首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palaeotemperatures for the Cretaceous of India and Madagascar have been determined on the basis of oxygen isotopic analysis of well-preserved Albian belemnite rostra and Maastrichtian bivalve shells of from the Trichinopoly district, southern India, and Albian nautiloid and ammonoid cephalopods from the Mahajang Province, Madagascar. The Albian (possibly late Albian) palaeotemperatures for Trichinopoly district are inferred to range from 14.9 °C to 18.5 °C for the epipelagic zone, and from 14.3 °C to 15.9 °C for the mesopelagic zone, based on analyses of 65 samples; isotopic palaeotemperatures interpreted as summer and winter values for near-bottom shelf waters in this area fluctuate from 16.3 to 18.5 °C and from 14.9 to 16.1 °C, respectively. The mentioned palaeotemperatures are very similar to those calculated from isotopic composition of middle Albian belemnites of the middle latitude area of Pas-de-Calais in Northern hemisphere but significantly higher than those calculated from isotopic composition of Albian belemnites from southern Argentina and the Antarctic and middle Albian belemnites of Australia located within the warm-temperate climatic zone. Isotopic analysis of early Albian cephalopods from Madagascar shows somewhat higher palaeotemperatures for summer near-bottom shelf waters in this area (20.2-21.6 °C) in comparison with late Albian palaeotemperatures calculated from southern India fossils, but similar winter values (13.3-16.4 °C); however, the latter values are somewhat higher than those calculated from early Albian ammonoids of the tropical-subtropical climatic zone of the high latitude area of southern Alaska and the Koryak Upland. The new isotopic palaeotemperature data suggest that southern India and Madagascar were located apparently in middle latitudes (within the tropical-subtropical climatic zone) during Albian time. In contrast to the Albian fossils, isotope results of well-preserved early Maastrichtian bivalve shells from the Ariyalur Group, Trichinopoly district, are characterised by lower δ18O values (up to −5.8‰) but normal δ13C values, which might be a result local freshwater input into the marine environment. Our data suggest that the early Maastrichtian palaeotemperature of the southern Indian near-bottom shelf waters was probably about 21.2 °C, and that this middle latitude region continued to be a part of tropical-subtropical climatic zone, but with tendency of increasing of humidity at the end of Cretaceous time.  相似文献   

2.
Palaeotemperatures during the late Barremian–early Aptian (Early Cretaceous) on the Russian Platform have been determined on the basis of oxygen isotope analysis of aragonitic bivalve molluscan and ammonoid shells and belemnite rostra with well-preserved microstructure from the Ulyanovsk area. Those obtained from the planispiral and heteromorph ammonoid shells from the lower Aptian Volgensis–Schilovkensis, Deshayesi–Tuberculatum, and Deshayesi–Renauxianum zones range from 26.7 to 33.2 °C, from 29.2 to 33.1 °C, and from 27.0 to 29.5 °C, respectively. A heteromorph Helicancylus? cf. philadelphius shell from the uppermost lower Aptian Bowerbanki Zone was secreted in highest temperature conditions (32.8–35.2 °C). In contrast, upper Barremian molluscs (bivalve Cyprina sp. and belemnite Oxyteuthis sp.) of the Ulyanovsk area show significantly lower palaeotemperatures: 16.9–18.5 °C and 7.9–17.8 °C, respectively, which is in accordance with known palaeogeographic and palaeobotanical evidences, showing that a distinct climatic optimum seems to have occurred during the late early Aptian, when warm Tethyan water penetrated into the basin. Marked changes in calculated growth temperatures for investigated molluscs from the Russian Platform were most likely connected with both the general warming trend during the late Barremian–early Aptian and local palaeonvironmental conditions. New data from the Bowerbanki Zone of the Russian Platform provide evidence on existence of the positive carbon isotope anomaly (2.4–6‰) at the end of the lower Aptian. There were apparently the three positive C-isotope anomalies during the late Barremian–early Aptian. The onset of mid early Aptian Oceanic Anoxic Event (OAE) 1a seems to coincide with both the beginning of significant warm conditions (followed by short-term cooling) and the abrupt decline in heavy carbon isotope concentrations in marine carbonates, which partly were the likely consequences of the intensive release of CO2 (biased by volcanic activity) and/or dissociation of methane gas hydrate.  相似文献   

3.
The early Albian Oceanic Anoxic Event (OAE), i.e., OAE1b, is well documented in western Tethys and in the primary North Atlantic Ocean, but has not yet been reported from eastern Tethys. In this paper, we present bulk carbon isotope data of hemipelagites to examine if it was recorded in eastern Tethys. Samples were taken from the upper Chuangdepu Member (nannofossil zone CC8) of the lower Gyabula (former Shadui) Formation at the Bangbu section, Qonggyai, southern Tibet of China. The δ13C values mainly range from −0.6‰ to 1.8‰ with a maximum of 1.87‰ and a minimum of −0.69‰. Three stages of carbon isotope evolution were distinguished with three boundaries. By the constraint of the stratigraphic sequence and nannofossil biostratigraphic zone CC8, the rapid δ13C change and correlation with western Tethys and Atlantic Ocean together suggest that these three boundaries of the carbon isotope evolution probably correspond to three subevents of the early Albian OAE1b, and the subevent levels of upper Kilian, Paquier, and Leenhardt are recorded in eastern Tethys (southern Tibet). The fact that the amount of δ13C shift is less by ∼1.5–2.0‰ in eastern Tethys than in western Tethys and Atlantic Ocean is interpreted as a result of possible cool sea surface (∼14–16 °C) of the southeastern Tethys (northern Indian passive margin of Greater India), which was probably located in a medium–high latitude during the Albian, leading to low primary productivity. The recognition of OAE-1b from Tethys Himalaya can improve our understanding of the Tethys and global paleoclimatic and paleoceanographic changes during the mid-Cretaceous.  相似文献   

4.
Reconstructing marine paleoenvironments from the skeletal hardparts of nektic organisms is often hampered by their unknown migrational pathways involving different water masses and their corresponding physico-chemical parameters. Despite significant progress over the last years, the reconstruction of migration patterns of extinct ammonoids is difficult because both, vertical and horizontal ones lead to an intricate combination of reconstructed seawater temperatures. Paleonvironmental data retrieved from exceptionally well-preserved lower Albian (Douvilleiceras mammillatum ammonite zone, uppermost CC8a nannofossil zone, 110.5–111.0 Ma) cephalopod shells from Madagascar (Mahajanga Basin, 40–42° southern latitude) are reconstructed based on a novel multi-proxy approach. Here we combine and contrast: (i) nacre tablet-paleobathymetry, (ii) Westermann Morphospace, and (iii) shell isotope geochemistry analysis. Results obtained allow for a robust reconstruction of habitat depth, paleo-seawater temperatures, and paleoecology of extinct cephalopod taxa. The discocone nautiloid Cymatoceras is regarded as vertical migrant with a maximum habitat depth of 250 m and a mean habitat water temperature of 20–21 °C. All three ammonoid taxa (Cleoniceras, Desmoceras, and Eogaudryceras) share a platycone to planorbicone shell shape suggesting a demersal life habit at maximal water depths of 450–500 m and temperatures of 19–21 °C for Cleoniceras and Desmoceras, and the deepest (525 m) and coolest (14 °C) habitat for Eogaudryceras. Circumstantial evidence from benthic mollusk shells from the same stratigraphic interval as well as sedimentological and paleopathological data provide further support for habitat reconstructions. Reconstructed paleotemperatures shown here provide well-constrained evidence for the thermal structure of past oceanic water masses and have significance for Cretaceous paleoceanography in general.  相似文献   

5.
《Precambrian Research》2003,120(1-2):101-129
A paleomagnetic and 40Ar/39Ar study of a 630-Ma alkaline granite suite in Madagascar, the so-called ‘stratoid’ granites, reveals a complex history of remagnetization during the formation of the Antananarivo Zone de Virgation at ∼560 Ma (D2) and the Angavo shear zone at ∼550 Ma (D3). 40Ar/39Ar dating of hornblende, biotite and potassium feldspar from rocks affected by D2/D3 show initial cooling rates of 8 °C/Ma during the 550–520 Ma interval followed by slower cooling of 2.5 °C/Ma. The thermal effects of the D2 and D3 events appear to be restricted to regions surrounding the shear zones as evidenced by a 40Ar/39Ar biotite age of 611.9±1.7 Ma north of the virgation zone. The paleomagnetic data from the stratoid granites are complex and some sites, particularly in areas to the north of the virgation zone, may have been rotated about non-vertical axes following their emplacement and cooling. Because of these possible rotations, our best estimate for the paleomagnetic pole for Madagascar is derived from sites within the virgation zone. This pole falls at 6.7°S, 352.6°E (a95=14.2°). A post-metamorphic cooling history for the virgation zone indicates a magnetization age of 521.4±11.9 Ma. Our work in central Madagascar, coupled with previous studies, suggests that emplacement of the 630 Ma stratoid granites followed a collisional (?) tectonic event beginning around 650 Ma, recently recognized in southern Madagascar and in Tanzania. Subsequently, the stratoid granites in the Antananarivo virgation zone were reheated (∼750–800 °C) at pressures between 3.5 and 3.6 kbars resulting in a pervasive remagnetization. We suggest that the younger shear events are genetically related to collisional tectonics elsewhere during the final stages of Gondwana assembly and are a consequence of the Kuunga Orogeny further south.  相似文献   

6.
In plate-boundary scale ductile shear zones defined by microstructural weakening, shear heating may lead to a temperature increase over 5 m.y. of up to 80 °C just below the brittle ductile transition, up to 120 °C just below the Moho, and to thermal boundary zones tens of km wide on either side of the shear zone. Where rock strength is highest, shear zones are narrow (∼1 km), and thermal gradients within the shear zone itself are low, so there is no tendency for increased localization. Heating results in thermal weakening, but this is partly offset by grain growth related to the decrease in stress. In shear zones of the order of 10 km width, shear stress, strain rate, and hence heat generation are lower, and thermal gradients are insufficient to cause additional strain localization. Temperature increases in the mid-crust are of the order of 10 °C, insufficient to cause partial melting or an increase in metamorphic grade. In the upper mantle, shear zones may be 50 km or more wide, and the temperature increase is less than 20 °C in 5 m.y., but temperature differences between center and margin may enhance the strain rate at the center by up to 18%.  相似文献   

7.
Kinematic analysis and field mapping of the Homestake shear zone (HSZ) and Slide Lake shear zone (SLSZ) in central Colorado may provide insight into the interaction between subvertical and low-angle shear zones in the middle crust. The northeast-striking, steeply dipping HSZ comprises a ∼10-km-wide set of anastomosing ductile shear zones and pseudotachylyte-bearing faults. Approximately 4 km south of the HSZ, north–northeast-striking, shallowly dipping mylonites of the SLSZ form three 1–10-m-thick splays. Oblique stretching lineations and shear sense in both shear zones record components of dip-slip (top-up-to-the-northwest and top-down-to-the-southeast) and dextral strike-slip movement during mylonite development. Quartz and feldspar deformation mechanisms and quartz [c] axis lattice preferred orientation (LPO) patterns suggest deformation temperatures ranging from ∼280–500 °C in the HSZ to ∼280–600 °C in the SLSZ. Quartz [c] axis LPOs suggest plane strain general shear across the shear system. Based on the relative timing of fabric development, compatible kinematics and similar deformation temperatures in the SLSZ and the HSZ, we propose that both shear zones formed during strain localization and partitioning within a transpressional shear zone system that involved subvertical shuffling in the mid-crust at 1.4 Ga.  相似文献   

8.
The upper carbonate member of the Kaibab Formation in northern Arizona (USA) was subaerially exposed during the end Permian and contains fractured and zoned chert rubble lag deposits typical of karst topography. The karst chert rubble has secondary (authigenic) silica precipitates suitable for estimating continental weathering temperatures during the end Permian karst event. New oxygen and hydrogen isotope ratios of secondary silica precipitates in the residual rubble breccia: (1) yield continental palaeotemperature estimates between 17 and 22 °C; and, (2) indicate that meteoric water played a role in the crystallization history of the secondary silica. The continental palaeotemperatures presented herein are broadly consistent with a global mean temperature estimate of 18.2 °C for the latest Permian derived from published climate system models. Few data sets are presently available that allow even approximate quantitative estimates of regional continental palaeotemperatures. These data provide a basis for better understanding the end Permian palaeoclimate at a seasonally-tropical latitude along the western shoreline of Pangaea.  相似文献   

9.
《Cretaceous Research》2012,33(6):685-699
Albian pelagic successions of the Nebeur area in northwestern Tunisia consist of radiolarian-bearing and organic-rich black shale beds, which represent the lower part of the Fahdene Formation. The carbonate content of the organic-rich beds ranges between 40 and 48%. Total organic carbon (TOC) analyses via Rock Eval pyrolysis yielded values ranging between 0.7 and 2.8% and a mixed marine/terrestrial origin. Tmax values vary between 424 and 450 °C, indicative of submature to mature organic matter. High resolution planktic foraminiferal and radiolarian biostratigraphy suggest that the black shales beds span the mid- to late Albian, confined to the middle part of the Ticinella primula zone, upper Biticinella breggiensis zone and lower appeninica + buxtorfi zone. Episodes of organic-rich deposition in the “Tunisian Trough” are interpreted as being the sedimentary record of the global oceanic anoxic events OAE1b, c, and d respectively. Age-diagnostic radiolarian assemblages recovered from late Albian organic-rich black shales lie within the UA13–UA14 boundary biochronozones. The abundance of radiolarian and calcispheres (i.e. pithonella) within the black shales suggests high productivity periods and eutrophic conditions probably triggered by upwelling currents.  相似文献   

10.
Stable isotope (δ18O, δ13C) analyses were performed on well preserved belemnites, oysters, and rhynchonellid brachiopods from the Middle to Upper Jurassic of the Morondava Basin in southern Madagascar. Both brachiopods and oysters indicate similar average temperatures of 18.7 to 19.3 °C in the Early Callovian, followed by a temperature decrease towards the Middle Oxfordian (13.9 °C) and a minimum in the Early Kimmeridgian (12.3 °C). In contrast, belemnites from the Oxfordian show lower average temperatures of 10.0 °C, which is likely caused by specific conditions for these organisms (e.g., different fractionation or life habits). Additionally, three oysters from the Upper Oxfordian and Lower Kimmeridgian were used for high-resolution stable isotope analyses. The data show seasonal fluctuations of >6 °C around averages between 14.4 and 14.7 °C. Latitudinal temperature gradients for the Callovian and Kimmeridgian are similar to today at the examined low latitudes of the southern hemisphere. The observed cooling of around 5 °C from the Callovian to the Oxfordian/Kimmeridgian can be attributed to a concurrent southward drift of Madagascar during the break-up of Gondwana. Thus, the study underlines the importance of considering palaeogeography in interpreting stable isotope data as well as the potential of detecting and timing palaeogeographic events by using stable isotope analyses.  相似文献   

11.
Precise estimates of mean annual temperature (MAT) for when Neanderthals occupied Central Europe are critical for understanding the role that climatic and associated environmental factors played in Neanderthal migrations and in their ultimate extinction. Neanderthals were continuously present in the relatively warm regions of southern and Western Europe in the Pleistocene but only temporarily settled Central Europe (CE), presumably because of its colder and less hospitable climate. Here, we present a new approach for more spatially and temporally accurate estimation of palaeotemperatures based on the stable oxygen isotope composition of phosphates extracted from animal teeth found at sites linked directly to concurrent Neanderthal occupation. We provide evidence that Neanderthals migrated along the Odra Valley of CE during warmer periods throughout the Upper Pleistocene. The MATs during these migrations were about 6.8 °C for the warm phase of Oxygen Isotope Stage OIS 5a–d (prior to the OIS4 cold event) at ~115–74,000 yr BP and about 6.3 °C during the early OIS 3 warm phase ~59–41,000 yr BP. Our results show that temperatures during these phases peaked 2–4 °C above longer term estimates from ice cores and pollen records. We argue that our approach can provide valuable insights into evaluating the role of climate in human migration patterns in the Pleistocene.  相似文献   

12.
The Maria da Fé Shear Zone (MFSZ) is a sinistral strike-slip kilometric-scale structure developed in the late Neoproterozoic during the assembly of Gondwana. The MFSZ development is related to the NW–SE collision between the São Francisco Paleocontinent and the Rio Negro Magmatic Arc, which formed the Ribeira Belt. This paper describes the shear zone in detail, concluding that the orientation and age are consistent with NW–SE shortening during the afore mentioned collision. A U–Pb SHRIMP Concordia age of 586.9 ± 8.7 Ma is reported from zircon grains of a granitic dyke that crystallised synkinematically to the main tectonic activity of the shear zone. Another group of zircon grains from the same sample generated an upper intercept age of 2083 ± 43 Ma anchored in the younger Concordia age. These zircon grains are interpreted as relict grains of the basement from which the granite dyke was generated by partial melting. The temperature during mylonitization in the MFSZ was estimated in the range from 450 to 600 °C, based on microstructures in quartz and feldspar. An earlier collision in the same region, between 640 and 610 Ma, led to an extensive nappe-stack with tectonic transport to ENE, integrating the southern Brasilia Belt. One of the thrust zones between these nappes in the studied area is the Cristina Shear Zone with mylonites that were generated under upper amphibolite to granulite facies conditions. Brittle-ductile E–W metric-scale shear zones are superimposed on the MFSZ, which were active in similar, but probably slightly cooler, metamorphic conditions (≈500 °C).  相似文献   

13.
In the Himalayan orogen, Greater Himalayan (GH) rocks were buried to mid‐ to lower‐crustal levels and are now exposed across the strike of the orogen. Within the eastern Himalaya, in the Kingdom of Bhutan, the GH is divided into structurally lower (lower‐GH) and upper (upper‐GH) levels by the Kakhtang thrust (KT). Pressure–temperature estimates from lower‐ and upper‐GH rocks collected on two transects across the KT yield similar P–T–structural distance trends across each transect. In the eastern transect, temperatures are similar (from 730 to 650 °C) over a structural thickness of ~11 km, but peak pressures decrease from ~10 to 6 kbar with increasing structural level. In comparison, peak temperatures in the central Bhutan transect are similar (from 730 to 600 °C), but pressures decrease from 10 to 6.5 kbar with increasing structural level over a structural thickness of ~6 km. The structurally highest sample reveals slightly higher pressures of 8.0 kbar in comparison to pressures of ~6.5 kbar for samples collected from within the KT zone, ~4 km below. Within each transect, there are increases in pressure ± temperature within the overall upright P–T gradient that may demarcate intra‐GH shear zone(s). These P–T results combined with evidence that the timing of initial melt crystallization becomes older with increasing structural level suggest that the intra‐GH shear zones emplaced deeper GH rocks via progressive ductile underplating. These shear zones, including the KT, likely aided in the initial emplacement and construction of the GH as a composite tectonic unit during the Late Oligocene to Early Miocene, from c. 27 to 16 Ma.  相似文献   

14.
Inorganic aragonite occurs in a wide spectrum of depositional environments and its precipitation is controlled by complex physio-chemical factors. This study investigates diagenetic conditions that led to aragonite cement precipitation in Cenozoic glaciomarine deposits of McMurdo Sound, Antarctica. A total of 42 sandstones that host intergranular cement were collected from the CIROS-1 core, located proximal to the terminus of Ferrar Glacier. Standard petrography, Raman spectroscopy and electron microprobe analysis reveal a prominent aragonite cement phase that occurs as a pore-filling blocky fabric throughout the core. Oxygen isotope compositions (δ18O = −30·0 to −8·6‰ Vienna Pee-Dee Belemnite) and clumped isotope temperatures (TΔ47 = 13·1 to 31·5°C) determined from the aragonite cements provide precise constraints on isotopic compositions (δ18Ow) of the parent fluid, which mostly range from −10·8 to −7·2‰ Vienna Standard Mean Ocean Water. The fluid δ18Ow values are consistent with those of pore water, previously identified as cryogenic brine in the nearby AND-2A core. Petrographic and geochemical data suggest that aragonite cement in the CIROS-1 core precipitated from a similar brine. The brine likely formed and infiltrated sediments in flooded glacial valleys along the western margin of McMurdo Sound during the middle Miocene Climatic Transition, and subsequently flowed basinward in the subsurface. Consequently, the brine forms as a longstanding subsurface fluid that has saturated Cenozoic sediments below southern McMurdo Sound since at least the middle Miocene. Aragonite cementation in the CIROS-1 core is interpreted to reflect its proximal position to sites of brine formation and greater likelihood of experiencing brines with sustained high carbonate saturation states and Mg/Ca ratios. This unusual occurrence expands the range of known natural occurrences of aragonite cement. Given the potential for cryogenic brine formation in glaciomarine settings, blocky aragonite, as the end member of the spectrum of aragonite cement morphology, may be more widespread in glaciomarine sediments than currently thought.  相似文献   

15.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

16.
A continuous 60-year record (1938–1998) of stable isotope compositions of carbon and oxygen, as well as trace metal (Mg, Sr, Ba) concentrations in a laminated calcite crust precipitated in a short artificial tunnel on a non-equilibrium groundwater-fed karstic river is presented. Chemical and isotopic records have been compared to hydrometeorological data, available for the last 48 years. An attempt is made to relate isotopic and geochemical variations in the crust to environmental parameters, such as temperature, precipitation and changes in vegetation cover, as well as to postdepositional recrystallisation of the older crust material. Isotopic composition of the crust is largely influenced by non-equilibrium precipitation, which favours the incorporation of isotopically depleted C and O into the carbonate. Furthermore, because of the complicated hydrological situation, there is no observable correlation between the stable oxygen isotope composition of water and temperature. The result is that the 18O isotopic thermometers overestimate the measured precipitation temperatures. Temperatures calculated from Mg/Ca ratios of water and the carbonate match the δ18O palaeotemperatures within ± 2.4 °C in the older part of the crust, precipitated before the onset of industrial pollution of the river. It was demonstrated that the application of Mg palaeothermometry in natural systems, where the Mg/Ca ratio of water is influenced not only by temperature, but also by other environmental parameters such as precipitation, surface runoff, groundwater retention time and anthropogenic influences, is subject to a large uncertainty, up to 10 °C.  相似文献   

17.
The results of experiments on the hydrothermal dolomitization of calcite (between 252 and 295°C) and aragonite (at 252°C) by a 2 M CaCl2-MgCl2 aqueous solution are reported and discussed. Dolomitization of calcite proceeds via an intermediate high (ca. 35 mole %) magnesian calcite, whereas that of aragonite is carried out through the conversion of the reactant into a low (5.6 mole %) magnesian calcite which in turn transforms into a high (39.6 mole %) magnesian calcite. Both the intermediate phases and dolomite crystallize through a dissolution-precipitation reaction. The intermediate phases form under local equilibrium within a reaction zone surrounding the dissolving reactant grains. The volume of the reaction zone solution can be estimated from Sr2+ and Mg2+ partitioning equations. In the case of low magnesian calcite growing at the expense of aragonite at 252°C, the total volume of these zones is in the range of 2 × 10?5 to 2 × 10?4 1., out of 5 × 10?3 1., the volume of the bulk solution.The apparent activation energies for the initial crystallization of high magnesian calcite and dolomite are 48 and 49 kcal/mole, respectively.Calcite transforms completely into dolomite within 100 hr at 252°C. The overall reaction time is reduced to approximately 4 hr at 295°C. The transformation of aragonite to dolomite at 252°C occurs within 24 hr. The nature of the reactant dictates the relative rates of crystallization of the intermediate phases and dolomite. With calcite as reactant, dolomite growth is faster than that of magnesian calcite; this situation is reversed when aragonite is dolomitized.Coprecipitation of Sr2+ with dolomite is independent of temperature (within analytical error) between 252 and 295°C. Its partitioning, with respect to calcium, between dolomite and solution results in distribution coefficients in the range of 2.31 × 10?2 to 2.78 × 10?2.  相似文献   

18.
An integrated study of the ammonites, inoceramid bivalves, planktonic foraminifera, calcareous nannofossils, geochemistry, stable carbon isotopes, and cyclostratigraphy is provided for the upper Middle to upper Upper Albian sucession exposed in the Col de Palluel section east of Rosans in Hautes-Alpes, France. The Albian-Cenomanian boundary interval described by Gale et al. at Mont Risou is re-examined, a total thickness of 370 m of the Marnes Bleues Formation. Zonal schemes based on ammonites, inoceramid bivalves, planktonic foraminifera, and calcareous nannofossils are integrated with the stable carbon isotope curve and key lithostratigraphic markers to provide a sequence of more than 70 events in the uppermost Middle Albian to basal Cenomanian interval. Time series analysis of the Al2O3 content of the 500 m Albian sequence present in the Col de Palluel and Risou sections reveals the presence of the 20 kyr precession, 40 kyr tilt, 100 kyr short eccentricity, and 406 kyr long eccentricity cycles. Correlation using planktonic foraminiferan and nannofossil data provide a link between the Col de Palluel and Risou sections and the Italian sequence at Gubbio, and in the Piobbico core. This provides a basis for the extension of the orbital time scale of Grippo et al. to the sequence. It reveals a major break in the Col de Palluel succession at the top of the distinctive marker bed known as the Petite Vérole that may represent as much as 2 Ma. It also provides a basis for the estimation of the length of the Albian Stage at 4.12 Ma, 0.8 Ma for the early Albian, 2.84 Ma for the Middle Albian, and 3.68 Ma for the late Albian substages.  相似文献   

19.
Mapping combined with structural analyses in the foreland edge of the metamorphic core of the Himalayas in SW Nepal highlights the existence of two north‐dipping shear zones with opposite sense of shear. Here, the metamorphic core is mainly affected by non‐coaxial top‐to‐the‐south sense of shear at temperatures between 450 °C and 550 °C that switch to a top‐to‐the‐north sense of shear at the top of the metamorphic core. We regionally correlate this upper shear zone with the South Tibetan detachment system. Ar‐dating on white mica indicates that both shear zones operated between 23 Ma and 17 Ma. Restoration of the folded South Tibetan detachment in far western Nepal yields a minimum dip‐slip distance of 190 km, compatible with predictions made by models of extrusion of a weak mid‐crustal channel. Our results support an orogenic model in which channel flow in the hinterland coexisted with thrust wedge mechanics in the foreland.  相似文献   

20.
The inherited localization model for shear zone development suggests that ductile deformation in the middle and lower continental crust is localized on mechanical anisotropies, like fractures, referred to as shear zone brittle precursors. In the Neves area (Western Tauern Window, Eastern Alps), although the structural control of these brittle precursors on ductile strain localization is well established, the relative timing of the brittle deformation and associated localized fluid flow with respect to ductile deformation remains in most cases a matter of debate. The present petrological study, carried out on a brittle precursor of a shear zone affecting the Neves metagranodiorite, aims to determine whether brittle and ductile deformations are concomitant and therefore relate to the same tectonic event. The brittle precursor consists of a 100–500 µm wide recrystallized zone with a host mineral‐controlled stable mineral assemblage composed of plagioclase–garnet–quartz–biotite–zoisite±white mica±pyrite. Plagioclase and garnet preserve an internal compositional zoning interpreted as the fingerprint of Alpine metamorphism and fluid–rock interactions concomitant with the brittle deformation. Phase equilibrium modelling of this garnet‐bearing brittle precursor shows that metamorphic garnet and plagioclase both nucleated at 0.6 ± 0.05 GPa, 500 ± 20°C and then grew along a prograde path to 0.75 ± 0.05 GPa, 530 ± 20°C. These amphibolite facies conditions are similar to those inferred from ductile shear zones from the same area, suggesting that both brittle and ductile deformation were active in the ductile realm above 500°C for a depth range between 17 and 21 km. We speculate that the Neves area fulfils most of the required conditions to have hosted slow earthquakes during Alpine continental collision, that is, coupled frictional and viscous deformation under high‐fluid pressure conditions ~450°C. Further investigation of this potential geological record is required to demonstrate that slow earthquakes may not be restricted to subduction zones but are also very likely to occur in modern continental collision settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号