首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southeastern part of the Nanling metallogenic province, China is host to numerous granite-hosted vein-type hydrothermal uranium deposits. The geology and geochemistry of these deposits have been extensively studied. However, accurate and precise ages for the uranium mineralization are scarce because the uranium minerals in these deposits are usually fine grained, and may have formed in several stages. Therefore, the ages previously obtained by the bulk dating techniques are possibly a mixed age.The Xianshi uranium deposit, located in the southeastern part of the Guidong granite complex, is a major uranium deposit in South China. The uranium mineralization from this deposit is mainly fine grained uraninite in quartz or calcite veins which are spatially associated with the Cretaceous mantle-derived mafic dykes. Micro-Raman spectroscopy and X-ray diffraction analyses indicate that the dominant uranium mineral occurs as a rare form of uraninite (U3O7). Three distinct generations of uranium minerals have been identified based on petrographic and field relations. Stage 1 uraninite has the lowest UO2 and highest PbO contents whereas Stage 3 uraninite has the highest UO2 and lowest PbO contents.Uraninite from the Xianshi deposit was dated using an in-situ SIMS U–Pb dating technique. The results show three distinct age groups: 135 ± 4 Ma, 113 ± 2 Ma and 104 ± 2 Ma, which are in excellent agreement with the ages of three episodes of mantle-derived mafic dykes. Therefore, the Xianshi uranium deposit has experienced at least three hydrothermal events that are responsible for the deposition of uranium ores, which are genetically related to the emplacement of three sets of mafic dykes.  相似文献   

2.
The Camie River uranium deposit is located in the southeastern part of the Paleoproterozoic Otish Basin (Québec). The uranium mineralization consists of disseminated and vein uraninite and brannerite precipitated close to the unconformity between Paleoproterozoic fluviatile, pervasively altered, sandstones and conglomerates of the Matoush Formation and the underlying sulfide-bearing graphitic schists of the Archean Hippocampe greenstone belt. Diagenetic orange/pink feldspathic alteration of the Matoush Formation consists of authigenic albite cement partly replaced by later orthoclase cement, with the Na2O content of clastic rocks increasing with depth. Basin-wide green muscovite alteration affected both the Matoush Formation and the top of the basement Tichegami Group. Uraninite with minor brannerite is mainly hosted by subvertical reverse faults in basement graphitic metapelites ± sulfides and overlying sandstones and conglomerates. Uranium mineralization is associated with chlorite veins and alteration with temperatures near 320 °C, that are paragenetically late relative to the diagenetic feldspathic and muscovite alterations. Re-Os geochronology of molybdenite intergrown with uraninite yields an age of 1724.0 ± 4.9 Ma, whereas uraninite yields an identical, although slightly discordant, 1724 ± 29 Ma SIMS U-Pb age. Uraninite has high concentrations in REE with flat REE spectra resembling those of uraninite formed from metamorphic fluids, rather than the bell-shaped patterns typical of unconformity-related uraninite. Paragenesis and geochronology therefore show that the uranium mineralization formed approximately 440 million years after intrusion of the Otish Gabbro dykes and sills at ∼2176 Ma, which constrains the minimum age for the sedimentary host rocks. The post-diagenetic stage of uraninite after feldspathic and muscovite alterations, the paragenetic sequence and the brannerite-uraninite assemblage, the relatively high temperature for the mineralizing event (∼320 °C) following the diagenetic Na- and K-dominated alteration, lack of evidence for brines typical of unconformity-related U deposits, the older age of the Otish Basin compared to worldwide basins hosting unconformity-related uranium deposits, the large age difference between basin fill and mineralization, the older age of the uranium oxide compared to ages for worldwide unconformity-related U deposits, and the flat REE spectra of uraninite do not support the previous interpretation that the Camie River deposit is an unconformity-associated uranium deposit. Rather, the evidence is more consistent with a PaleoProterozoic, higher-temperature hydrothermal event at 1724 Ma, whose origin remains speculative.  相似文献   

3.
The Bayan Obo deposit in North China contains the largest rare-earth element (REE) resources in the world, but its forming time remains controversial. Nearly one hundred carbonatite dykes occur around the Bayan Obo deposit, including dolomite, calcite and calcite–dolomite carbonatite varieties. Zircons from a REE-rich carbonatite dyke and wallrock quartz conglomerate at Bayan Obo have been analyzed for U–Pb to determine the age of the dyke. Zircon from the carbonatite dyke, analyzed by conventional isotope dilution thermal ionization mass spectrometry (ID-TIMS), yielded an upper intercept age of 1417 ± 19 Ma. This age is confirmed by SHRIMP U–Pb analysis of zircon from the same carbonatite dyke, which gave a 207Pb/206Pb weighted mean age of 1418 ± 29 Ma. In situ Nd isotope measurements of monazite collected from the carbonatite dyke gave an isochron age of 1275 ± 87 Ma. These results demonstrate that the dyke intruded ~ 1400 Ma. In view of predecessor's results, it is clarified that the REE mineralization at Bayan Obo occurred at ca. 1400 Ma, consistent with the timing of carbonatite dyke intrusion in the region. The youngest detrital zircons from the quartz conglomerate yielded a 207Pb/206Pb weighted mean age of 1941 ± 7 Ma using LA ICP-MS U–Pb method. Detrital zircons in the carbonatite dyke also gave a mean apparent age of 1932 ± 3 Ma using ID-TIMS U–Pb method and 1914 ± 14 Ma using SHRIMP U–Pb method. These ages constrain the beginning active time of the Zha'ertai–Bayan Obo rift in the northern margin of the North China Craton after ~ 1900 Ma.  相似文献   

4.
In situ U–Pb dating and trace element analysis of zircons, combined with a textural relationship investigation in thin section, is a powerful tool to constrain the ultra high-pressure stage of high-grade metamorphism. Two types of zircon grains have been identified in thin sections of a retrograde eclogite from the main hole of the Chinese Continental Scientific Drill project in the Sulu UHP terrane. Type 1 zircon grains occur as inclusions in fresh garnet and omphacite, and Type 2 zircon grains were found in symplectite around omphacite. The fresh rims of Type 1 zircons and mantles of a few Type 2 zircons exhibit remarkably lower REE, Y, Nb and Ta contents than the inherited zircon cores, suggesting coeval growth with garnet, rutile and apatite during UHP metamorphism. These may have formed in the UHP metamorphism and survived retrograde metamorphism. The weighted average 206Pb/238U age of these zircon domains (230 ± 4 Ma, 2σ) agrees well with the published age of coesite-bearing zircon separates (230 ± 1 Ma, 2σ), suggesting that the peak UHP metamorphism in the Sulu terrane may have occurred at ~ 230 Ma.Zircon domains surrounded or cut across by symplectite could have been altered by retrograde metamorphism. Together, they provide a younger weighted average 206Pb/238U age of 209 ± 4 Ma (2σ). These retrograde zircon domains have similar REE compositions to the ~ 230 Ma UHP zircon domains. These observations imply that the ~ 209 Ma zircon domains could have formed by fluid activity-associated alterations in the amphibolite-facies metamorphism, which could have resulted in the complete loss of Pb but not REEs in these domains.  相似文献   

5.
The lower Bomi Group of the eastern Himalayan syntaxis comprises a lithological package of sedimentary and igneous rocks that have been metamorphosed to upper amphibolite-facies conditions. The lower Bomi Group is bounded to the south by the Indus–Yarlung Suture and to the north by unmetamorphosed Paleozoic sediments of the Lhasa terrane. We report U–Pb zircon dating, geochemistry and petrography of gneiss, migmatite, mica schist and marble from the lower Bomi Group and explore their geological implications for the tectonic evolution of the eastern Himalaya. Zircons from the lower Bomi Group are composite. The inherited magmatic zircon cores display 206Pb/238U ages from ~ 74 Ma to ~ 41.5 Ma, indicating a probable source from the Gangdese magmatic arc. The metamorphic overgrowth zircons yielded 206Pb/238U ages ranging from ~ 38 Ma to ~ 23 Ma, that overlap the anatexis time (~ 37 Ma) recorded in the leucosome of the migmatites. Our data indicate that the lower Bomi Group do not represent Precambrian basement of the Lhasa terrane. Instead, the lower Bomi Group may represent sedimentary and igneous rocks of the residual forearc basin, similar to the Tsojiangding Group in the Xigaze area, derived from denudation of the hanging wall rocks during the India–Asia continental collision. We propose that following the Indian–Asian collision, the forearc basin was subducted, together with Himalayan lithologies from the Indian continental slab. The minimum age of detrital magmatic zircons from the supracrustal rocks is ~ 41.5 Ma and their metamorphism had happened at ~ 37 Ma. The short time interval (< 5 Ma) suggests that the tectonic processes associated with the eastern Himalayan syntaxis, encompassing uplift and erosion of the Gangdese terrane, followed by deposition, imbrication and subduction of the forearc basin, were extremely rapid during the Late Eocene.  相似文献   

6.
《Gondwana Research》2016,29(4):1482-1499
The Lhasa terrane, the main tectonic component of the Himalayan–Tibetan orogen, has received much attention as it records the entire history of the orogeny. The occurrence of Permian to Triassic high-pressure eclogites has a significant bearing on the understanding of the Paleo-Tethys subduction and plate suturing processes in this area. An eclogite from the Bailang, eastern Lhasa terrane, was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, Sm–Nd and Ar–Ar multichronometric approach. Pseudosection modeling combined with thermobarometric calculations indicate that the Bailang eclogite equilibrated at peak PT conditions of ~ 2.6 GPa and 465–503 °C, which is much lower than those of Sumdo and Jilang eclogites in this area. Garnet–whole rock–omphacite Lu–Hf and Sm–Nd ages of 238.1 ± 3.6 Ma and 230.0 ± 4.7 Ma were obtained on the same sample, which are largely consistent with the corresponding U–Pb age of 227.4 ± 6.4 Ma for the metamorphic zircons within uncertainty. The peak metamorphic temperature of the sample is lower than the Lu–Hf and Sm–Nd closure temperatures in garnet. This, combined with the core-to-rim decrease in Mn and HREE concentrations, the slightly U-shaped Sm zonation across garnet and the exclusive occurrence of omphacite inclusion in garnet rim, are consistent with the Lu–Hf system skewing to the age of the garnet core and the Sm–Nd system favoring the rim age. The Sm–Nd age was thus interpreted as the age of eclogite-facies metamorphism and the Lu–Hf age likely pre-dated the eclogite-facies metamorphism. 40Ar/39Ar dating of hornblende from the eclogite yielded ages about 200 Ma, which is interpreted as a cooling age and is probably indicative of the time of exhumation to the middle crust. The difference of peak eclogite-facies metamorphic conditions and the distinct metamorphic ages for the Bailang eclogite (~ 2.6 GPa and ~ 480 °C; ca. 230 Ma), the Sumdo eclogite (~ 3.4 GPa and ~ 650 °C; ca. 262 Ma) and Jiang eclogite (~ 3.6 GPa and ~ 750 °C; ca. 261 Ma) in the same (ultra)-high-pressure belt indicate that this region likely comprises different slices that had distinct PT histories and underwent (U)HP metamorphism at different times. The initiation of the opening the Paleo-Tethys Ocean in the Lhasa terrane could trace back to the early Permian. The ultimate closure of the Paleo-Tethys Ocean in the Lhasa terrane was no earlier than ca. 230 Ma.  相似文献   

7.
Southern Madagascar is the core of a > 1 million km2 Gondwanan metasedimentary belt that forms much of the southern East African Orogen of eastern Africa, Madagascar, southern India and Sri Lanka. Here the Vohibory Series yielded U–Pb isotopic data from detrital zircon cores that indicate that it was deposited in the latest Tonian to late Cryogenian (between ~ 900 and 640 Ma). The deposition of the Graphite and Androyen Series protoliths is poorly constrained to between the late Palaeoproterozoic and the Cambrian (~ 1830–530 Ma). The Vohibory Series protoliths were sourced from very restricted-aged sources with a maximum age range between 910 and 760 Ma. The Androyen and Graphite Series protoliths were sourced from Palaeoproterozoic rocks ranging in age between 2300 and 1800 Ma. The best evidence of the timing of metamorphism in the Vohibory Series is a weighted mean 206Pb/238U age of 642 ± 8 Ma from 3 analyses of zircon from sample M03-01. A considerably younger 206Pb/238U metamorphic age of 531 ± 7 Ma is produced from 10 analyses of zircon from sample M03-28 in the Androyen Series. This ~ 110 Ma difference in age is correlated with the early East African Orogeny affecting the west of Madagascar along with its type area in East Africa, whereas the Cambrian Malagasy Orogeny affected the east of Madagascar and southern India during the final suturing of the Mozambique Ocean.  相似文献   

8.
The North China Craton (NCC) provides a classic example of lithospheric destruction and refertilization. The timing and duration of magmatism and related metallogenesis associated with the destruction process are pivotal to understanding the geodynamic controls. In this study, we present zircon U–Pb and Hf data, Re–Os ages, and He, Ar, Pb and S isotope data from the Mujicun porphyry Cu–Mo deposit in the northern Taihang Mountains within the Central Orogenic Belt of the NCC. We constrain the timing of magmatism as 144.1 ± 1.2 Ma from zircon U–Pb data on the diorite porphyry that hosts Cu–Mo mineralization. Another U–Pb age of 139.7 ± 1.4 Ma was obtained from an epidote skarn that is located in the contact zone between the porphyry and its wall rocks. These data and five Re–Os molybdenite ages that range from 142.7 ± 2.0 Ma to 138.5 ± 1.9 Ma suggest that magmatism and mineralization occurred in about five million year duration from ~ 143 Ma to ~ 138 Ma. The He, Ar, Pb and, Hf data suggest that magmatism involved recycled Neoarchean lower crustal components, with input of heat and volatiles from an upwelling mantle. The Mujicun porphyry and associated mineralization provide a typical example for magmatism and metallogeny associated with lithospheric thinning in the NCC.  相似文献   

9.
The Hahaigang W–Mo polymetallic skarn deposit is located in the central-eastern part of Gangdese tectono-magmatic belt in Lhasa terrane, Tibet. The deposit was discovered in 2007 with currently proven 46 million tons of WO3 ores, 12 million tons of Mo ores, and 1.31 million tons of combined Cu–Pb–Zn ores, at an average grade of 0.20% WO3, 0.07% Mo, 0.026% Cu, 0.49% Pb, and 3.1% Zn. Ore bodies occur in veins or disseminations, and are confined within the NE-striking Dalong fault zone which is hosted by the Lower-Permian Pangna Group of dominantly quartz sandstone and slate. Several granitic plutons are exposed in the area or known from drill-holes. Ages of these granitic plutons are determined by using zircon U–Pb LA–ICP–MS method. For example, the biotite monzogranite yields a 206Pb/238U–207Pb/238U concordia age of 58.66 ± 0.90 Ma and a weighted mean 206Pb/238U age of 57.02 ± 0.42 Ma. The granite porphyry yields a 206Pb/238U–207Pb/238U concordia age of 109.1 ± 8.9 Ma and a weighted mean 206Pb/238U age of 114.0 ± 2.6 Ma. The biotite monzogranite yields a weighted mean 206Pb/238U age of 56.1 ± 1.1 Ma. Re–Os isochron age of 63.2 ± 3.2 Ma from 5 molybdenite samples collected from the W–Mo skarn ores is also obtained in this study. The zircon U–Pb and molybdenite Re–Os geochronological data suggest that the W–Mo mineralization was not temporally associated with any of the dated igneous plutons. However, the molybdenite Re–Os age of 63.2 ± 3.2 Ma indicates that the W–Mo mineralization might have occurred during the main India–Eurasia collision that was initiated around 65 Ma. Microprobe analysis of ilvaite that occurs in two generations in the W–Mo skarn ores reveals a close relationship to Ca–Fe–F-rich hydrothermal fluids, which were probably derived from deeply-seated magmas. We suggest that ascent of the fluids was strictly controlled by the ore-controlling Dalong fault zone, and that chemical interaction and metasomatism between the fluids and the Lower-Permian Pangna quartz-feldspathic host rocks produced the ilvaite and the W–Mo polymetallic skarn deposit during the main India–Eurasia collision. Although the majority of the polymetallic deposits in the Gangdese belt are reported to be either pre- or post-main collision, it is evident from this study that the main collision also produced W–Mo polymetallic mineralization within the belt.  相似文献   

10.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

11.
The Zhuguangshan complex carries some of the most important granite-hosted uranium deposits in South China. Here we investigate the Changjiang and Jiufeng granites which represent typical U-bearing and barren granites in the complex, using zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data, and mineral chemistry, to constrain the petrogenesis and uranium mineralization. LA-ICP-MS zircon U-Pb dating shows that both the Changjiang and Jiufeng granites were emplaced ca. 160 Ma. These rocks show high silica, weakly to strongly peraluminous compositions, enrichment in Rb, Th, and U, and depletion in Ba, Nb, Sr, P, and Ti. These features coupled with the high initial 87Sr/86Sr ratios, negative εNd(t) values and εHf(t) values, and the Paleoproterozoic two stage model ages of these two granites suggest that the two granites belong to S-type granites, and the parental magmas of the two granites were derived from the Paleoproterozoic metasedimentary rocks. However, the granitoids show different mineralogical characteristics. The biotite in the Changjiang granite belongs to siderophyllite, marking higher degree of chloritization, whereas the biotite in the Jiufeng granite is ferribiotite, characterized by only slight chloritization. Compared with the Jiufeng granite, the biotite in the Changjiang granite has lower crystallization temperature and oxygen fugacity, but higher F content, and the uraninite has higher UO2 content but lower ThO2 content, and stronger corrosion. The chemical ages of uraninites from both granites are (within error) consistent with the zircon U-Pb ages and are considered to represent the emplacement ages of granites. Chemical ages of pitchblende in the Changjiang granite yield 118 ± 8 Ma, 87 ± 4 Ma, and 68 ± 6 Ma, representing multiple episodes of hydrothermal events that are responsible for the precipitation of U ores in the Changjiang uranium ore field. Our study suggests that the degree of magma differentiation and physicochemical conditions of the magmatic-hydrothermal system are the key factors that control the different U contents of these two granites. The mineralogical characteristics of uraninite and biotite can be used to distinguish between U-bearing and barren granites, and serve as a potential tool for prospecting granite-hosted uranium deposits.  相似文献   

12.
The genesis of polymetallic deposits in southern Altay, NW China has been disputed between a syngenetic seafloor hydrothermal process and an epigenetic orogenic-type mineralization. The Dadonggou Pb–Zn deposit occurs as NW-trending veins in the Devonian Kangbutiebao Formation volcanic-sedimentary sequence in the Kelan basin, southern Altay. A set of integrated zircon U–Pb and biotite 40Ar/39Ar geochronological data were applied to constrain the forming ages of the ores and their country rocks. Three samples of host volcanic rocks yielded weighted mean 206Pb/238U ages of 397.1 ± 4.5 Ma, 391.7 ± 3.6 Ma and 391.1 ± 4.2 Ma, respectively, indicating that the Kangbutiebao Formation was deposited in a Devonian back-arc basin. Two biotite samples separated from the Pb–Zn-containing quartz veins yielded 40Ar/39Ar plateau ages of 205.9 ± 2.1 Ma and 204.3 ± 2.2 Ma, respectively, which represent the age of the Pb–Zn mineralization that is attributed to the closure of the Kelan back-arc basin and the Late Triassic orogeny. Combining the available geological and geochronological data, this contribution outlines the successive evolution from the development of a Devonian back-arc basin to the Late Triassic post-subduction orogeny, and proposes that the Dadonggou Pb–Zn deposit is an epigenetic orogenic-type deposit placed in the Late Triassic orogeny.  相似文献   

13.
Perovskite, a common Th- and U-enriched accessory mineral crystallised from kimberlitic magmas, has long been thought to be an important geochronometer for dating the emplacement of kimberlite. However, it also contains variably high levels of common Pb, which makes it difficult to obtain a precise measurement of radiogenic Pb/U and Pb/Th isotopic compositions using microbeam techniques such as SIMS and LA-ICP-MS. We present calibration protocols for in situ U–Pb and Th–Pb age determination of kimberlitic perovskite using the large double-focusing Cameca IMS 1280. Linear relationships are found between ln(206Pb?+/U+) and ln(UO2+/U+), and between ln(208Pb?+/Th+) and ln(ThO+/Th+), based on which the inter-element fractionation in unknown samples during SIMS analyses can be precisely calibrated against a perovskite standard. The well-characterized Ice River perovskite is chosen as the U–Pb and Th–Pb age standard in this study. The 204Pb-correction method was used to estimate the fraction of common Pb, which is consistent with the results obtained using the 207Pb-based correction method for the dated perovskites of Phanerozoic age.A Tazheran perovskite with unusually high U but rather low Th yielded a Concordia U–Pb age of 462.8 ± 2.5 Ma and a Th–Pb age of 462 ± 4 Ma. Two perovskite samples from the Iron Mountain kimberlite have identical Concordia U–Pb ages of 410.8 ± 3.4 Ma and 411.0 ± 2.6 Ma, which are consistent within errors with their corresponding Th–Pb ages of 409.2 ± 7.2 Ma and 412.3 ± 3.3 Ma, respectively. Two perovskite samples from the Wesselton Mine of South Africa yielded indistinguishable 206Pb/238U ages of 91.5 ± 2.2 Ma and 90.3 ± 2.9 Ma, and Th–Pb ages of 90.5 ± 0.8 Ma and 88.4 ± 1.6 Ma, respectively. Accuracy and precision of 1–2% (95% confidence level) for these measurements have been demonstrated by the consistency of their U–Pb and Th–Pb ages with the recommended U–Pb ages of previous works.  相似文献   

14.
The newly-discovered Shiyaogou molybdenum deposit is located in the eastern Qinling metallogenic belt in central China. The deposit contains at least 152,000 t of Mo metal and bears typical porphyry-type features in terms of its concentric alteration zonation, quartz vein-hosted Mo mineralization, veining sequence and the spatial association with concealed granite porphyries. Re–Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 132.3 ± 2.8 Ma. LA-ICP-MS U–Pb zircon dating of ore-related porphyries yields crystallization ages from 135 Ma to 132 Ma, indicating a temporal link between granitic magmatism and Mo mineralization. A population of captured magmatic zircons indicates another pulse of magmatism at ~ 143 Ma. A barren granite intrusion near the deposit gives a zircon U–Pb age of 148.1 ± 1.1 Ma. These magmatic activities were concurrent with the emplacement of the nearby Heyu granitic batholith, a largely ore-barren intrusive complex formed from ~ 148 Ma to ~ 127 Ma. Zircon Ce4 +/Ce3 + ratios of ore-related porphyries are obviously higher than those of contemporaneous barren granitoids, implying an affinity between Mo mineralization and highly oxidized magmas. Moreover, zircons from these granitoids overall have decreasing Ce4 +/Ce3 + ratios from 148 Ma to 132 Ma, reflecting decreasing oxygen fugacities during magma evolution. Available geological, radiometric and stable isotopic evidence suggests that the decrease of magma oxygen fugacity was probably associated with an increase of mantle contribution to granitic magmatism and metallogenesis, which probably gave rise to successive mineralization of Mo and Au in the eastern Qinling. The intense magmatic–metallogenic events in the eastern Qinling during Late Jurassic to Early Cretaceous times are interpreted as a response to the large-scale lithosphere thinning and subsequent asthenosphere upwelling beneath the eastern part of the North China Craton.  相似文献   

15.
In this paper, we present U–Pb ages and trace element compositions of titanite from the Ruanjiawan W–Cu–Mo skarn deposit in the Daye district, eastern China to constrain the magmatic and hydrothermal history in this deposit and provide a better understanding of the U–Pb geochronology and trace element geochemistry of titanite that have been subjected to post-crystallization hydrothermal alteration. Titanite from the mineralized skarn, the ore-related quartz diorite stock, and a diabase dike intruding this stock were analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Titanite grains from the quartz diorite and diabase dike typically coexist with hydrothermal minerals such as epidote, sericite, chlorite, pyrite, and calcite, and display irregular or patchy zoning. These grains have low LREE/HREE and high Th/U and Lu/Hf ratios, coupled with negative Eu and positive Ce anomalies. The textural and compositional data indicate that titanite from the quartz diorite has been overprinted by hydrothermal fluids after being crystallized from magmas. Titanite grains from the mineralized skarn are texturally equilibrated with retrograde skarn minerals including actinolite, quartz, calcite, and epidote, demonstrating that these grains were formed directly from hydrothermal fluids responsible for the mineralization. Compared to the varieties from the quartz diorite stock and diabase dike, titanite grains from the mineralized skarn have much lower REE contents and LREE/HREE, Th/U, and Lu/Hf ratios. They have a weighted mean 206Pb/238U age of 142 ± 2 Ma (MSWD = 0.7, 2σ), in agreement with a zircon U–Pb age of 144 ± 1 Ma (MSWD = 0.3, 2σ) of the quartz diorite and thus interpreted as formation age of the Ruanjiawan W–Cu–Mo deposit. Titanite grains from the ore-related quartz diorite have a concordant U–Pb age of 132 ± 2 Ma (MSWD = 0.5, 2σ), which is 10–12 Ma younger than the zircon U–Pb age of the same sample and thus interpreted as the time of a hydrothermal overprint after their crystallization. This hydrothermal overprint was most likely related to the emplacement of the diabase dike that has a zircon U–Pb age of 133 ± 1 Ma and a titanite U–Pb age of 131 ± 2 Ma. The geochronological results thus reveal two hydrothermal events in the Ruanjiawan deposit: an early one forming the Wu–Cu–Mo ores related to the emplacement of the quartz diorite stock and a later one causing alteration of the quartz diorite and its titanite due to emplacement of diabase dike. It is suggested that titanite is much more susceptible to hydrothermal alteration than zircon. Results from this study also highlight the utilization of trace element compositions in discriminating titanite of magmatic and hydrothermal origins, facilitating a more reasonable interpretation of the titanite U–Pb ages.  相似文献   

16.
The large, newly discovered Sharang porphyry Mo deposit and nearby Yaguila skarn Pb–Zn–Ag (–Mo) deposit reside in the central Lhasa terrane, northern Gangdese metallogenic belt, Tibet. Multiple mineral chronometers (zircon U–Pb, sericite 40Ar–39Ar, and zircon and apatite (U–Th)/He) reveal that ore-forming porphyritic intrusions experienced rapid cooling (> 100 °C/Ma) during a monotonic magmatic–hydrothermal evolution. The magmatic–hydrothermal ore-forming event at Sharang lasted ~ 6.0 Myr (~ 1.8 Myr for cooling from > 900 to 350 °C and ~ 4.0 Myr for cooling from 350 to 200 °C) whereas cooling was more prolonged during ore formation at Yaguila (~ 1.8 Myr from > 900 to 500 °C and a maximum of ~ 16 Myr from > 900 to 350 °C). All porphyritic intrusions in the ore district experienced exhumation at a rate of 0.07–0.09 mm/yr (apatite He ages between ~ 37 and 30 Ma). Combined with previous studies, this work implies that uplift of the eastern section of the Lhasa terrane expanded from central Lhasa (37–30 Ma) to southern Lhasa (15–12 Ma) at an increasing exhumation rate. All available geochronologic data reveal that magmatic–hydrothermal–exhumation activities in the Sharang–Yaguila ore district occurred within four periods of magmatism with related mineralization. Significant porphyry-type Mo mineralization was associated with Late Cretaceous–Eocene felsic porphyritic intrusions in the central Lhasa terrane, resulting from Neotethyan oceanic subduction and India–Asia continental collision.  相似文献   

17.
The Taldybulak Levoberezhny gold deposit, located in the eastern part of the Kyrgyz Northern Tien Shan, is hosted in highly deformed Precambrian schist and gneisses that have undergone intense quartz, carbonate, fuchsite and tourmaline alterations. Gold mineralization is ultimately subdivided into two stages based on the observation of alteration assemblages, orebody geometries, and the occurrences of Au-bearing minerals. Negative thermal ionization mass spectrometry Re–Os isotopic analyses of five Au-rich pyrite samples from the early stage yielded an isochron age of 511 ± 18 Ma. Zircon sensitive high-resolution ion microprobe U–Pb dating of a diorite dike sample postdating the late stage mineralization yielded a wide range of ages from 3055 to 291 Ma, while a weighted mean 206Pb/238U age of 414.6 ± 6.8 Ma is believed to represent the age of dike intrusion and the upper limit on the timing of the late stage quartz–tourmaline–gold formation. The pyrite 187Os/188Os(initial) ratio of 0.132 ± 0.011, together with γOs values varying from 0 to + 14, indicate a major mantle component for the source of Os and by inference ore metals, which may be linked to the ophiolite suite of the Kopurelisai Complex in the Taldybulak Levoberezhny area. Considering the geodynamic setting of the Kyrgyz Northern Tien Shan during the early Paleozoic, we suggest that Cambrian mineralization of the Taldybulak Levoberezhny deposit can be attributed to a subduction-related setting, probably associated with the earliest accretion of the Northern Tien Shan.  相似文献   

18.
The Balkhash Metallogenic Belt (BMB) in Kazakhstan, Central Asia, with the occurrence of the super-large Kounrad and Aktogai, the large Borly porphyry Cu–Mo deposits, and the large Sayak skarn polymetallic ore-field, is one of the central regions of the Paleozoic Central Asian metallogenic domain and orogenic belt. In this study, newly obtained SHRIMP zircon U–Pb ages of nine samples and 40Ar/39Ar ages of six mineral samples (inclding hornblende, biotite and K-feldspar) give more detailed constraints on the timing of the granitic intrusions and their metallogeny. Porphyritic monzonite granite and tonalite porphyry from the Kounrad deposit yield U–Pb zircon SHRIMP ages of 327.3 ± 2.1 Ma and 308.7 ± 2.2 Ma, respectively. Quartz diorite and porphyritic granodiorite from the Aktogai deposit yield U–Pb SHRIMP ages of 335.7 ± 1.3 Ma and 327.5 ± 1.9 Ma, respectively. Porphyritic granodiorite and granodiorite from the Borly deposit yield U–Pb SHRIMP ages of 316.3 ± 0.8 Ma and 305 ± 3 Ma, respectively. Diorite, granodiorite, and monzonite from the Sayak ore-field yield U–Pb SHRIMP ages of 335 ± 2 Ma, 308 ± 10 Ma, and 297 ± 3 Ma, respectively. Hornblende, biotite, and K-feldspar from the Aktogai deposit yield 40Ar/39Ar cooling ages of 310.6 Ma, 271.5 Ma, and 274.9 Ma, respectively. Hornblende, biotite, and K-feldspar from the Sayak ore-field yield 40Ar/39Ar cooling ages of 287.3 ± 2.8 Ma, 307.9 ± 1.8 Ma, and 249.8 ± 1.6 Ma, respectively. The new ages constrain the timing of Late Paleozoic felsic magmatism to ∼336 to ∼297 Ma. Skarn mineralization in the Sayak ore-field formed at ∼335 and ∼308 Ma. Porphyry Cu–Mo mineralization in the Kounrad deposit and the Aktogai deposit formed at ∼327 Ma, and in the Borly deposit at ∼316 Ma. The Late Paleozoic regional cooling in the temperature range of ∼600 °C to ∼150 °C occurred from ∼307 to ∼257 Ma.  相似文献   

19.
This report describes in situ ion microprobe U–Pb dating of a protoconodont, an early Cambrian phosphate microfossil, using laterally high-resolution secondary ion mass spectrometry (NanoSIMS). On a single fragment of a fossil (approximately 850 μm × 250 μm) derived from a sedimentary layer in the Meishucunian Yuhucun Formation, Yunnan Province, southern China, 23 spots provide a 238U/206Pb isochron age of 547 ± 43 Ma (2σ, MSWD = 1.9), which is consistent with the depositional age, 536.5 ± 2.5 Ma estimated using zircon U–Pb dating of interbedded tuffs. However, five spots on a small region (approximately 250 μm × 100 μm) in the same protoconodont yield an isochron age of 417 ± 74 Ma (2σ, MSWD = 0.31), apparently younger than the formation age. The younger age might be attributable to a later hydrothermal event, perhaps associated with Caledonian orogenic activity recorded in younger zircon with an age of 420–440 Ma. We also measured 87Sr/86Sr ratios of the protoconodont by NanoSIMS. In the older domain, 19 spots give the 87Sr/86Sr ratio of 0.71032 ± 0.00023 (2σ), although seven spots on the younger region provide the ratio of 0.70862 ± 0.00045; this is significantly less radiogenic than the older domain. This is the first report of U–Pb age and Sr isotope heterogeneity within a single fragment of micro-fossil (215).  相似文献   

20.
The southern North China craton hosts numerous world-class porphyry Mo and Pb-Zn-Ag vein deposits. Whether or not the Pb-Zn-Ag veins are genetically associated with the porphyry Mo system remains contentious. Here we focus on the genetic relationships between the Sanyuangou Pb-Zn-Ag vein deposit and the world-class Donggou porphyry Mo deposit, and discuss the potential implications from the spatial and temporal relationships between porphyry and vein systems in the southern North China craton.At Sanyuangou, vein-hosted sulfide mineralization mainly comprises pyrite, sphalerite, and galena, with minor chalcopyrite, pyrrhotite, bornite, tetrahedrite, covellite, polybasite and argentite. The mineralization is hosted by a quartz diorite stock, which has a zircon U-Pb age of 1756 ± 9 Ma. However, sericite from alteration selvages of Pb-Zn-Ag sulfide mineralization yields a well-defined 40Ar/39Ar plateau age of 115.9 ± 0.9 Ma. Although nominally younger, the sericite 40Ar/39Ar age is similar to the age of the nearby Donggou porphyry Mo deposit (zircon U-Pb age of 117.8 ± 0.9; molybdenite Re-Os ages of 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma). Pyrite from Donggou has elevated contents of Mo and Bi, whereas pyrite from Sanyuangou is enriched in Cu, Zn, Pb, Ag, Au, and As. This trace element pattern is consistent with metal zonation typically observed in porphyry related metallogenic systems. Pyrite grains from Sanyuangou have lead isotopes overlapping those from Donggou (17.273–17.495 vs. 17.328–17.517 for 206Pb/204Pb, 15.431–15.566 vs. 15.408–15.551 for 207Pb/204Pb, and 37.991–38.337 vs. 38.080–38.436 for 208Pb/204Pb). Collectively, the geological, geochronological, and geochemical data support a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit and confirm that the Pb-Zn-Ag veins and the Donggou Mo deposit form a porphyry-related magmatic-hydrothermal system.Given the widespread Pb-Zn-Ag veins and Mo mineralized porphyries in many districts of the southern North China craton, the model derived from this study has broad implications for further exploration of Mo and Pb-Zn-Ag resources in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号