首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of environmental concerns, there is increasing demand to optimize the ships for the actual operating condition rather than for calm water. Now, in order to apply this for propeller design, a first step would be to study the effects of waves on propeller operation. Therefore, the aim of this paper is to identify and quantify the effect of various factors affecting the propeller in waves. The performance of KVLCC2 propeller in the presence of three different waves has been compared with calm water performance. Changes in performance in terms of cavitation, pressure pulses, and efficiency have been studied. Significant increase in pressure pulses has been observed due to wake change in waves even though cavitation did not show any significant change. An analysis using cavitation bucket diagram in different wave conditions indicates that a propeller optimized for calm water wake may perform much worse in the presence of waves. Therefore, having wake variation at least in critical wave conditions (where the wavelength is close to ship length) in addition to calm water wake could be very useful to ensure that the propeller performs equally well in the presence of waves.  相似文献   

2.
Localizing noise sources in cavitation experiments is an important research subject along with predicting noise levels. A cavitation tunnel propeller noise localization method is presented. Propeller noise measurement experiments were performed in the MOERI cavitation tunnel. To create cavitating conditions, a wake-generating dummy body was devised. In addition, 10 hydrophones were put inside a wing-shaped casing to minimize the unexpected flow inducing noise around the hydrophones. After measuring both of the noises of the rotating propeller behind the dummy body and acoustic signals transmitted by a virtual source, the data were processed via three objective functions based on the ideas of matched field processing and source strength estimation to localize noises on the propeller plane. In this paper, the measured noise analysis and the localization results are presented. Through the experiments and the analysis, it was found that the source localization methods that have been used in shallow water applications could be successfully adapted to the cavitation tunnel experiments.  相似文献   

3.
The prediction of propeller induced pressure fluctuations and underwater radiated noise is a subject of great and increasing interest in marine engineering. Nevertheless, the full-scale prediction of these negative effects, even though based on dedicated model scale tests represents still a challenging task. This is due to different phenomena, among which scale effects on cavitation and ship wake, confined environment and near field effects in model tests play an important role; the analysis of these problems is made difficult by the rather limited amount of available data from sea trials and to the complexities of the phenomena, most of which related to cavitation on the propeller blades, that are present in the measurements carried out in cavitation tunnels, depressurized towing tanks or circulating channels.In the present work, the subject has been studied with reference to a four blades conventional CP propeller of a coastal tanker.Cavitation tunnel tests have been carried out in two rather different facilities, at UNIGE cavitation tunnel and at SSPA large cavitation tunnel.Results from model scale tests processed with different treatments are then compared with full scale measurements performed by SSPA on the same propeller in terms of cavitation extension and radiated noise.The analysis is aimed at assessing the effectiveness of different experimental setups, testing procedures and scaling laws.  相似文献   

4.
The tip vortex cavitation (TVC) is an issue of increasing interest, because the TVC plays an important role in propeller radiated noise and cavitation erosion. The marine propeller with winglets, which is inspired by the winglets of airfoil, is numerically investigated in the present paper. The blade tip of newly designed propeller tilts toward the pressure side. The difference between six propellers is the change of the rake angle at r/R = 1.0. The pressure coefficient, TVC, axial velocity field and helicity are analyzed. The numerical results show that the winglets of newly designed propeller scarcely affect the efficiency of propeller. The thrust coefficient gradually decreases with the increase in rake angle. As for the suction side, the pressure coefficient (Cp) of winglets propellers is higher than the conventional propeller in general. In addition, the winglets are beneficial to generate less cavitation behavior when the rake angle is small. However, as the rake angle is further increased, the cavitation behavior of winglets propeller is also increased, even larger than the conventional propeller. Therefore, it can be deduced that the winglets can be used to effectively improve the TVC characteristics to some extent.  相似文献   

5.
This paper presents the results of a numerical performance analysis to demonstrate the worthiness of a recently patented new concept propulsor, the so-called “thrust-balanced propeller (TBP)”. The main advantage of this unconventional propulsor is its inherent ability to reduce the unsteady effect of blade forces and moments when it is operating in a non-uniform wake flow. The propulsor comprises a pair of diametrically opposed blades that are connected to one another and mounted so as to be rotatable together through a limited angle about their spindle axis. A quasi-hydrodynamic approach is described and applied to perform the numerical analysis using a state-of-the-art lifting surface procedure for conventional propellers. Performance comparisons with a conventional fixed-pitch propeller are made for the blade forces and moments, efficiency, cavitation extents and fluctuating hull pressures. Bearing in mind the quasi-static nature of the analyses, the results present favourable performance characteristics for the thrust-balanced propeller and support the worthiness of the concept. However, the concept needs to be proved through physical model tests, which are planned to take in a cavitation tunnel.  相似文献   

6.
7.
8.
Rudders of large container ships are easily affected by cavitation, which is well known to be induced by significant axial flows behind a propeller and discontinuities in the rudder. Among several methods to prevent or reduce the cavitation erosion occurred in the rudder, painting is gaining a lot of attention because it can be employed easily and cheaply. To conduct erosion tests properly, the simulation of heavily erosive cavitation is necessary. This can be generated using an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI (Maritime & Ocean Engineering Research Institute). The inclined shaft of the propeller creates strong cavitation, which occurs around the root of the propeller blade. This cavitation creates impacts through the collapsing process that are very severe, and are useful for realistic and efficient cavitation erosion tests. In the present study, the newly developed cavitation erosion test method is successfully employed to evaluate marine coatings that is mainly composed of epoxy elastomer or silicone polymer material. Silicone polymer-type paint B was found to have three times larger endurance than epoxy elastomer-type paint A.  相似文献   

9.
Surface Piercing Propellers (SPPs) are a particular kind of propellers which are partially submerged operating at the interface of air and water. They are more efficient than submerged propellers for the propulsion system of high-speed crafts because of larger propeller diameter, replacing cavitation with ventilation, decreasing the torque and higher efficiency. This study presents a reliable numerical simulation to predict SPP performance using Unsteady Reynolds-Averaged Navier–Stokes (URANS) method. A numerical study on 841-B SPP is performed in open water condition. The free surface is modeled by Volume of Fluid (VOF) approach and the sliding mesh technique is implemented to model the propeller rotational motion. The sliding mesh allows capturing the process of water entry and water exit of blades. The propeller hydrodynamic characteristics, the ventilation pattern and the time history of blade loads are validated through the comparison with available experimental data. For the studied case, it was found that the common grid independence study approach is not sufficient. The grid should be elaborately generated fine enough based on the flow pattern and turbulence modeling parameters in regions near the blade's tip, trailing and leading edges and over the suction side. Details of URANS simulations including optimal time-step size based on propeller revolution rate and the required number of propeller revolutions for periodical results are presented and discussed.  相似文献   

10.
Sezen  Savas  Bal  Sakir 《中国海洋工程》2020,34(2):232-244
In this study, non-cavitating and cavitating flow around the benchmark DTMB 4119 model propeller are solved using both viscous and potential based solvers. Cavitating and non-cavitating propeller radiated noises are then predicted by using a hybrid method in which RANS(Reynolds-averaged Navier-Stokes) and FWH(Ffowcs Williams Hawkings) equations are solved together in open water conditions. Sheet cavitation on the propeller blades is modelled by using a VOF(Volume of Fiuld) method equipped with Schnerr-Sauer cavitation model.Nevertheless, tip vortex cavitation noise is estimated by using two different semi-empirical techniques, namely Tip Vortex Index(TVI, based on potential flow theory) and Tip Vortex Contribution(TVC). As the reference distance between noise source and receiver is not defined in open water case for TVI technique, one of the outputs of this study is to propose a reference distance for TVI technique by coupling two semi-empirical techniques and ITTC distance normalization. At the defined distance, the starting point of the tip vortex cavitation is determined for different advance ratios and cavitation numbers using potential flow solver. Also, it is examined that whether the hybrid method and potential flow solver give the same noise results at the inception point of tip vortex cavitation.Results show that TVI method based on potential flow theory is reliable and can practically be used to replace the hybrid method(RANS with FWH approach) when tip vortex cavitation starts.  相似文献   

11.
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.  相似文献   

12.
This paper is the continuation of the work described in [14], dedicated to the presentation of the results of propeller performance in behind-hull during straight ahead motion obtained by a novel experimental set-up for the measurements of single blade loads. In the present case, the study shows and discusses the single blade and propeller loads developed during steady turning conditions, that were simulated by means of free running, self propelled maneuvering tests for a twin screw configuration. Maneuvering conditions are critical for the ship propulsion system, because the performance of the propeller and the side effects related to its functioning (propeller–hull induced pressure and vibrations, noise) are completely different with respect to the design condition in straight ahead motion. Thrust and torque and generation of in-plane loads (force and moments), developed by the blade during the period, evolve differently for the two propellers, due to different propeller–wake interactions. The understanding and the accurate quantification of propeller loads, in these realistic operative scenarios, are pivotal to design low emission and comfortable ships, fulfilling the requirements of safety and continuity of operations at sea. The analysis is carried out revisiting the investigation in [14] for three different speeds (FN = 0.26, 0.34 and 0.40) and a large set of rudder angles that span moderate and tight maneuvers.  相似文献   

13.
In marine cycloidal propeller (MCP), the inflow velocity vector to the propeller blade continuously changes at different blade orbit angle. Earlier marine cycloidal propellers were installed on ships that mainly performed towing operations. Recently marine cycloidal propellers are being installed on large naval vessels, which spend lot of their operating hours in cruising. Therefore, the hydrodynamic loading on the blades both during cruising maneuvers need to be investigated. The flow characteristics around the propeller blade are computed numerically by panel method. Viscous effects on the flow are then estimated by boundary layer technique. The effect of rotating disc on viscous fluid is also investigated. The corrected flow characteristics are then used for estimating the hydrodynamic loading. The operating conditions that are critical for the loading of the blade and the support structure and some aspects of the maneuvering simulation at cruising speed are investigated.  相似文献   

14.
导管桨的尾流不稳定性在其性能评价中非常重要,不但是其能否提供稳定推力的保证,而且也与螺旋桨的尾流噪声直接相关。为了改善导管桨的尾流,提高尾流稳定性,并优化导管桨的流场脉动,根据座头鲸鳍肢前缘结节的仿生原理,对导管桨叶片的导边进行改进,提出了两种仿生桨型,采用IDDES湍流模型对低进速系数下常规导管桨和仿生叶片导管桨进行数值模拟,探究叶片构型对导管桨性能和尾流不稳定性的影响。计算结果表明,前缘结节可以有效降低叶片受力波动的幅值和叶片所受合力的主频域峰值,具有较大结节的叶片对导管桨尾流有明显的优化作用,在尾流远场中扩大了流动稳定区,延后了尾流处涡破碎的发生,改善了能量谱密度的频域分布。进一步,大前缘结节叶片导管桨应用在低速工况下时,可以大量减少尾流泄涡区域的二次涡产生,这是由于前缘结节提升了相邻涡互感的强度,使得尾流更加稳定,而小结节叶片仿生桨型对导管桨尾流则无明显优化作用。研究方法和成果可为螺旋桨尤其是导管桨尾流不稳定性研究提供参考,不仅验证了前缘结节在导管桨叶片应用的合理性,而且揭示了其优化尾流稳定性的机理。  相似文献   

15.
The present investigation focuses on the effects of the stern appendages and the propulsion system on the hydro-loads generated by the propeller during off-design conditions, with particular emphasis on the in-plane components. Recent experimental investigations carried out by free running model tests [7], [8] and CFD analysis [5] for a modern twin screw model, highlighted that maneuvers at small drift angles and yaw rates might be as critical as the tighter ones due to complex propeller-wake interactions. Therefore, design criteria should take into account also these operative conditions, in order to reduce the effects of propeller-wake interaction phenomena that degrade the overall propulsive efficiency, induce shaft/hull structural vibration and increase noise emission. In the present study we analyze the effects of geometric and propulsive modifications with respect to the twin screw configuration studied in [5]. In particular, the effect of the centreline skeg, propeller direction of rotation and control strategies of the propulsion plant on the propeller bearing loads have been investigated from the analysis of the nominal wake in maneuvring conditions, computed by unsteady RANSE simulations coupled with a propeller model based on Blade Element Theory. The considered test cases were turning circle maneuvers with different rudder angles at FN = 0.265.  相似文献   

16.
The paper analyses the flow around a marine propeller ducted with a so-called decelerating nozzle both through the axial momentum theory and the nonlinear semi-analytical actuator disk model. While the well-known and widely diffused axial momentum theory can be successfully employed only to qualitatively investigate the characteristics of the flow around a ducted propeller, the nonlinear and semi-analytical method can instead evaluate the thrust exerted by the duct for different values of the overall thrust and advance coefficients. There are several advantages characterising the more advanced actuator disk method. Specifically, the wake convergence and rotation may be fully taken into account, the shape of the duct and of the radial distribution of the load can be of general type, and, finally, the mutual interaction between the duct and the propeller may be readily dealt with. The methods are employed to investigate the effects of the decelerating nozzle on the efficiency and on the cavitation condition of the propeller. In particular, the influence of some duct geometrical parameters on the device performance is thoroughly analysed providing useful insights on the operating principles of this kind of propulsive systems.  相似文献   

17.
The cavitation research, described here and carried out with the laser-scattered-light-technique, demonstrates the large influence of the free air content on cavitation phenomena and propeller excited pressure fluctuations in a cavitation tunnel. Another result of this research, based on full scale investigations, is that in the free sea a large number of nuclei is always present. Therefore for equal propeller loadings substantial differences of the cavitation extent can apparently never occur in different sea regions.The experimental research was supported by theory, applied to hemispherical nosed bodies and model propellers.The comparisons between model and full scale cavitation phenomena which cause hull pressure fluctuations show remarkable differences. The reason is the scale effect of the cavitation due to different absolute pressures on the propellers in model and full scale.Other published model/full-scale comparisons considering this scale effect are discussed.  相似文献   

18.
The hydrodynamic characteristics of a marine propeller operating in oblique inflow are investigated by using CFD method. Two propellers with different geometries are selected as the study subjects. RANS simulation is carried out for the propellers working at a wide range of advance coefficients and incidence angles. The effects of axial inflow and lateral inflow are demonstrated with the hydrodynamic force on the propeller under different working conditions. Based on the obtained flow field details, the hydrodynamic mechanism of propeller operating in oblique inflow is analyzed further. The trailing vortex wake of propeller is highly affected by the lateral inflow, resulting in the deflected development path and the circumferentially non-uniform structure, as well as the enhanced axial velocity in slipstream. Different flow patterns are observed on the propeller blade with the variation of circumferential position. Combined with the computed hydrodynamic forces and pressure distribution on propeller, the mechanism resulting in the increase of propulsive loads and the generation of propeller side force is explored. Finally, a systematic analysis is carried out for the propulsive loads and propeller side force as a function of axial and lateral advance coefficients. The major terms that play a dominant role in the modeling of propulsive loads and propeller side force are determined through the sensitivity analysis. This study provides a deeper insight into the hydrodynamic characteristics of propeller operating in oblique inflow, which is useful to the investigation of propeller performance during ship maneuvers.  相似文献   

19.
The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time- dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The ...  相似文献   

20.
The optimal estimator in the maximum-likelihood sense fur the propeller speed of a ship, using underwater radiated cavitation noise generated by the propeller blades, is derived. From the result the number of blades on the propeller can also be derived. Results obtained for real sonar data using a digital implementation of the estimator will be presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号