本区进入特提斯南、北缘弧盆系统演化阶段,龙木错-双湖带北部、金沙江带南部和冈底斯带分别在石炭纪、二叠纪形成岩浆弧。中生代是特提斯南缘弧盆演化阶段,SSZ型蛇绿岩形成岩浆熔离型铬、镍、铂族金属矿床和热液型金矿。班公湖-怒江带特提斯在中侏罗世至早白垩世向南、北两侧俯冲并形成岩浆弧,该岩浆弧是重要的成矿带,形成斑岩铜矿、矽卡岩型磁铁矿和热液型多金属矿床。北羌塘东段侏罗纪弧后前陆盆地有利于形成沉积型、沉积-热液改造型和热液型铁、铜、锑、金矿床。晚白垩世碰撞作用主要与热液型矿床有关,分布范围较大,也可能存在晚白垩世至新生代碰撞阶段的斑岩铜矿。  相似文献   

18.
角西矿床是班公湖-怒江成矿带上目前发现的首例石英脉型钨矿床。本文对该矿床的地质特征及黑钨矿微量、稀土元素进行了系统的研究。结果表明,角西矿床主要发育与中新世花岗岩密切相关的含黑钨矿(±白钨矿)石英脉,矿脉主要受张性裂隙控制,宽度在0. 02~2m之间,"五层楼"分带模式较为明显,蚀变类型主要为云英岩化和角岩化。矿化可以分为氧化物阶段、硫化物阶段和萤石-碳酸岩阶段。与华南同类型矿床相比,角西黑钨矿的稀土元素含量极低(∑REE=0. 560×10~(-6)~1. 186×10~(-6)),具有较为明显的正Eu异常。黑钨矿中相对富集Sc元素(平均31. 15×10~(-6))的特征表明成矿流体富含F-和/或PO_4~(3-)离子。以上研究成果不仅有助于加深该矿床成因的认识,而且为后续矿床勘查提供了重要信息。  相似文献   

19.
北山成矿带霍勒扎德盖金矿床碲化物的发现及其地质意义   总被引:1,自引:1,他引:1  
甘肃省霍勒扎德盖大型金矿床位于北山造山带的黑鹰山弧内,含金石英脉主要赋存在早石炭世英云闪长岩内的裂隙或断裂中。流体成矿过程从早到晚划分为Ⅰ、Ⅱ、Ⅲ三个阶段,分别形成(磁铁矿)-黄铁矿-石英脉、石英-多金属硫化物脉和石英-方解石脉。本次研究通过矿相学观察、扫描电镜/能谱及电子探针分析,在该矿床Ⅱ阶段矿石样品中首次发现大量碲化物,该矿物系列主要产出在黄铁矿、石英中或其裂隙内。矿区已发现的碲化物包括碲金矿、斜方碲金矿、针碲金银矿、碲金银矿、碲银矿、碲铅矿、碲汞矿、碲铋矿等;金银矿物仅以碲化物的形成存在。Ⅰ阶段流体的硫逸度(logfS2=-11.1~-9.5)较高、碲逸度(logf Te2≤-12.8)较低,Ⅱ阶段流体显示低硫逸度(logfS2=-13.5~-10.2)、高碲逸度(logfTe2=-11.1~-7.8)特征。碲化物的发现揭示了矿床与深部幔源的紧密联系,但同时不能排除矿区英云闪长岩提供成矿物质的可能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号