首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A horizontal, circular cylinder fitted with one bilge keel is forced to rotate harmonically around its axis. The bilge keel load and hull pressure distribution are investigated. A fully submerged condition (infinite fluid), and three partly-submerged conditions are considered. A two-dimensional numerical study is performed, and the results are validated against recently published experimental data by van’t Veer et al. [30]. In addition, comparisons for mass and drag coefficients are also made with experimental data for plate in infinite fluid (Keulegan and Carpenter [8]), and wall-mounted plate (Sarpkaya and O’Keefe [9]) in oscillatory flow.A Navier–Stokes solver based on the Finite Volume Method is adopted for solving laminar flow of incompressible water. The free-surface condition is linearized by neglecting the nonlinear free-surface terms and the influence of viscous stresses in the free surface zone, while the body-boundary condition is exact. This simplified modeling of the problem required the mesh to be fine only around the bilge keels, leading to a total number of cells around N  1 ×104, which reduced computational cost significantly.The influence of draft and amplitude of oscillations on the bilge keel force and hull pressure distribution are considered. The bilge keel force is presented in terms of non-dimensional drag and mass coefficients including higher harmonic components. The numerical results are also compared with the industry standard empirical method for calculation of roll damping proposed by Ikeda et al. [4]. In general, a good agreement between the results of the present numerical method and the experimental data is obtained and the differences with those predicted by the empirical method are addressed.  相似文献   

2.
The roll damping characteristics of three models of a 3-ton class fishing vessel representing the bare hull, hull with bilge keels, and hull with bilge keels and a central wing are investigated by the free roll decay tests in calm water and also in uniform head waves in a towing tank. Speed and roll initial angle and OG (distance between the centers of gravity and roll) are varied to check their dependence on roll damping. The experimental results are compared with the numerical results of mathematical modeling by the energy method and the energy dissipation patterns are also compared for these three models. The bilge keel contributes significantly to the increment of the roll damping for zero speed but as speed increases, the lift generated by the central wing contributes significantly to the roll damping increase. In addition, it is shown that the roll damping is more or less influenced by the regular head waves.  相似文献   

3.
Many researchers have studied a wide range of nonlinear equations of motion describing a ship rolling in waves. In this study, a form of nonlinear equation governing the motion of a rolling ship subjected to synchronous beam waves is suggested and solved by the generalized Duffing's method in the frequency domain. Various representations of damping and restoring terms found in the literature are investigated and their solutions are analyzed by the above-mentioned method. Comparative results of nonlinear roll responses are obtained for four distinct vessel types at resonance conditions which constitute the worst situation. The results indicate the importance of roll damping and restoring, when constructing a nonlinear roll model. An inappropriate selection of damping and restoring terms may lead to serious discrepancies with reality, especially in peak roll amplitudes.  相似文献   

4.
In this paper our previously developed advanced system identification technique [1] has been applied to extract the frequency dependent roll damping from a series of model tests run in irregular (random) waves. It is shown that this methodology accurately models the roll damping which can then be used to produce accurate predictions of the ships roll motion. These roll motion predictions are not only more accurate than the potential flow predictions but more accurate than potential flow models corrected using either empirical prediction methods [2] and even those corrected using roll damping obtained from free decay sallying experiments. This methodology has the potential to significantly improve roll motion prediction during full scale at sea trails of vessels in order to dramatically improve safety of critical operations such as helicopter landing or ship to ship cargo transfer.  相似文献   

5.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations.  相似文献   

6.
This paper addresses the problem of ergodicity of stochastic processes starting from a theoretical point of view, with the aim of obtaining a deeper understanding for practical applications. The problem is tackled bearing in mind the concept of ‘practical ergodicity’, that is, the possibility of obtaining reliable information about ensemble averages by using temporal averages. Some general analytical tools are given to address the problem of accuracy of temporal averages and an example of their use in a possible design of experiments is given. A series of Monte Carlo numerical simulations are performed by means of an analytical non-linear 1.5-DOF model of parametrically excited roll motion. The outcomes of such simulations are analysed to show the effect of ship speed and sea spectrum shape. The effect of wave grouping phenomenon is discussed with particular attention to the Doppler effect. Qualitative indications given by the numerical simulations are then compared with experimental tests showing a good agreement. Practical ergodicity of generated sea in towing tank is also briefly addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号