首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

2.
The NW–SE Irtysh Shear Zone is a major tectonic boundary in the Central Asian Orogenic Belt (CAOB), which supposedly records the amalgamation history between the peri-Siberian orogenic system and the Kazakhstan/south Mongolia orogenic system. However, the tectonic evolution of the Irtysh Shear Zone is not fully understood. Here we present new structural and geochronological data, which together with other constraints on the timing of deformation suggests that the Irtysh Shear Zone was subjected to three phases of deformation in the late Paleozoic. D1 is locally recognized as folded foliations in low strain areas and as an internal fabric within garnet porphyroblasts. D2 is represented by a shallowly dipping fabric and related ∼ NW–SE stretching lineations oriented sub-parallel to the strike of the orogen. D2 foliations are folded by ∼ NW–SE folds (F3) that are bounded by a series of mylonite zones with evidence for sinistral/reverse kinematics. These fold and shear structures are kinematically compatible, and thus interpreted to result from a transpressional deformation phase (D3). Two samples of mica schists yielded youngest detrital zircon peaks at ∼322 Ma, placing a maximum constraint on the timing of D1–D3 deformation. A ∼ NE–SW granitic dyke swarm (∼252 Ma) crosscuts D3 fold structures and mylonitic fabrics in the central part of the shear zone, but is displaced by a mylonite zone that represents the southern boundary of the Irtysh Shear Zone. This observation indicates that the major phase of D3 transpressional deformation took place prior to ∼252 Ma, although later phases of reactivation in the Mesozoic and Cenozoic are likely. The late Paleozoic deformation (D1–D3 at ∼322–252 Ma) overlaps in time with the collision between the Chinese Altai and the intra-oceanic arc system of the East Junggar. We therefore interpret that three episodes of late Paleozoic deformation represent orogenic thickening (D1), collapse (D2), and transpressional deformation (D3) during the convergence between the Chinese Altai and the East Junggar. On a larger scale, late Paleozoic sinistral shearing (D3), together with dextral shearing farther south, accommodated the eastward migration of internal segments of the western CAOB, possibly associated with the amalgamation of multiple arc systems and continental blocks during the late Paleozoic.  相似文献   

3.
The crystallines in the Kumaon Himalaya, India are studied along Goriganga, Darma and Kaliganga valleys and found to be composed of two high-grade metamorphic gneiss sheets i.e. the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC) zones. These were tectonically extruded as a consequence of the southward directed propagation of crustal deformation in the Indian plate margin. The HHC and its cover rocks i.e. the Tethyan Sedimentary Zone (TSZ) are exposed through tectonic zones within the hinterland of Kumaon Himalaya. The HHC records history of at least one episode of pre-Himalayan deformation (D1), three episodes of Himalayan deformation (D2, D3, D4). The rocks of the HHC in Kumaon Himalaya are thoroughly transposed by D2 deformation into NW-SE trending Sm (S1+S2). The extent of transposition and a well-developed NE-plunging L2 lineation indicate intense strain during D2 throughout the studied portion of the HHC. Ductile flow continued, resulting in rotation of F1 and F2 folds due NE-direction and NW-SE plunging F3 folds within the HHC. The over thickened crystalline was finally, superimposed by late-to-post collisional brittle-ductile deformation (D4) and exposed the rocks to rapid erosion.  相似文献   

4.
S1 cleavage in the Hawick Rocks of the Galloway area is non-axial planar, cutting obliquely across the F1 folds in a predominantly clockwise sense. Individual S1 cleavage planes within cleavage-fans in F1 folds strike clockwise, locally anti-clockwise, of axial surfaces, and the mean plane to the S1 cleavage-fans dips predominantly more steeply than the axial surface. F1 folds investigated at scattered localities in Silurian and Ordovician rocks north of the Hawick Rocks are also transected by the S1 cleavage, indicating that non-axial planar S1 cleavage is widespread in the Southern Uplands. The S1 cleavage is a composite fabric. Objects deformed within sandstones and tuffs indicate oblate strain. F1 fold plunge varies from NE to SW and fold hinges locally are markedly curvilinear. Steeply plunging and locally downward-facing F1 folds are present along the southeast margin of the Hawick Rocks. The non-axial planar S1 cleavage relationships persist in the steeply plunging F1 folds. Synchronous development of the non-axial planar S1 cleavage and the variably plunging F1 folds is proposed.  相似文献   

5.
In the Singhbhum Shear Zone of eastern India successive generations of folds grew in response to a progressive ductile shearing. During this deformation a mylonitic foliation was initiated and was repeatedly transposed. The majority of fold hinges were formed in an arcuate manner at low angles to the Y-axis in an E-W trending subhorizontal position and major segments of the fold hinges were then rotated towards the down-dip northerly plunging X-axis. The striping and intersection lineations were rotated in the same manner. The down-dip mylonitic lineation is a composite structure represented by rotated early lineations and newly superimposed stretching lineations. The consistent asymmetry of the folds, the angular relations between C and S surfaces and the evidence of two-dimensional boudinage indicate that the deformation was non-coaxial, but with a flattening type of strain with λ1λ2. The degree of non-coaxiality varied both in space and time. From the progressive development of mesoscopic structures it is concluded that the 2–3 km wide belt of ductile shear gave rise to successive anastomosing shear zones of mesoscopic scale. When a new set of shear lenses was superimposed on already sheared rocks, the preexisting foliation generally lay at a low angle to the lenses. No new folds developed where the acute angle was sympathetic to the sense of shear displacements. Where the acute angle was counter to the sense of shear, the pre-existing foliation, lying in the instantaneous shortening field, was deformed into a set of asymmetric folds.  相似文献   

6.
The Hastings Block is a weakly cleaved and complexly folded and faulted terrain made up of Devonian, Carboniferous and Permian sedimentary and volcanic rocks. The map pattern of bedding suggests a major boundary exists that divides the Hastings Block into northern and southern parts. Bedding north of this boundary defines an upright box-like Parrabel Anticline that plunges gently northwest. Four cleavage/fold populations are recognised namely: E–W-striking, steeply dipping cleavage S1 that is axial surface to gently to moderately E- or W-plunging; F1 folds that were re-oriented during the formation of the Parrabel Anticline with less common N–S-trending, steeply dipping cleavage S2, axial surface to gently to moderately N-plunging F2 folds; poorly developed NW–SE-striking, steeply dipping cleavage S3 axial surface to mesoscopic, mainly NW-plunging F3 folds; and finally, a weakly developed NE–SW-striking, steeply dipping S4 cleavage formed axial surface to mainly NE-plunging F4. The Parrabel Anticline is considered to have formed during the D3 deformation. The more intense development of S2 and S3 on the western margin of the Northern Hastings Block reflects increasing strain related to major shortening of the sequences adjacent to the Tablelands Complex during the Hunter–Bowen Orogeny. The pattern of multiple deformation we have recorded is inconsistent with previous suggestions that the Hastings Block is part of an S-shaped orocline folded about near vertically plunging axes.  相似文献   

7.
Three major episodes of folding are evident in the Eastern Ghats terrain. The first and second generation folds are the reclined type; coaxial refolding has produced hook-shaped folds, except in massif-type charnockites in which non-coaxial refolding has produced arrow head folds. The third generation folds are upright with a stretching lineation parallel to subhorizontal fold axes. The sequence of fold stylesreclinedF 1and coaxialF 2, clearly points to an early compressional regime and attendant progressive simple shear. Significant subhorizontal extension duringF 3folding is indicated by stretching lineation parallel to subhorizontal fold axes. In the massif-type charnockites low plunges ofF 2folds indicate a flattening type of deformation partitioning in the weakly foliated rocks (magmatic ?). The juxtaposition of EGMB against the Iron Ore Craton of Singhbhum by oblique collision is indicative of a transpressional regime.  相似文献   

8.
The Beit Bridge Complex of the Central Zone (CZ) of the Limpopo Belt hosts the 519 ± 6 Ma Venetia kimberlite diatremes. Deformed shelf- or platform-type supracrustal sequences include the Mount Dowe, Malala Drift and Gumbu Groups, comprising quartzofeldspathic units, biotite-bearing gneiss, quartzite, metapelite, metacalcsilicate and ortho- and para-amphibolite. Previous studies define tectonometamorphic events at 3.3–3.1 Ga, 2.7–2.5 Ga and 2.04 Ga. Detailed structural mapping over 10 years highlights four deformation events at Venetia. Rules-based implicit 3D modelling in Leapfrog Geo™ provides an unprecedented insight into CZ ductile deformation and sheath folding. D1 juxtaposed gneisses against metasediments. D2 produced a pervasive axial planar foliation (S2) to isoclinal F2 folds. Sheared lithological contacts and S2 were refolded into regional, open, predominantly southward-verging, E–W trending F3 folds. Intrusion of a hornblendite protolith occurred at high angles to incipient S2. Constrictional-prolate D4 shows moderately NE-plunging azimuths defined by elongated hornblendite lenses, andalusite crystals in metapelite, crenulations in fuchsitic quartzite and sheath folding. D4 overlaps with a: 1) 2.03–2.01 Ga regional M3 metamorphic overprint; b) transpressional deformation at 2.2–1.9 Ga and c) 2.03 Ga transpressional, dextral shearing and thrusting around the CZ and d) formation of the Avoca, Bellavue and Baklykraal sheath folds and parallel lineations.  相似文献   

9.
The western part of the North Anatolian Shear Zone at the southern boundary of the Central Pontides in Turkey, was investigated in the Kurşunlu-Araç area by means of a geological-structural field study. In this area the North Anatolian Shear Zone results in a transpressional deformation zone that extends between two master faults striking parallel to the main shear direction. The main systems of structures identified in the deformation zone appear to be oriented parallel to the directions predicted by Riedel theoretical model. Nevertheless, the strain partitioning is more complicated than predicted by theory. The structural analysis suggests a polyphase deformation characterized by a steady component of transcurrence associated with alternance of compression and extension. Along each of theoretical directions the combination of double verging structures can be observed, with folds and thrust surfaces root into high-angle shear zones, according to flower-type geometries. The discrepancies of directions, kinematics and geometries from theoretical models are due to transpressive and/or transtensive nature of the deformation. According to the observed outcropping structures, we propose a conceptual model for the North Anatolian Shear Zone, interpreting it as a crustal-scale positive flower structure.  相似文献   

10.
Internal regions of orogenic belts may be characterized by an alignment of fold axes with mineral elongation lineations. This relationship is commonly interpreted as representing progressive tightening and rotation towards the shear direction of early buckle folds, the hinges of which were initiated orthogonal to this direction. Detailed structural analysis of lower amphibolite facies Dalradian metasediments of the Ballybofey (fold) Nappe, north-west Ireland, shows that an intense S3 schistosity is developed axial planar to mesoscopic and minor F3 folds. In areas of low D3 strain, F3 fold axes plunge gently towards the north-east, whereas in regions of greater strain plunges are towards the south-east subparallel to the constant mineral lineation. Minor folds which initiated at angles of 70–80° from the mineral lineation subsequently rotated towards the shear direction in a consistent clockwise sense. Progressive and variable non-coaxial deformation oblique to the original mean F3 orientation has resulted in a unimodal distribution pattern of fold axes. Analysis of the angular rotation of fold axes enables estimates of the bulk shear strain to be evaluated and models of progressive deformation to be assessed.  相似文献   

11.
Detailed field-structural mapping of Neoproterozoic basement rocks exposed in the Wadi Yiba area, southern Arabian Shield, Saudi Arabia illustrates an important episode of late Neoproterozoic transpression in the southern part of the Arabian-Nubian Shield (ANS). This area is dominated by five main basement lithologies: gneisses, metavolcanics, Ablah Group (meta-clastic and marble units) and syn- and post-tectonic granitoids. These rocks were affected by three phases of deformation (D1–D3). D1 formed tight to isoclinal and intrafolial folds (F1), penetrative foliation (S1), and mineral lineation (L1), which resulted from early E-W (to ENE-WSW) shortening. D2 deformation overprinted D1 structures and was dominated by transpression and top-to-the-W (?WSW) thrusting as shortening progressed. Stretching lineation trajectories, S-C foliations, asymmetric shear fabrics and related mylonitic foliation, and flat-ramp and duplex geometries further indicate the inferred transport direction. The N- to NNW-orientation of both “in-sequence piggy-back thrusts” and axial planes of minor and major F2 thrust-related overturned folds also indicates the same D2 compressional stress trajectories. The Wadi Yiba Shear Zone (WYSZ) formed during D2 deformation. It is one of several N-S trending brittle-ductile Late Neoproterozoic shear zones in the southern part of the ANS. Shear sense indicators reveal that shearing during D2 regional-scale transpression was dextral and is consistent with the mega-scale sigmoidal patterns recognized on Landsat images. The shearing led to the formation of the WYSZ and consequent F2 shear zone-related folds, as well as other unmappable shear zones in the deformed rocks. Emplacement of the syn-tectonic granitoids is likely to have occurred during D2 transpression and occupied space created during thrust propagation. D1 and D2 structures are locally overprinted by mesoscopic- to macroscopic-scale D3 structures (F3 folds, and L3 crenulation lineations and kink bands). F3 folds are frequently open and have steep to subvertical axial planes and axes that plunge ENE to ESE. This deformation may reflect progressive convergence between East and West Gondwana.  相似文献   

12.
F1 macroscopic folds in the Late Palaeozoic Coffs Harbour Beds in the SE portion of the New England Fold Belt are commonly transected by cleavage. These macroscopic folds are tight to isoclinal structures, with a consistent vergence to the NE. Axial surfaces are either steeply dipping to the SW or vertical, and are typically faulted. Anomalous bedding‐cleavage relations occur where the steeply dipping cleavage intersects overturned limbs of F1 macroscopic and some F1 mesoscopic folds. Elsewhere F1 mesoscopic folds have a well developed, axial‐surface cleavage and are rarely downward facing. Cleavage is commonly strike‐divergent from axial surfaces of F1 macroscopic folds, except adjacent to the Demon Fault System, where they are parallel. These anomalous cleavage‐folds relations possibly developed during the one deformation. D1 structures are refolded by kink‐like folds that are steeply plunging. The structural style of the D1 deformation indicates that it possibly resulted from accretionary processes at a consuming plate margin.  相似文献   

13.
Deformational, metamorphic, monazite age and fabric data from Rengali Province, eastern India converge towards a multi-scale transpressional deformational episode at ca. 498–521 Ma which is linked with the latest phase of tectonic processes operative at proto-India-Antarctica join. Detailed sector wise study on mutual overprinting relationships of macro-to microstructural elements suggest that deformation was regionally partitioned into fold-thrust dominated shortening zones alternating with zones of dominant transcurrent deformation bounded between the thrust sense Barkot Shear Zone in the north and the dextral Kerajang Fault Zone in the south. The strain partitioned zones are further restricted between two regional transverse shear zones, the sinistral Riamol Shear Zone in the west and the dextral Akul Fault Zone in the east which are interpreted as synthetic R and antithetic R' Riedel shear plane, respectively. The overall structural disposition has been interpreted as a positive flower structure bounded between the longitudinal and transverse faults with vertical extrusion and symmetric juxtaposition of mid-crustal amphibolite grade basement gneisses over low-grade upper crustal rocks emanating from the central axis of the transpressional belt.  相似文献   

14.
Foliations within a Miocene slumped bioclastic sandstone unit of the Pakhna Formation, southern Cyprus, were investigated in order to assess the importance of slump strain, liquifaction and compaction in their generation. There are two approximately orthogonal sets of folds, F1 and F2. F1 folds are upright to inclined slump folds formed during slope-failure translation of the sediment. The cores of upright F1 folds have a steeply dipping macroscopic fabric defined by the axial surfaces of small tight folds in compositional layering. F2 folds occur on steeply-dipping limbs of F1 folds. F2 folds are small and asymmetric with flat-lying axial surfaces, and are interpreted as compaction generated. A pervasive flat-lying microscopic fabric defined by grain and pore long axis orientation is found in both fold sets, and is probably a liquifaction fabric enhanced by compaction. A pervasive steeply-dipping microfabric parallel to the axial planes of slump folds is not present in any of the slumps investigated.  相似文献   

15.
Deformed conglomeratic clasts exposed along the Neoproterozoic Nakasib Suture and the Oko Shear Zone are used to calculate three-dimensional (3D) tectonic strain associated with the latter to quantify strain associated with post-accretionary deformational belts in the Arabian–Nubian Shield. The Nakasib Suture is a NE-trending fold and thrust belt that is sinistrally offset (∼10 km) by the cross-cutting NNW- to NW-trending strike-slip faults of the Oko Shear Zone. The Nakasib Suture was formed as a result of collision between the Haya terrane and the Gebeit terrane at ∼750 Ma ago. The Oko Shear Zone was subsequently formed as a result of an E–W directed shortening of the Arabian–Nubian Shield due to collision between East and West Gondwana at ∼670–610 Ma ago. This analysis indicates the following: (1) The Nakasib Suture is dominated by flattening strain with the flattening plane of the associated strain ellipsoid oriented at 21°/77°SE. This flattening deformation is interpreted to be associated with nappe emplacement from north to south. (2) Some regions along the Nakasib Suture are characterized by constriction strain that might be due to refolding of the early nappes about NE-trending axes. (3) The Oko Shear Zone is characterized by constriction strain, with the XY plane of the strain ellipsoid oriented at 171°/68°E. The strain ellipsoid associated with the Oko Shear Zone manifests superimposition of E–W shortening on the NE-trending fold and thrust belt associated with the Nakasib Suture. (4) The tectonic strain of the Oko Shear Zone, superimposed over the structures of the Nakasib Suture, is characterized by a strain ellipsoid whose flattening plane is oriented at 21°/49°W. The strain ellipsoid of the tectonic strain has a major axis with a quadratic elongation of 3.6 and an orientation of 357°/25°, an intermediate axis with a quadratic elongation of 1.2 and an orientation of 231°/30°, and a minor axis with a quadratic elongation of 0.25 and an orientation of 115°/18°. This suggests that the post-accretionary deformation of the Arabian–Nubian Shield was superimposed as a NW–SE directed shortening that created early N–S shortening zones and late NW-trending sinistral strike-slip faults.  相似文献   

16.
The Arthur Lineament of northwestern Tasmania is a Cambrian (510 ± 10 Ma) high‐strain metamorphic belt. In the south it is composed of metasedimentary and mafic meta‐igneous lithologies of the ‘eastern’ Ahrberg Group, Bowry Formation and a high‐strain part of the Oonah Formation. Regionally, the lineament separates the Rocky Cape Group correlates and ‘western’ Ahrberg Group to its west from the relatively low‐strain parts of the Oonah Formation, and the correlated Burnie Formation, to its east. Early folding and thrusting caused emplacement of the allochthonous Bowry Formation, which is interpreted to occur as a fault‐bound slice, towards the eastern margin of the parautochthonous ‘eastern’ Ahrberg Group metasediments. The early stages of formation of the Arthur Lineament involved two folding events. The first deformation (CaD1) produced a schistose axial‐planar fabric and isoclinal folds synchronous with thrusting. The second deformation (CaD2) produced a coarser schistosity and tight to isoclinal folds. South‐plunging, north‐south stretching lineations, top to the south shear sense indicators, and south‐verging, downward‐facing folds in the Arthur Lineament suggest south‐directed transport. CaF1 and CaF2 were rotated to a north‐south trend in zones of high strain during the CaD2 event. CaD3, later in the Cambrian, folded the earlier foliations in the Arthur Lineament and produced west‐dipping steep thrusts, creating the linear expression of the structure.  相似文献   

17.
In the western part of the North Singhbhum fold belt near Lotapahar and Sonua the remobilized basement block of Chakradharpur Gneiss is overlain by a metasedimentary assemblage consisting of quartz arenite, conglomerate, slate-phyllite, greywacke with volcanogenic material, volcaniclastic rocks and chert. The rock assemblage suggests an association of volcanism, turbidite deposition and debris flow in the basin. The grade of metamorphism is very low, the common metamorphic minerals being muscovite, chlorite, biotite and stilpnomelane. Three phases of deformation have affected the rocks. The principal D1 structure is a penetrative planar fabric, parallel to or at low angle to bedding. No D1 major fold is observed and the regional importance of this deformation is uncertain. The D2 deformation has given rise to a number of northerly plunging major folds on E-W axial planes. These have nearly reclined geometry and theL 2lineation is mostly downdip on theS 2surface, though some variation in pitch is observed. The morphology of D2 planar fabric varies from slaty cleavage/schistosity to crenulation cleavage and solution cleavage. D3 deformation is weak and has given rise to puckers and broad warps on schistosity and bedding. The D2 major folds south of Lotapahar are second order folds in the core of the Ongarbira syncline whose easterly closure is exposed east of the mapped area. Photogeological study suggests that the easterly and westerly closing folds together form a large synclinal sheath fold. There is a continuity of structures from north to south and no mylonite belt is present, though there is attenuation and disruption along the fold limbs. Therefore, the Singhbhum shear zone cannot be extended westwards in the present area. There is no evidence that in this area a discontinuity surface separates two orogenic belts of Archaean and Proterozoic age.  相似文献   

18.
The progressive deformation of the Singhbhum Shear Zone (SSZ) involved the initiation of a mylonitic foliation, its deformation by three generations of reclined folds and superposition of two later groups of folds, i.e., a group of asymmetric folds with subhorizontal or gently plunging axes and a group of gentle and open, transverse and more or less upright folds. The occurrence of sheath folds and U-shaped deformed lineations indicate that the reclined folds were produced by rotation of fold hinges through large angles. The total displacement along the SSZ was compounded of displacements along numerous mesoscopic shear zones. The cleavages in the shear lenses and the mesoscopic shear zones cannot be distinguished as C and S surfaces. They have the same kinematic significance and were produced by ductile deformation, although there were localized discontinuous displacements along both sets,-of cleavages. A mylonitic foliation had formed before the development of the earliest recognizable folds. Its time of formation and folding could be synchronous, diachronous or partly overlapping in time in the different domains of the SSZ.  相似文献   

19.
Granulite-facies rocks occurring north-east of the Chilka Lake anothosite (Balugan Massif) show a complex metamorphic and deformation history. The M1–D1 stage is identified only through microscopic study by the presence of S1 internal foliation shown by the M1 assemblage sillimanite–quartz–plagioclase–biotite within garnet porphyroblasts of the aluminous granulites and this fabric is obliterated in outcrop to map-scale by subsequent deformations. S2 fabric was developed at peak metamorphic condition (M2–D2) and is shown by gneissic banding present in all lithological units. S3 fabric was developed due to D3 deformation and it is tectonically transposed parallel to S2 regionally except at the hinge zone of the F3 folds. The transposed S2/S3 fabric is the regional characteristic structure of the area. The D4 event produced open upright F4 folds, but was weak enough to develop any penetrative foliation in the rocks except few spaced cleavages that developed in the quartzite/garnet–sillimanite gneiss. Petrological data suggest that the M4–D4 stage actually witnessed reactivation of the lower crust by late distinct tectonothermal event. Presence of transposed S2/S3 fabric within the anorthosite arguably suggests that the pluton was emplaced before or during the M3–D3 event. Field-based large-scale structural analyses and microfabric analyses of the granulites reveal that this terrain has been evolved through superposed folding events with two broadly perpendicular compression directions without any conclusive evidence for transpressional tectonics as argued by earlier workers. Tectonothermal history of these granulites spanning in Neoproterozoic time period is dominated by compressional tectonics with associated metamorphism at deep crust.  相似文献   

20.
Kinematic analysis and field mapping of the Homestake shear zone (HSZ) and Slide Lake shear zone (SLSZ) in central Colorado may provide insight into the interaction between subvertical and low-angle shear zones in the middle crust. The northeast-striking, steeply dipping HSZ comprises a ∼10-km-wide set of anastomosing ductile shear zones and pseudotachylyte-bearing faults. Approximately 4 km south of the HSZ, north–northeast-striking, shallowly dipping mylonites of the SLSZ form three 1–10-m-thick splays. Oblique stretching lineations and shear sense in both shear zones record components of dip-slip (top-up-to-the-northwest and top-down-to-the-southeast) and dextral strike-slip movement during mylonite development. Quartz and feldspar deformation mechanisms and quartz [c] axis lattice preferred orientation (LPO) patterns suggest deformation temperatures ranging from ∼280–500 °C in the HSZ to ∼280–600 °C in the SLSZ. Quartz [c] axis LPOs suggest plane strain general shear across the shear system. Based on the relative timing of fabric development, compatible kinematics and similar deformation temperatures in the SLSZ and the HSZ, we propose that both shear zones formed during strain localization and partitioning within a transpressional shear zone system that involved subvertical shuffling in the mid-crust at 1.4 Ga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号