首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-grade fault-hosted manganese deposits at the Woodie Woodie Mine, East Pilbara, are predominantly hydrothermal in origin with a late supergene overprint. The dominant manganese minerals are pyrolusite, braunite, and cryptomelane. The ore bodies are located on, or near the unconformities between the Neoarchean Carawine Dolomite and the Paleoproterozoic Pinjian Chert breccia (weathering product of Carawine Dolomite), and sedimentary units of the overlying ca 1300–1100 Ma Manganese Group. Stratabound manganese is typically located above or adjacent to steep fault-hosted manganese. The ore bodies range in size from 0.2 to 5.5 Mt with an average of 0.5 Mt. Historically, over 35 Mt of manganese has been mined at Woodie Woodie, and current ore resources are 29.94 Mt at 39.94% Mn, 6.96% Fe (resource and reserves statement, June 2011, Consolidated Minerals Pty Ltd).Manganese mineralization at Woodie Woodie is related to northwest–southeast directed extension and basin formation during the Mesoproterozoic. Basin architecture is generally well preserved and major manganese occurrences are localised along growth faults which down-throw the Pinjian Chert Breccia into local extensional basins. Manganese ore bodies are typically located on steep 2nd and 3rd order structures that extend off the major growth faults. Mineralized structures display a dominant northeast-trend reflecting the direction of maximum dilation during northwest–southeast extension.A paragenetic sequence is identified for the manganese ore at Woodie Woodie, with early hydrothermal braunite–pyrolusite–cryptomelane–todorokite–hausmannite, overprinted by late supergene oxides. Preliminary fluid inclusion studies in quartz crystals intergrown with pyrolusite and cryptomelane indicate that primary and pseudosecondary inclusions display a range of salinities from 1 to 18 eq. wt.% NaCl and trapping temperatures estimated to be from 220º to 290º at 1 kbar pressure.A lead–manganese oxide (coronadite) is common in manganese ores at Woodie Woodie, and Pb-isotope studies of 40 lead-rich ore samples from 16 pits indicate mineralization occurred within an age range of 955–1100 Ma. A mixed source is suggested for the lead, but was predominantly basalts and/or volcanogenic sedimentary units (e.g., Jeerinah Formation) of the ca 2700 Ma Fortescue Group. The typically high Mn:Fe ratios and enrichment in elements such as Pb, As, Cu, Mo, Zn are consistent with a dominantly hydrothermal origin for the manganese at Woodie Woodie. Supergene manganese is distinguished from hypogene manganese by a marked enrichment in REE in the supergene manganese.An early structural framework, established during Neoarchean rifting, provides a major structural control on manganese ore distribution. The Woodie Woodie mine corridor is located in a zone of oblique strike-slip extension on major northwest-trending transform faults and north-trending oblique normal faults. A major transform structure at the southern end of the Woodie Woodie mine corridor (Jewel-Southwest Fault Zone) likely acted as a major fluid conduit for manganese-bearing hydrothermal fluids and this would account for the concentration of significant manganese ore occurrences to the north and south of this structure.  相似文献   

2.
Outcrop of wad, about 3–5 m thick, associated with low to medium-grade manganese ore deposits in Iron Ore Group (IOG), is present in large quantum in Bonai-Keonjhar belt, Orissa. It is often inter-bedded with volcanic ash layers. Wad is powdery, fine grained, black to blackish-brown in colour, very soft, readily soils the fingers and its hardness on the Mohs’ hardness scale is 1–3. The wad zone is capped by a thin lateritic zone and overlies manganese ore beds of variable thickness in Dalki, Guruda and Dubna mines. Wad constitutes two mineral phases, viz. manganese oxides (δ-MnO2, manganite, romanechite with minor pyrolusite) and iron oxides (goethite/limonite and hematite) with minor clay and free quartz. Mixed limonite-clay and cryptomelane-limonite are commonly observed. Under microscope the ore appears oolitic, pisolitic, elipsoidal to globular in shape having small detritus of quartz, pyrolusite / romanechite and hematite at the core. The ore contains around 23% Mn and 28% Fe with ~7% of combined alumina and silica. Wad might have developed in a swampy region due to slow chemical precipitation of Fe-Mn-Co enriched fluid, nucleating over quartz/hematite grains. Influence of a marine environment is indicated from δ-MnO2 phase. Remnants of some microfossils, like algal filament, bacteria, foraminifera and diatomite are observed in wad sample under SEM. These microorganisms might have been responsible for the oxidation of dissolved Mn2+ and Fe2+ precipitates. These findings suggest biochemogenic origin of wad in Bonai-Keonjhar belt of Orissa.  相似文献   

3.
The origin of the Greater Himalayan Sequence in the Himalaya and the paleogeographic position of the Lhasa terrane within Gondwanaland remain controversial. In the Eastern Himalayan syntaxis, the basement complexes of the northeastern Indian plate (Namche Barwa Complex) and the South Lhasa terrane (Nyingchi Complex) can be studied to explore these issues. Detrital zircons from the metasedimentary rocks in the Namche Barwa Complex and Nyingchi Complex yield similar U–Pb age spectra, with major age populations of 1.00–1.20 Ga, 1.30–1.45 Ga, 1.50–1.65 Ga and 1.70–1.80 Ga. The maximum depositional ages for their sedimentary protoliths are ~ 1.0 Ga based on the mean ages of the youngest three detrital zircons. Their minimum depositional ages are ~ 477 Ma for the Namche Barwa Complex and ~ 499 Ma for the Nyingchi Complex. Detrital zircons from the Namche Barwa Complex and Nyingchi Complex also display similar trace-element signatures and Hf isotopic composition, indicating that they were derived from common provenance. The trace-element signatures of 1.30–1.45 Ga detrital zircons indicate that the 1.3–1.5 Ga alkalic and mafic rocks belt in the southeastern India is a potential provenance. Most 1.50–1.65 Ga zircons have positive εHf(t) values (+ 1.2 to + 9.0), and most 1.70–1.80 Ga zircons have negative εHf(t) values (− 7.1 to − 1.9), which are compatible with those of the Paleo- to Mesoproterozoic orthogneisses in the Namche Barwa Complex. Provenance analysis indicates that the southern Indian Shield, South Lhasa terrane and probably Eastern Antarctica were the potential detrital sources. Combined with previous studies, our results suggest that: (1) the Namche Barwa Complex is the northeastern extension of the Greater Himalaya Sequence; (2) the metasedimentary rocks in the Namche Barwa Complex represent distal deposits of the northern Indian margin relative to the Lesser Himalaya; (3) the South Lhasa terrane was tectonically linked to northern India before the Cambrian.  相似文献   

4.
The Morro dos Seis Lagos niobium deposit (2897.9 Mt at 2.81 wt% Nb2O5) is associated with laterites formed by the weathering of siderite carbonatite. This iron-rich lateritic profile (>100 m in thickness) is divided into six textural and compositional types, which from the top to the base of the sequence is: (1) pisolitic laterite, (2) fragmented laterite, (3) mottled laterite, (4) purple laterite, (5) manganiferous laterite, and (6) brown laterite. All the laterites are composed mainly of goethite (predominant in the lower and upper varieties) and hematite (predominant in the intermediate types, formed from goethite dehydroxylation). The upper laterites were reworked, resulting in goethite formation. In the manganiferous laterite (10 m thick), the manganese oxides (mainly hollandite, with associated cerianite) occur as veins or irregular masses, formed in a late event during the development of the lateritic profile, precipitated from a solution with higher oxidation potential than that for Fe oxides, closer to the water table. Siderite is the source for the Mn. The main Nb ore mineral is Nb-rich rutile (with 11.26–22.23 wt% Nb2O5), which occurs in all of the laterites and formed at expense of a former secondary pyrochlore, together with Ce-pyrochlore (last pyrochore before final breakdown), Nb-rich goethite and minor cerianite. The paragenesis results of lateritization have been extremely intense. Minor Nb-rich brookite formed from Nb-rich rutile occurs as broken spherules with an “oolitic” (or Liesegang ring structure). Nb-rich rutile and Nb-rich brookite incorporate Nb following the [Fe3+ + (Nb, Ta) for 2Ti] substitution and both contain up to 2 wt% WO3. The laterites have an average Nb2O5 content of 2.91 wt% and average TiO2 5.00 wt% in the upper parts of the sequence. Average CeO2 concentration increases with increasing depth, from 0.12 wt% in the pisolitic type to 3.50 wt% in the brown laterite. HREE concentration is very low.  相似文献   

5.
Sedimentological and geochronological analyses were performed on Carboniferous strata from central Inner Mongolia (China) to determine the tectonic setting of the southeastern Central Asian Orogenic Belt (CAOB). Sedimentological analyses indicate that the widespread Late Carboniferous strata in central Inner Mongolia were dominated by shallow marine clastic-carbonate deposition with basal conglomerate above the Precambrian basement and Early Paleozoic orogenic belts. Based on lithological comparison and fossil similarity, five sedimentary stages were used to represent the Carboniferous deposition. The depositional stages include, from bottom to top, 1) basal molassic, 2) first carbonate platform, 3) terrigenous with coeval intraplate volcanism, 4) second carbonate platform, and 5) post-carbonate terrigenous. These five stages provide evidence for an extensive transgression in central Inner Mongolia during the Late Carboniferous. Detrital zircon geochronological studies from five samples yielded five main age populations: ~ 310 Ma, ~ 350 Ma, 400–450 Ma, 800–1200 Ma and some Meso-Proterozoic to Neoarchean grains. The detrital zircon geochronological studies indicate that the provenances for these Late Carboniferous strata were mainly local magmatic rocks (Early Paleozoic arc magmatic rocks and Carboniferous intrusions) with subordinate input of Precambrian basement. Combining our sedimentological and provenance analyses with previous fossil comparison and paleomagnetic reconstruction, an inland sea was perceived to be the main paleogeographic feature for central Inner Mongolia during the Late Carboniferous. The inland sea developed on a welded continent after the collision between North China Craton and its northern blocks.  相似文献   

6.
In-situ laser ablation ICP-MS analyses on iron oxides in itabirite and iron ore from the Quadrilátero Ferrífero (Brazil) reveal a wide range in trace element abundances (e.g., average concentrations in hematite: Al = 40–2200 ppm, Mg = 1–930 ppm, Mn = 5–540 ppm, Ti = 3–500 ppm, V = 2–390 ppm, Cr = 1–98 ppm, As = 0.5–60 ppm). The chemistry of early hematite stages is mostly inherited from host rock and precursor magnetite, e.g., Mn concentrations correlate with bulk Mn content in itabirite. With progressive iron ore formation and modification, external fluids play a more prominent role. This is reflected by REE-Y switching from seawater-like Y/Ho ratios (> 44) in early-, to more chondrite-like Y/Ho ratios (< 34), in late-hematite stages, likely due to fluid–rock reactions with country rocks (e.g., phyllites) or exchange with magmatic hydrothermal fluids.The following ore formation stages and key processes, supported by mineral scale mass balance calculations, are constrained: (1) martitisation, cogenetic with gangue leaching, is driven by large volumes of oxidising, Si-undersaturated fluids resulting in an absolute depletion of Mg, Mn, Al, Ti, Ni and Zn, and enrichment of Pb, As, LREE and Y; (2) the formation of granoblastic hematite and locally microplaty hematite represents a largely isochemical recrystallisation of magnetite and/or martite accompanied by a depletion of Mg and Y and an elevated Ti mobility at the mineral scale; and (3) precipitation of schistose and vein-hosted specular hematite along shear and fracture zones is driven by an external Fe–Si-rich hydrothermal fluid likely under high fluid/rock ratios.  相似文献   

7.
Detrital type of manganese ore bodies in the Precambrian Iron Ore Group of rocks occur in the Bonai-Keonjhar belt, Orissa besides stratiform (bedded type) and stratabound-replacement types of deposits. These ores appear in form of large boulders within lateritised aprons at various depths, often reaching beyond 30 m from the surface. Overprinting of primary structures, presence of mixed Fe-clasts and Mnooliths/pisoliths, mineral species of different generations and wide chemical variation amongst morphological varieties and from boulder to boulder are the characteristic hallmarks of such ore bodies. Features associated with ores occurring in different morphologies, namely: spongy, platy, recemented, and massive varieties from a typical profile of Orahari Mn-ore body in Keonjhar district are described. Recemented variety may be further classified into sub-varieties such as canga, agglomerate, and mangcrete. Common primary Fe-minerals are hematite, martite with relict magnetite. The secondary Fe-Mn phases are goethite, specularite, cryptomelane, lithiophorite, chalcophanite, manganite, and pyrolusite.These are ore bodies of allochthonous nature developed through a number of stages during terrain evolution and lateritisation. Secondary processes such as reworking of pre-existing crust through remobilisation, solution, precipitation, cementation, transport, etc. are responsible for the development of such detrital ore bodies in the Bonai-Keonjhar belt of Eastern India.  相似文献   

8.
《Gondwana Research》2015,27(3-4):888-906
The Ongole Domain in the southern Eastern Ghats Belt of India formed during the final stages of Columbia amalgamation at ca. 1600 Ma. Yet very little is known about the protolith ages, tectonic evolution or geographic affinity of the region. We present new detrital and igneous U–Pb–Hf zircon data and in-situ monazite data to further understand the tectonic evolution of this Columbia-forming orogen.Detrital zircon patterns from the metasedimentary rocks are dominated by major populations of Palaeoproterozoic grains (ca. 2460, 2320, 2260, 2200–2100, 2080–2010, 1980–1920, 1850 and 1750 Ma), and minor Archaean grains (ca. 2850, 2740, 2600 and 2550 Ma). Combined U–Pb ages and Lu–Hf zircon isotopic data suggest that the sedimentary protoliths were not sourced from the adjacent Dharwar Craton. Instead they were likely derived from East Antarctica, possibly the same source as parts of Proterozoic Australia. Magmatism occurred episodically between 1.64 and 1.57 Ga in the Ongole Domain, forming felsic orthopyroxene-bearing granitoids. Isotopically, the granitoids are evolved, producing εHf values between − 2 and − 12. The magmatism is interpreted to have been derived from the reworking of Archaean crust with only a minor juvenile input. Metamorphism between 1.68 and 1.60 Ga resulted in the partial to complete resetting of detrital zircon grains, as well as the growth of new metamorphic zircon at 1.67 and 1.63 Ga. In-situ monazite geochronology indicates metamorphism occurred between 1.68 and 1.59 Ga.The Ongole Domain is interpreted to represent part of an exotic terrane, which was transferred to proto-India in the late Palaeoproterozoic as part of a linear accretionary orogenic belt that may also have included south-west Baltica and south-eastern Laurentia. Given the isotopic, geological and geochemical similarities, the proposed exotic terrane is interpreted to be an extension of the Napier Complex, Antarctica, and may also have been connected to Proterozoic Australia (North Australian Craton and Gawler Craton).  相似文献   

9.
Low-grade carbonate-rich manganese ore of sedimentary origin in the giant Kalahari Manganese Field, South Africa, is upgraded to high-grade todorokite–manganomelane manganese ore by supergene alteration below the unconformity at the base of the Cenozoic Kalahari Formation. Incremental laser-heating 40Ar/39Ar dating of samples from the supergene altered manganese ore suggest that chemical weathering processes below the Kalahari unconformity peaked at around 27.8 Ma, 10.1 Ma and 5.2 Ma ago. Older ages are dominant in the upper part of the weathering profile, while younger ages are characteristic of the deeper part of the profile. Younger ages partially overprint older ages in the upper part of the weathering profile and demonstrate the downward progression of the weathering front by as little as 10 cm per million years. The oldest age obtained in the weathering profile, namely 42 Ma, is considered a minimum estimate for the onset of the post African I cycle of weathering and erosion that followed the break up of Gondwanaland and formation of the Cretaceous to early Cenozoic African land surface. The youngest ages, recorded at around 5 Ma, in turn, correspond well to the Pliocene transition from humid to arid climatic conditions in Southern Africa.  相似文献   

10.
The Cheshmeh-Frezi Mn deposit belongs to the southwest Sabzevar basin to the north of the Central Iranian microcontinent. This basin, which hosts abundant mineral deposits including Mn exhalative and Besshi-type Cu-Zn volcanogenic massive sulfide deposits, followed an evolution closely related to the subduction of the Neo-Tethys oceanic crust beneath the Central Iranian microcontinent. Two major sedimentary sequences are recorded within this basin: (I) the Lower Late Cretaceous volcano-sedimentary sequence (LLCVSS) and (II) the Upper Late Cretaceous sedimentary dominated sequence (ULCSS). The Cheshmeh-Frezi Mn deposit is hosted within red tuff with interbeds of green tuffaceous sandstone of the LLCVSS. Mineralization occurs as stratiform blanket-like and tabular orebodies. Psilomelane, pyrolusite and braunite are the main minerals of the ore, which display a variety of textures. Such as layered, laminated, disseminated, massive, replacement or open space fillings. The footwall and hanging-wall volcanic rocks are predominantly andesite and trachyandesite rocks. Footwall and hangingwall volcanic rocks at Cheshmeh-Frezi are enriched in light rare earth elements (LREEs) compared to chondrite, have steep REE patterns, and generally show Ta and Nb depletions relative to chondrite which are characteristic of back-arc environments. The significant geochemical characteristics of ore such as high Mn content (12.41–33.14 wt%; average 19.41 wt%), low concentration of Fe (0.64–2.27 wt%; average 1.63 wt%), high Ba (49.7–9901 ppm, average 2728.67 ppm), LREE > HREE, and negative Ce and Eu anomalies reveal a primary distal hydrothermal-exhalative source for mineralization. Cheshmeh-Frezi deposit, in comparison with different types of volcanogenic manganese deposits shows broad similarities with the Cuban-type Mn deposits such as tectonic, host and associated rock types, geometry, textures, structures, mineralogy and lithogeochemistry.  相似文献   

11.
《Gondwana Research》2013,23(3-4):843-854
The Western Dharwar Craton in peninsular India comprises a typical Meso- to Neo-Archean granite-greenstone terrain. Detrital zircons from two metagreywackes in a late basin from the Gadag Greenstone Belt preserve at least eight age populations ranging in age from ca 3.34 to 2.55 Ga, and grains as old as ca 3.54 Ga. The zircon provenances for the two samples appear to be the same up to ca 3.25 Ga, with relatively juvenile εHf values largely between zero and depleted mantle values. After 3.25 Ga, one sample has similar εHf values whereas the other has only negative values indicative of Hf-evolution in a crustal environment. After ca 3.25 Ga the source regions for the two samples were distinctly different.The detrital zircons reflect the age and evolution of the upper crust of the Western Dharwar Craton. Modeling of Hf isotopic evolution of the detrital zircons suggests two major crust-forming events at ca. 3.6 and 3.36 Ga, and some indication of juvenile addition to the crust at ca 2.6 Ga. The maximum sedimentation age of the greywackes is constrained by the youngest detrital zircon population at 2547 ± 5 Ma. Gold mineralization in the belt is dated at 2522 ± 6 Ma and constrains greywacke sedimentation, deformation and metamorphism to a ca 25 my interval.  相似文献   

12.
Early Paleozoic evolution of the northern Gondwana margin is interpreted from integrated in situ U-Pb and Hf-isotope analyses on detrital zircons that constrain depositional ages and provenance of the Lancang Group, previously assigned to the Simao Block, and the Mengtong and Mengdingjie groups of the Baoshan Block. A meta-felsic volcanic rock from the Mengtong Group yields a weighted mean 206Pb/238U age of 462 ± 2 Ma. The depositional age for the previously inferred Neoproterozoic Lancang and Mengtong groups is re-interpreted as Early Paleozoic based on youngest detrital zircons and meta-volcanic age. Detrital U-Pb zircon analyses from the Baoshan Block define three distinctive age peaks at older Grenvillian (1200–1060 Ma), younger Grenvillian (~ 960 Ma) and Pan-African (650–500 Ma), with εHf(t) values for each group similar to coeval detrital zircons from western Australia and northern India. This suggests that the Baoshan Block was situated in the transitional zone between northeast Greater India and northwest Australia on the Gondwana margin and received detritus from both these cratons. The Lancang Group yields a very similar detrital zircon age spectrum to that of the Baoshan Block but contrasts with that for the Simao Block. This suggests that the Lancang Group is underlain by a separate Lancang Block. Similar detrital zircon age spectra suggest that the Baoshan Block and the Lancang Block share common sources and that they were situated close to one another along the northern margin of East Gondwana during the Early Paleozoic. The new detrital zircon data in combination with previously published data for East Gondwana margin blocks suggests the Early Paleozoic Proto-Tethys represents a narrow ocean basin separating an “Asian Hun superterrane” (North China, South China, Tarim, Indochina and North Qiangtang blocks) from the northern margin of Gondwana during the Late Neoproterozoic-Early Paleozoic. The Proto-Tethys closed in the Silurian at ca. 440–420 Ma when this “Asian Hun superterrane” collided with the northern Gondwana margin. Subsequently, the Lancang Block is interpreted to have separated from the Baoshan Block during the Early Devonian when the Paleo-Tethys opened as a back-arc basin.  相似文献   

13.
The Tieshan Fe–Cu deposit is located in the Edong district, which represents the westernmost and largest region within the Middle–Lower Yangtze River Metallogenic Belt (YRMB), Eastern China. Skarn Fe–Cu mineralization is spatially associated with the Tieshan pluton, which intruded carbonates of the Lower Triassic Daye Formation. Ore bodies are predominantly located along the contact between the diorite or quartz diorite and marbles/dolomitic marbles. This study investigates the mineral chemistry of magnetite in different skarn ore bodies. The contrasting composition of magnetite obtained are used to suggest different mechanisms of formation for magnetite in the western and eastern part of the Tieshan Fe–Cu deposit. A total of 178 grains of magnetite from four magnetite ore samples are analyzed by LA–ICP–MS, indicating a wide range of trace element contents, such as V (13.61–542.36 ppm), Cr (0.003–383.96 ppm), Co (11.12–187.55 ppm) and Ni (0.19–147.41 ppm), etc. The Ti/V ratio of magnetite from the Xiangbishan (western part of the Tieshan deposit) and Jianshan ore body (eastern part of the Tieshan deposit) ranges from 1.32 to 5.24, and 1.31 to 10.34, respectively, indicating a relatively reduced depositional environment in the Xiangbishan ore body. Incorporation of Ti and Al in magnetite are temperature dependent, which hence propose that the temperature of hydrothermal fluid from the Jianshan ore body (Al = 3747–9648 ppm, with 6381 ppm as an average; Ti = 381.7–952.0 ppm, with 628.2 ppm as an average) was higher than the Xiangbishan ore body (Al = 2011–11122 ppm, with 5997 ppm as an average, Ti = 302.5–734.8, with 530.8 ppm as an average), indicating a down–temperature precipitation trend from the Jianshan ore body to the Xiangbishan ore body. In addition, in the Ca + Al + Mn versus Ti + V diagram, magnetite is plotted in the skarn field, consideration with the ternary diagram of TiO2–Al2O3–MgO, proposing that the magnetite ores are formed by replacement, instead of directly crystallized from iron oxide melts, which provide a better understanding regarding the composition of ore fluids and processes responsible for Fe mineralization in the Tieshan Fe–Cu deposit.  相似文献   

14.
The Danubian domain basement of the South Carpathians, Romania, comprises two Neoproterozoic continental crustal fragments, the Dr?g?an and Lainici-P?iu? terranes, which were sutured by the closure of an intervening oceanic domain, the Ti?ovi?a terrane. Magmatic and detrital zircons extracted from an orthogneiss, four granitoid plutons, two metasedimentary units, and a Liassic sandstone were dated by zircon U/Pb LA-ICP-MS. The F?ge?el augen gneiss from the Dr?g?an terrane basement yielded an age of 803.2 ± 4.4 Ma, the oldest well-constrained crystallization age reported from the Romanian Carpathians basement. The Tismana, ?u?i?a, Novaci and Olte? granitoid plutons, which intrude the Lainici-P?iu? terrane basement, yielded ages of 600.5 ± 4.4, 591.0 ± 3.5, 592.7 ± 4.9, and 588 ± 2.9 Ma, respectively. The Tismana granitoid age of 600 Ma and the youngest detrital zircon ages of 637–622 Ma from a metaquartzite within the Lainici-Paiu? terrane, constrain the deposition of the metaquartzite protolith to ca. 620–600 Ma. The 803 Ma age represents an old Pan-African age, whereas the younger Neoproterozoic ages suggest Pan-African/Cadomian thermotectonic events. Detrital and inherited zircon ages within the Dr?g?an and Lainici-Paiu? terranes attest to a peri-Amazonian, Avalonian-type provenance for the Dr?g?an terrane and possibly a Ganderian-type provenance for the Lainici-P?iu? terrane. The Lainici-P?iu? terrane rifted off Gondwana before the Dr?g?an terrane. Both terranes were attached to Moesia during the Early Paleozoic.  相似文献   

15.
《Gondwana Research》2016,29(4):1294-1309
The Cuddapah Basin is one of a series of Proterozoic basins that overlie the cratons of India that, due to limited geochronological and provenance constraints, have remained subject to speculation as to their time of deposition, sediment source locations, and tectonic/geodynamic significance.Here we present 21 new, stratigraphically constrained, U–Pb detrital zircon samples from all the main depositional units within the Cuddapah Basin. These data are supported by Hf isotopic data from 12 of these samples, that also encompass the stratigraphic range, and detrital muscovite 40Ar/39Ar data from a sample of the Srisailam Formation. Taken together, the data demonstrate that the Papaghni and lower Chitravati Groups were sourced from the Dharwar Craton, in what is interpreted to be a rift basin that evolved into a passive margin. The Nallamalai Group is here constrained to be deposited between 1659 ± 22 Ma and ~ 1590 Ma. It was sourced from the coeval Krishna Orogen to the east, and was deposited in its foreland basin. Nallamalai Group detrital zircon U–Pb and Hf isotope values directly overlap with similar data from the Ongole Domain metasedimentary rocks. Depositional age constraints on the Srisailam Formation are permissive with it being coeval with the Nallamalai Group and it was possibly deposited within the same basin. The Kurnool Group saw a return to Dharwar Craton derived provenance and is constrained to being Neoproterozoic. It may represent deposition in a long-wavelength basin forelandward of the Tonian Eastern Ghats Orogeny. Detrital zircons from the Gandikota Formation, which is traditionally considered a part of the Chitravati Group, constrain it to being deposited after 1181 ± 29 Ma, more than 700 Ma after the lower Chitravati Group. It is possible that the Gandikota Formation is correlative with the Kurnool Group.The new data suggest that the Nallamalai Group correlates temporally and tectonically with the Somanpalli Group of the Pranhita–Godavari Valley Basin, which is tightly constrained to being deposited at ~ 1620 Ma. These syn-orogenic foreland basin deposits firmly link the SE India Proterozoic basins to their orogenic hinterland with their discovery filling a ‘missing-link’ in the tectonic development of the region.  相似文献   

16.
Detrital zircons from the upper Cambrian-Devonian sandstones (Crashsite Group; n = 485) and Carboniferous tillite (Whiteout Conglomerate; n = 81) of the Ellsworth Mountains, Antarctica record a steady supply of Neoproterozoic (“Pan-African”) orogeny (~ 550–600 Ma), Grenville (~ 1000 Ma) and Neoarchean (~ 3000–3500 Ma) zircons into the northern marginal basin of Gondwana. The overlying Permian Glossopteris-bearing Polarstar Formation shales (n = 85) have the same zircon provenance as underlying units but also include a dominance of depositional-age (263 Ma) euhedral zircons which are interpreted to be of local, volcanic arc origin. Modeling of detrital zircon provenance suggests that source areas were present in Pan-African and Laurentian crust throughout the Paleozoic. We also report calcite twinning strain results (12 strain analyses; n = 398 twins) for the Cambrian Minaret Fm. in the Heritage range which is predominantly a layer-parallel shortening strain in the direction (WSW-ENE) of Permian Gondwanide orogen thrust transport. There is a secondary, sub-vertical twinning strain overprint. The initiation of localized lower-middle Cambrian rifting (Heritage Group deposition) in Grenville-aged crust as Gondwana amalgamated and the subsequent Jurassic counterclockwise rotation of the Ellsworth-Whitmore terrane out of the Permian Gondwanide belt into central Antarctica each remain tectonic curiosities.  相似文献   

17.
The extent to which ore bodies are preserved in orogenic belts remains a poorly understood area of ore deposit research. Using zircon and apatite fission track analysis together with apatite (U-Th)/He dating we constrained the erosion history of the ore bodies in the Harizha–Halongxiuma mining area of the East Kunlun Range, Northern Tibetan Plateau, China. Apatite fission-track ages range from 114 ± 8 to 87 ± 6 Ma, with mean track lengths varying from 11.4 ± 1.9 to 12.9 ± 2.0 μm. Zircon fission-track ages vary from 205 ± 14 to 142 ± 7 Ma. In addition, apatite (U–Th)/He dating yielded ages of 60–56 Ma. The thermal history of Jiapigou was modelled based on the apatite fission-track data, including ages and track lengths, with constraints of zircon fission-track ages and (U-Th)/He ages. The exhumation history of the Harizha–Halongxiuma mining area was reconstructed with these age data, revealing that since the early Mesozoic the area has undergone three cooling stages: (1) rapid cooling from 175 ± 30 Ma to 100 ± 10 Ma with a cooling rate and inferred exhumation of 2.0 ± 0.8 °C/Myr and 4.3 ± 1.7 km, respectively; (2) a relatively stable stage from 100 ± 10 Ma to 40 ± 10 Ma with a cooling rate and inferred exhumation of 0.3 ± 0.1 °C/Myr and 0.5 ± 0.2 km, respectively; and (3) rapid cooling since 40 ± 10 Ma with a cooling rate and inferred exhumation of 1.2 ± 0.6 °C/Myr and 1.4 ± 0.4 km, respectively. This exhumation history is consistent with the subduction process of Pacific plate and the strike slip movements of Dunmi fault. The total exhumation after main mineralization is calculated to be 7.6 ± 3.2 km, suggesting that ore bodies in the Harizha–Halongxiuma mining area remain partially preserved.  相似文献   

18.
The Cihai iron skarn deposit is located in the southern part of the eastern Tianshan, Xinjiang, northwestern China. The major iron orebodies are banded and nearly parallel to each other. The iron ores are hosted in an early diabase dike and in skarn. Post-ore diabase dikes cut the iron ores and their hosting diabase. Hydrothermal activity can be divided into four stages based on geological and petrographic observations: initial K–Na alteration (stage I), skarn-minor magnetite event (II), retrograde skarn-magnetite main ore event (III), and quartz–calcite–sulfide veining (IV). Zircon U–Pb dating yields ages of 286.5 ± 1.8 Ma for early diabase and 275.8 ± 2.2 Ma for post-ore diabase dikes. Amphibole separated from massive magnetite ore gives a 40Ar–39Ar plateau age of 281.9 ± 2.2 Ma and is the time of ore formation. Formation of the Cihai iron deposit is closely related to post-collisional magmatism and associated Cu–Ni–Au polymetallic mineralization in the eastern Tianshan.  相似文献   

19.
Detrital zircons from a Palaeoproterozoic quartzite, deposited between 1.85 and 1.82 Ga in the northern Aravalli orogen of NW India, show a distinctive age peak of ca. 1.85 Ga and variable, but largely subchondritic εHf1.85 Ga between ? 1.3 and ? 21.0 corresponding to hafnium model ages of 2.5 to 3.6 Ga. These data indicate an important period of reworking of ancient (Eo- to Neoarchaean), strongly heterogeneous continental crust at this time. Prevalence of ca. 1.85 Ga subduction-related granitoids, almost identical U–Pb age spectra and εHft of detrital zircons in ca. 1.85 Ga metasedimentary rocks in the Aravalli orogen and the inner Lesser Himalaya indicate similar sediment provenances and thus a geological connection between these two terranes during late Palaeoproterozoic. All together, the data constrain a rapid succession of sedimentation, metamorphism and subduction-related magmatic activity and support the interpretation of an active geodynamic realm along the entire north Indian margin at ca. 1.85 Ga. Comparison of detrital zircon data in conjunction with published paleomagnetic data from north India and other crustal blocks of the Columbia supercontinent, additionally, suggest a close affinity of north India with Madagascar, the Cathaysia block of South China and South Korea during Columbia times.  相似文献   

20.
This study investigated Holocene and fossil hydrothermal manganese deposits in the Izu-Ogasawara arc. Mineralogically, these deposits comprise 10 Å and 7 Å manganate minerals, and the fossil samples showed higher 10 Å stabilities. Chemical compositions of the Holocene samples are typical of other hydrothermal manganese deposits, including low Fe/Mn ratios, low trace metals, and low rare earth elements. Although the fossil samples generally have similar chemical characteristics, they exhibit significant enrichment in Ni, Cu, Zn, Cd, Ba, REE, Tl, and Pb contents. Furthermore, the chondrite-normalized REE patterns showed more light REE enrichment trends. These chemical characteristics suggest post-depositional uptake of these metals from seawater. U-Th dating of a Holocene hydrothermal manganese deposit from the Kaikata Seamount indicated 8.8 ± 0.94 ka for the uppermost layer and downward growth beneath the seafloor with a growth rate of ca. 2 mm/kyr. This is approximately three orders of magnitude faster than that of hydrogenetic ferromanganese crusts. U-Pb age of a fossil hydrothermal manganese deposit from the Nishi-Jokyo Seamount showed 4.4 ± 1.6 Ma, which was contemporary with basaltic volcanism (5.8 ± 0.3 Ma). Hydrothermal manganese deposits contain high concentrations of high value Mn, but only small amounts of valuable minor metals; their ages constrain the periods of past hydrothermal activity and provide a vector to explore for polymetallic sulfide deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号