首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The middle Cenomanian–lower Turonian deposits of Ohaba-Ponor section (Southern Carpathians) were studied from biostratigraphic and isotopic points of view. Both the qualitative and semiquantitative nannofloral analyses, as well as the stable isotope (δ13C and δ18O) data support significant palaeoenvironmental changes in the investigated interval. Two δ13C positive excursions were recognized: (1) an excursion up to 1.8‰ (PDB) within the middle/late Cenomanian boundary; (2) an excursion up to 2.2‰ (PDB) in the Cenomanian/Turonian boundary interval. The oldest δ13C positive excursion recorded (placed within the Acanthoceras jukes-brownei/Eucalycoceras pentagonum Ammonite Zone boundary interval, and in the NC11 Calcareous Nannofossil Zone respectively) could be assigned to the middle Cenomanian Event II (MCEII). During the above-mentioned event, significant increase in abundance of Watznaueria barnesae, followed by successive blooms of Biscutum constans and Eprolithus floralis, were observed. The youngest δ13C positive excursion was identified in the Cenomanian/Turonian boundary interval (in the NC12 and lower part of the NC13 Calcareous Nannofossil Zones). Even the amplitude of this δ13C positive excursion is lower in the Ohaba-Ponor section, as generally reported, this may represent the regional record of the OAE2. The successive peaks of the nannofossils Biscutum constans, Zeugrhabdotus erectus and Eprolithus floralis indicate episodes of cooler surface water and high fertility, which preceded and lasted the Cenomanian/Turonian boundary event. Additionally, fluctuations of δ18O values between −2 and −6‰ suggest also cooler conditions within the Cenomanian/Turonian boundary interval.  相似文献   

2.
The first occurrence (FO) of Marthasterites furcatus was correlated with the FOs of other nannofossils, inoceramid bivalves and foraminifers in the Bohemian Cretaceous Basin and Outer Flysch Carpathians. The correlation showed that the FO of M. furcatus was diachronous, becoming younger from east to west. In the Silesian Unit it appears in the lower Turonian in association with Eprolithus moratus (UC6b nannofossil Zone). In the Pavlovské vrchy klippes it appears in the upper middle Turonian together with Lithastrinus septenarius (UC9 Zone). In the Bohemian Cretaceous Basin, the FO of M. furcatus was observed in the lower upper Turonian just above the FO of Liliasterites angularis. The presence of M. furcatus in Turonian strata is scarce and discontinuous up to its sudden quantitative increase (represented by 5–27% in assemblages) below the FO of the inoceramid bivalve species Cremnoceramus waltersdorfensis and C. deformis erectus in the Turonian–Coniacian boundary interval. The top of the M. furcatus acme was recorded below the FO of Micula staurophora. The second quantitative rise of M. furcatus (12% in assemblage) was found in the lower lower Campanian of the Pavlovské vrchy klippes above the FO of Broinsonia parca parca in the UC14a Zone and the last occurrence of the planktonic foraminifer Whiteinella baltica. Above this second acme M. furcatus disappears. The significantly earlier appearance of M. furcatus in the Silesian Basin may be connected with a southeast-heading surface current from the North European epicontinental sea where the species appeared in the early Turonian too.  相似文献   

3.
Glauconitic siliciclastic rocks and phosphate components from the Pecínov Member of the Peruc–Korycany Formation (Upper Cenomanian), the lower part of the Bílá Hora Formation (Lower Turonian) and the lower part of the Teplice Formation (Upper Turonian) are studied. Geochemical indices suggest that the siliciclasts were derived from the weathering and recycling products of variable rock types of the Bohemian Massif, with a pronounced signature of felsic-derived source lithologies and a minor contribution from the sources of a chemically intermediate nature. Geochemical and mineralogical criteria suggest that the climate in the mid-Cretaceous was generally humid with possible intermittent arid episodes, which resulted in a long-term weathering of source rocks and the development of residual clay minerals in the source area. Several geochemical indications point toward highly reducing marine conditions during deposition of the mudstones, which are composed of quartz, glauconite, kaolinite, smectite, apatite and calcite. The glauconites show a highly mature character with >8 wt. % K2O and bear evidence of long residence time near the sediment–water interface. They are depleted in Fe and rich in Al indicating a mixed layer mica–smectite as a precursor. Carbonate-fluorapatite is the only phosphate phase identified in the phosphate components, with up to 8 wt. % CO32−, excess F and significant amounts of Na+ and SO42− in the apatite structure. A short-lived phosphogenic event(s) took place in the latest Cenomanian and involved large areas of the Bohemian Cretaceous Basin in association with the Oceanic Anoxic Event 2. The phosphate nodules were initially precipitated under suboxic conditions around the Cenomanian–Turonian boundary and were later reworked and emplaced in the earliest Turonian units. Phosphate coprolites mark another phosphogenic event in the early Upper Turonian. The development of the phosphate coprolites took place under variable redox conditions; the release of organically-bound phosphate and subsequent phosphatisation of fecal material took place under suboxic environment, followed by reworking in oxic realms.  相似文献   

4.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

5.
A river section at Słupia Nadbrzeżna, central Poland, has been proposed as a candidate Turonian – Coniacian (Cretaceous) GSSP, in combination with the Salzgitter-Salder quarry section of Lower Saxony, Germany. Results of a high-resolution (25 cm) palynological study of the boundary interval in the Słupia Nadbrzeżna section are presented. Terrestrial palynomorphs are rare; marine organic-walled dinoflagellate cysts dominate the palynological assemblage. The dinoflagellate cyst assemblage has a low species richness (5–11 per sample; total of 18 species recorded) and diversity (Shannon index H = 0.8–1.4), dominated by four taxa: Circulodinium distinctum subsp. distinctum; Oligosphaeridium complex; Spiniferites ramosus subsp. ramosus; Surculosphaeridium longifurcatum. Declining proportions of O. complex and S. ramosus subsp. ramosus characterise the uppermost Turonian, with an increased dominance of S. longifurcatum in the lower Coniacian. The Turonian – Coniacian boundary interval includes an acme of C. distinctum subsp. distinctum in the upper Mytiloides scupini Zone, a dinoflagellate cyst abundance maximum in the Cremnoceramus walterdorfensis walterdorfensis Zone, and the highest occurrence of Senoniasphaera turonica in the basal Coniacian lower Cremnoceramus deformis erectus Zone. Most previously reported Turonian – Coniacian boundary dinoflagellate cyst marker species are absent; a shallow-water oligotrophic epicontinental depositional setting, remote from terrestrial influence, likely limited species diversity and excluded many taxa of biostratigraphic value.  相似文献   

6.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

7.
Carbon and oxygen isotope data from Cenomanian–Turonian sediments from the southwest of the Crimea are presented. The sediments consist of limestones, marls and organic-rich claystones, the latter with total organic carbon values up to 2.6 wt. %, representing Oceanic Anoxic Event 2. A shift to more negative δ18O values through the uppermost Cenomanian into the lowermost Turonian may be the result of warming; however, petrographic analysis shows that the samples have undergone a degree of diagenetic alteration. The carbon isotope data reveal a positive excursion from 2.7‰ to a peak of 4.3‰ at the Cenomanian/Turonian boundary; values then decrease in the early Turonian. This excursion is comparable to those of other Cenomanian–Turonian sections, such as those seen in the Anglo-Paris Basin, and is thought to be due to global changes in the oceanic carbon reservoir. On this curve are a number of negative δ13C excursions, just below the Cenomanian/Turonian boundary. It is suggested that these negative excursions are associated with the uptake of light carbon derived from the oxidation and deterioration of organic material during localised exposure of the sediments to oxic or meteoric diagenetic conditions, possibly during sea-level fluctuations.  相似文献   

8.
Upper Cretaceous pelagic deposits outcropping in the Maçka (Trabzon) region include radiolarians and pelagic foraminifera. The Çatak Group represented by the volcano-sedimentary successions consists of three formations having different properties. Two sections, ÇTK1 and ÇTK2, are selected from the Çe meler and Elmalι Dere formations, respectively, establishing the biostratigraphy of outcropping sedimentary units. A total of 17 species of Whiteinella, Helvetoglobotruncana, Marginotruncana, Dicarinella, Praeglobotruncana, Archaeoglobigerina and Hedbergella demonstrating the early Turonian–Coniacian are established in the ÇTK1 stratigraphic section. The early Turonian radiolarian fauna consisting of Halesium sexangulum Pessagno, 1971, Crucella cachensis Pessagno, 1971, Stichomitra communis Squinabol, 1903 is also defined in the same section. A total of 30 species of Crucella, Halesium, Pessagnobrachia, Patulibracchium, Alievium, Archaeospongoprunum, Dicyomitra, Stichomitra, Diacanthocapsa, Dactiyliodiscus, Amphipydax, Pseudoaulophocus, Acaeniotyle, Archaeodictyomitra, Actinomma, Xitus, Neosciadocapsidae characterizing the early and late Turonian, as well as the Coniacian–early Santonian are recognized from red-coloured pelagic limestones of the ÇTK2 section. Also, planktonic foraminifera species of Marginotruncana, Hedbergella, Heterohelix, Globotruncana, Globotruncanita, Archaeoglobigerina, Dicarinella characterizing the Coniacian–Santonian are described in the thin sections of the same samples. The age of red-coloured limestones is identified as the Coniacian–Santonian benefit from radiolarians and pelagic foraminifera. Consequently, radiolarians and pelagic foraminifera within sedimentary successions of the investigation area are distributed in two intervals that coincide with the early Turonian–Coniacian and Coniacian–Santonian intervals.  相似文献   

9.
Alloraphidia kyzylzharica sp. nov. is described from the Late Cretaceous (early Turonian) locality at Kyzylzhar, southern Kazakhstan. It is very similar to A. dorfi, but easily distinguished from it by wing shape and venation. We restrict the genus Alloraphidia to these two species. Ascalapharia raphidiformis is considered a member of Baissopteridae, sit. nov. Turonian Neuropterida are mainly characterized by a mixture of specialized genera of extinct families, and genera (sometimes modern) of highly advanced taxa, reflecting a sequence of global mid-Cretaceous crisis of non-marine biocoenoses.  相似文献   

10.
The Cenomanian–Turonian boundary was characterized by distinctive positive carbon isotope excursions that were related to the formation of widespread oceanic anoxia. High-resolution geochemical proxies (TOC, CaCO3, δ13Corg, and δ13Ccarb) obtained from bulk rock, planktic foraminifers, and inoceramids from four marine marlstone-dominated stratigraphic sections in the Western Canada Sedimentary Basin (WCSB) were used to establish a regional carbon isotope stratigraphic framework and to investigate paleoenvironmental variability in four different depositional settings. Compared to background δ13Corg, (<−27‰) and δ13Ccarb (<2‰) values which were correlative to stable isotope excursions during Oceanic Anoxic Event (OAE) II worldwide, the δ13Corg (>24‰), and δ13Ccarb (>4‰) derived from inoceramid prisms in the studied sections within WCSB, were elevated during the Late Cenomanian–Early Turonian. During this interval, TOC and CaCO3 values which increased sporadically to >40% and 7%, respectively, were not consistent enough to be used for stratigraphic correlations. Based on the δ13Corg excursions, two bentonite beds were regionally correlated across this portion of the Western Interior Seaway (WIS). The eruption associated with the “Red” bentonite occurred approximately coeval with the maximum δ13Corg-excursion during OAE II in the Neocardioceras juddii Zone, whereas the “Blue” bentonite coincides with the termination of OAE II in the latest Watinoceras devonense zone. During the Late Cenomanian–Early Turonian in the WCSB, benthic foraminifers were sparse or totally absent, indicating the existence of fully anoxic bottom-water conditions. Planktic foraminifera were common in the well-oxygenated surface waters. A benthic oxic zone characterized by several agglutinated species occurs in the eastern part of the WSCB at the beginning of OAE II in the Sciponoceras gracile zone. The termination of the OAE II in the WCSB coincides with the first occurrence of small ammonites (Subprionocyclus sp.) in the western part of the basin.  相似文献   

11.
Lithological evidence, benthic foraminiferal census counts, and X-ray fluorescence (XRF) scanner-derived elemental data were integrated with planktonic foraminiferal biostratigraphy and bulk carbonate stable isotopes to retrace the Turonian to early Campanian paleoenvironmental evolution and sea-level history of the Tarfaya Atlantic coastal basin (SW Morocco). The lower Turonian is characterized by laminated organic-rich deposits, which contain impoverished benthic foraminiferal assemblages, reflecting impingement of the oxygen minimum zone on the shelf during a sea-level highstand. This highstand level is correlated to the global transgressive pulse above the sequence boundary Tu1. The appearance of low-oxygen tolerant benthic foraminiferal assemblages dominated by Gavelinella sp. in the middle to upper Turonian indicates an improvement in bottom water oxygenation, probably linked to offshore retraction of the oxygen minimum zone during a regressive phase. This interval is marked by major regressive events expressed by a series of erosional truncations associated with the prominent sequence boundaries Tu3 and/or Tu4. Dysoxic–anoxic conditions recorded in the upper Santonian of the Tarfaya Basin coincide with the eustatic sea-level rise prior to Sa3 sequence boundary. The lower Campanian transgression, only recorded in the southern part of the Tarfaya Basin, coincided with substantial deepening, enhanced accumulation of fine-grained clay-rich hemipelagic sediments and improved oxygenation at the seafloor (highest diversity and abundance of benthic foraminiferal assemblages). Stable isotope data from bulk carbonates are tentatively correlated to the English Chalk carbon isotope reference curve, in particular the Hitch Wood Event in the upper Turonian, the Navigation Event in the lower Coniacian, the Horseshoe Bay Event in the Santonian and the Santonian/Campanian Boundary Event.  相似文献   

12.
Although the mid-Cretaceous is considered to be a typical interval of greenhouse climate and high sea level, cooling events associated with regressions were inferred in recent years. We conducted a biostratigraphic, chemostratigraphic, sequence stratigraphic and cyclostratigraphic investigation of upper Turonian–lower Coniacian marine strata in the Tethyan Himalaya zone, to retrace the sea-level variations and to clarify their global correlations. According to the planktonic foraminiferal zonation, the studied interval is part of the late Turonian–early Coniacian Marginoruncana sigali and D. concavata Zones. The carbon isotope curve shows a good correlation to reference curves in the Boreal and western Tethys realms with all major and minor late Turonian δ13C events identified, indicating that the C-isotope curve provides an excellent tool for global stratigraphic correlation in the Turonian. Based on the lithological variations of clastic input and physical and chemical proxies, the succession is divided into two third order and eight fourth order sequences. Spectral analysis indicates that fourth order sea-level changes were linked to the astronomically stable 405-kyr eccentricity cycle. Comparison with classic global sea-level curves, we suggest that late Turonian–early Coniacian sea-level changes along the southeastern Tethyan margin were controlled by eustasy. The significant regressions during ∼90–89.8 Ma and ∼92–91.4 Ma, which are recorded in different continents, may be interpreted as the result of continental ice expansion, giving some support to the notion that ephemeral polar ice sheets existed even in the super-greenhouse world.  相似文献   

13.
The paper presented is the first comprehensive, fully quantitative, high resolution study of marine palynology from an OAE3 black-shale environment. It is based on 175 m core spanning the upper Turonian to lower Santonian at Tarfaya, Morocco, NW Africa, which has been sampled from centimetre to 3 m intervals. The results are integrated and discussed with lithology and geochemistry data to (1) distinguish between potential changes in production and preservation of total organic carbon (TOC) accumulation and (2) constrain the stratigraphic position of the Oceanic Anoxic Event 3 (OAE3).The succession is characterized by increased total organic carbon (TOC), varying between 1% and 19% (average about 6%). Distinct black-shale horizons of variable thickness appear episodically throughout the succession, with higher frequency in the late Turonian. Higher TOC contents do not strictly correlate to lithologic black-shales or peaks of a specific taxon of organic-walled algae. The palynomorph spectrum is strongly dominated by organic-walled algae, with the ratio of terrigenous sporomorphs to organic-walled algae (t/m index) varying between zero and 0.05 (average 0.01). The dominance of algal organic matter is corroborated by the prevalence of Type I kerogen identified using Rock-Eval pyrolysis. Dinocyst diversity is low, with the absolute taxa number varying from 7 to 27 between single samples. The peridinioid/gonyaulacoid ratio of dinocysts (p/g ratio) shows strong fluctuations, varying between 1 and 283 (average of about 100).The upper Turonian interval is dominated by Bosedinia spp., a dinocyst taxon formerly described as abundant only in lacustrine sediments from the Oligocene and Miocene of SE Asia. This dominance is episodically modified by the increase of the warm-temperate waters dinocysts fraction, here mainly represented by the genera Alterbidinium, Isabelidinium and Spinidinium. Within the Coniacian-Santonian, black-shale horizons are limited in number and are concentrated within the upper Coniacian to lower Santonian interval. The dinocysts show alternating, prominent peak abundances of Palaeohystrichophora spp. and the warm-temperate water dinocysts fraction, here mainly represented by the genera Trithyrodinium and Chatangiella. However, a final episode of increased proportions of Bosedinia spp. is confined to a 5 m thick black-shale horizon closely spanning the Coniacian-Santonian boundary.Changes in the ratio of total sulphur to total organic carbon (TS/TOC) reflect fluctuating oxygen contents of bottom waters throughout the late Turonian to Santonian. These are significantly parallelled by the alternation of dinocysts assemblages suggestive of enhanced upwelling and water column stratification respectively, probably reflecting changes in the mode of TOC accumulation. Accordingly, preservation largely prevails during the late Turonian interval and changes towards increased production within the Coniacian-Santonian. However, a final preservation-event is probably represented by the black-shale horizon closely spanning the Coniacian-Santonian boundary (top Dicarinella concavata foraminifera zone), which may reflect an episodic shutdown of a major upwelling cell. It is thus proposed, that the “culmination” of the OAE3 at Tarfaya may represent intermittent preservation of TOC within an otherwise high productivity environment related to a global cooling trend.  相似文献   

14.
The phylostratigraphy, taphonomy and palaeoecology of the Late Cretaceous neoselachian Ptychodus of northern Germany appears to be facies related. Ptychodus is not present in lower Cenomanian shark-tooth-rich rocks. First P. oweni records seem to relate to middle Cenomanian strata. P. decurrens appears in the middle to upper Cenomanian mainly in non-coastal environments of the shallow marine carbonate ramp and swell facies which isolated teeth were found partly in giant ammonite scour troughs on the Northwestphalian-Lippe High submarine swell in the southern Pre-North Sea Basin. They are recorded rare in deeper basin black shales facies (upwelling influenced, OAE Event II). P. polygyrus seems to be restricted to upwelling influenced basin and deeper ramp facies mainly of the uppermost Cenomanian and basal lower Turonian (OAE II Event). P. mammillaris is mostly represented during the lower to middle Turonian in the inoceramid-rich ramp and the near shore greensand facies along the Münsterland Cretaceous Basin coast north of the Rhenish Massif mainland. Finally, P. latissimus is recorded by two new tooth sets and appears in the upper Turonian basin swell facies and the coastal greensands. Autochthonous post-Turonian Ptychodus remains are unrecorded in the Santonian–Campanian of Germany yet. Reworked material from Cenomanian/Turonian strata was found in early Santonian and middle Eocene shark-tooth-rich condensation beds. With the regression starting in the Coniacian, Ptychodus disappeared in at least the Münster Cretaceous Basin (NW-Germany), but remained present at least in North America in the Western Interior Seaway. The Cenomanian/Turonian Ptychodus species indicate a rapid neoselachian evolution within the marine transgression and global high stand. A correlation between inoceramid shell sizes, thicknesses and their increasing size during the Cenomanian and Turonian might explain the more robust and coarser ridged enamel surfaces in Ptychodus teeth, if Ptychodus is believed to have preyed on epifaunistic inoceramid bivalves.  相似文献   

15.
The Cenomanian–Turonian boundary interval is generally considered a critical time for planktonic foraminifera due to the environmental perturbations associated with Oceanic Anoxic Event 2. However, only the rotaliporids became extinct at the onset of the event, whilst several lineages evolved and/or diversified. This remarkable morphologic plasticity is often overlooked in the literature, partly because a number of stratigraphic sections have only been studied in thin-section due to the degree of lithification of the samples. Improved documentation of the morphological variability of planktonic foraminifera and better defined species concepts are required in order to improve biostratigraphy, particularly as Helvetoglobotruncana helvetica is an unreliable marker for the base of the Turonian. At the same time, detailed study of the planktonic foraminiferal response to OAE 2 demands a more profound knowledge of the assemblage composition.We present new biostratigraphic, taxonomic, and quantitative data for planktonic foraminiferal species from the Clot Chevalier section (Vocontian Basin, SE France), with the aim of (1) providing a detailed biostratigraphic analysis of the section, (2) documenting the morphological plasticity of specimens in this time interval and stabilizing species concepts, and (3) identifying promising markers to improve the resolution of the present biozonation and allow regional correlation. Samples were processed with acetic acid to extract isolated planktonic foraminifera. Assemblages were assigned to the upper Cenomanian Rotalipora cushmani Zone and to the uppermost Cenomanian–lowermost Turonian Whiteinella archaeocretacea Zone. Planktonic foraminiferal bioevents and assemblage composition identified at Clot Chevalier are compared with the well-studied Pont d'Issole section located ca. 15 km to the NE, highlighting similarities and differences in the species occurrences that may complicate the stratigraphic correlation between the two sections.The results of our study support the validity and common occurrence of species that have been misidentified and/or overlooked in the literature (i.e., Dicarinella roddai, Praeglobotruncana oraviensis, Marginotruncana caronae) and indicate that primitive marginotruncanids evolved before the onset of OAE 2, although species diversification occurred only after the event. Moreover, we believe that the first appearance of P. oraviensis might represent a promising bioevent for approximating the Cenomanian/Turonian boundary, after calibration with bio- and chemostratigraphically well-constrained sections. Finally, we describe three new trochospiral species, named “Pseudoclavihedbergellachevaliensis, Praeglobotruncana pseudoalgeriana and Praeglobotruncana clotensis.  相似文献   

16.
In this paper we describe previously unpublished trionychid turtle material, consisting of numerous shell fragments, from the Late Cretaceous (late Turonian) Bissekty Formation of the Dzharakuduk locality in Uzbekistan. This material is assigned to two shell-based taxa: Aspideretoides cf. riabinini and “Trionyx” cf. kansaiensis. The material which cannot be confidently attributed to these two taxa is identified as Trionychidae indet. In addition to these shell-based trionychid taxa, the Dzharakuduk turtle assemblage includes two skull-based taxa of trionychids (Khunnuchelys kizylkumensis and Trionychini indet.). The trionychids from the Bissekty Formation are most similar to trionychids from the younger (Santonian – early Campanian) Bostobe Formation of Kazakhstan, represented by three shell-based taxa (Aspideretoides riabinini, Paleotrionyx riabinini and “Trionyxkansaiensis), and one skull-based taxon (Khunnuchelys sp.). We provide an improved understanding of the subtle similarities and differences between four closely related Cretaceous turtle assemblages of Middle Asia and Kazakhstan.  相似文献   

17.
The Cenomanian–Turonian transition marks one of the most important extinction episodes of the Mesozoic era. This extinction event was associated with the development of widespread oceanic anoxia and pronounced stable carbon isotopic excursion. Despite its importance, the effects of the perturbation on higher latitude biotas, and from the Baltic region in particular, are currently underexplored. Therefore, in this contribution we present the fossil record of a foraminifera succession integrated with δ13C trends from two deep cores: Bliūdsukiai-19 from western Lithuania and Balta?i?k?-267 from southern Lithuania. Two foraminiferal zones were distinguished: Rotalipora cushmani from the upper Cenomanian and Whiteinella archaeocretacea from the boundary strata between the Cenomanian and Turonian in the Balta?i?k?-267 core section, and a W. archaeocretacea Zone in the Bliūdsukiai-19 core section. A chemostratigraphical analysis of the stable carbon isotopes revealed a positive Cenomanian–Turonian δ13C anomaly, with maximum values reaching 3.57‰ in the upper part of the Bliūdsukiai-19 core section. A non-metric multidimensional scaling analysis of the foraminifera communities revealed that the major changes in their assemblages were strongly temporally organized and associated with the changes in the stable carbon isotopic ratios. This fact points to the significant effects of the C–T extinction event on the northern Neotethys paleocommunities.  相似文献   

18.
Changes in morphological diversity and taxonomic composition of late Albian-early Turonian foraminiferal and radiolarian assemblages from the northern Peri-Tethys are considered. Several stages are defined in evolution of planktonic foraminifers: polytaxic (Albian-Cenomanian), oligotaxic (Cenomanian-Turonian boundary period), and polytaxic (Turonian). The Albian-Cenomanian stage was characterized by intense development of rotaliporids representing an intricate group of planktonic foraminifers, which became extinct in the terminal Cenomanian. An intense speciation of the radiolarian genus Crolanium and last occurrences of its most species, the index species C. cuneatum included, was characteristic of the terminal Albian. Spheroid and discoid radiolarians were dominant in the Cenomanian, while the Turonian was marked by intense development of all the radiolarian morphotypes.  相似文献   

19.
20.
The biochronology of Cenomanian-early Turonian ammonite faunas from three key stratotype areas (north-west Europe, central Tunisia and the Western Interior of North America) has been analysed and revised by utilizing the unitary association method. This review is prompted by the huge amount of biostratigraphic data published during recent decades and by a taxonomic homogenisation of the ammonite faunas from these key areas. The Cenomanian and lower Turonian of Tunisia comprise twenty-four Unitary Association zones and the middle Cenomanian-lower Turonian of the Western Interior Basin twenty-three such zones. The unitary association method means a two-fold increase in resolution of these ammonite zonations compared to the standard, empirical schemes. Central Tunisia and the Western Interior are correlated with north-west Europe by constructing a zonation including all taxa common to these areas. These correlations highlight the variable completeness and resolution of the faunal record through space and time, and reveal a significant number of diachronous taxa between the three areas. These correlations enable the designation of a new global marker for the middle/upper Cenomanian boundary, which is characterised by the disappearance of the genera Turrilites, Acanthoceras and Cunningtoniceras and by the appearance of Eucalycoceras, Pseudocalycoceras and Euomphaloceras. The only synchronous datum known is the last occurrence of Turrilites acutus, which may thus be used as a marker for the middle/upper Cenomanian boundary, provided that it does not turn out to be diachronous in the light of any new data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号