首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mantle xenoliths in within-plate Cenozoic alkaline mafic lavas from NE Spain are used to assess the local subcontinental lithospheric mantle geotherm and the influence of melting and metasomatism on its oxidation state. The xenoliths are mainly anhydrous spinel lherzolites and harzburgites and gradations between, with minor pyroxenites. Most types show protogranular textures, but transitional protogranular–porphyroclastic and equigranular lherzolites also exist. Different thermometers used in the estimates provide higher subsolidus equilibrium temperatures for harzburgites (1,062 ± 29°C) than for lherzolites (972 ± 89°C), although there is overlap; the lowest temperatures correspond to porphyroclastic lherzolites, whereas pyroxenites give the highest temperatures (up to 1,257°C). Maximum pressures for subsolidus equilibrium of peridotites are at 2.0–1.8 GPa. Later they followed adiabatic decompression and harzburgites registered lower pressures (1.02 ± 0.19 GPa) than lherzolites (1.41 ± 0.27 GPa). One pyroxenite gives values consistent with the spinel lherzolite field (1.08 GPa). The shallowest barometric data are in agreement with the highest local conductive geotherms, which implies that the lithosphere–asthenosphere boundary is at 70–60 km minimum depth. Higher equilibrium temperatures for the harzburgites could be explained by the existence of mafic magma bodies or dykes at the lower crust–mantle boundary. Paleo-fO2 conditions during partial melting as inferred from the covariation between V and MgO concentrations are mainly between QFM−1 and QFM−2 in log units. However, most thermobarometric fO2 estimates are between QFM−1 and QFM+1, suggesting oxidation caused by later metasomatism during uplift and cooling.  相似文献   

2.
Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.  相似文献   

3.
A suite of mainly spinel peridotite and subordinate pyroxenite xenoliths and megacrysts were studied in detail, enabling us to characterize upper mantle conditions and processes beneath the modern North American–Eurasian continental plate boundary. The samples were collected from 37-Ma-old basanites cropping out in the Main Collision Belt of the Chersky Range, Yakutia Republic (Russian Far East). The spinel lherzolites reflect a mantle sequence, equilibrated at temperatures of 890–1,025 °C at pressures of 1.1–2 GPa, with melt extraction estimated to be around 2–6 %. The spinel harzburgites are characterized by lower P–T equilibration conditions and estimated melt extraction up to 12 %. Minor cryptic metasomatic processes are recorded in the clinopyroxene trace elements, revealing that percolating hydrous fluid-rich melts and basaltic melts affected the peridotites. One of the lherzolites preserves a unique melt droplet with primary dolomite in perfect phase contact with Na-rich aluminosilicate glass and sodalite. On the basis of the well-constrained P–T frame of the xenolith suite, as well as the rigorously documented melt extraction and metasomatic history of this upper mantle section, we discuss how a carbonated silicate melt infiltrated the lherzolite at depth and differentiated into an immiscible carbonate and silicate liquid shortly before the xenolith was transported to the surface by the host basalt. Decreasing temperatures triggered crystallization of primary dolomite from the carbonate melt fraction and sodalite as well as quenched glass from the Na-rich aluminosilicate melt fraction. Rapid entrainment and transport to the Earth’s surface prevented decarbonatization processes as well as reaction phenomena with the host lherzolite, preserving this exceptional snapshot of upper mantle carbonatization and liquid immiscibility.  相似文献   

4.
At the San Luis Potosí (SLP) volcanic field (Central Mexico), Quaternary basanites and tuff breccias have sampled a suite of ultramafic xenoliths, predominately spinel lherzolites, spinel-olivine websterites, spinel pyroxenites, and hornblende-rich pyroxenites. Spinel lherzolites from the La Ventura maars have protogranular to equigranular textures, those from the Santo Domingo maars are strongly sheared. Both spinel-lherzolite types show similar whole-rock major and trace-element abundances. They are fertile to slightly depleted with mineralogical and geochemical heterogeneities induced by partial melting processes. Pyroxenites with either magmatic or metamorphic textures are high-pressure cumulates. Hornblende-rich pyroxenites are genetically linked to the host basanites. Most of the protogranular spinel lherzolites contain veinlets of glass along grain boundaries. These glasses are chemically homogeneous and have trachybasaltic to trachyandesitic compositions. Mg- and Fe2+-partitioning between olivine and glass suggests chemical equilibrium between the melts represented by the glasses and the spinel-lherzolite mineral assemblage at about 1,000°C and 10 to 15 kbar. The melts are interpreted to be of upper mantle origin. They may have been formed by in-situ partial melting in the presence of volatiles or represent percolating melts chemically buffered by the spinel-lherzolite mineral assemblage at uppermost mantle conditions. Mineral chemistry in all rock types of the whole xenolith suite reveals distinct disequilibrium features reflecting partial re-equilibration stages towards lower temperatures estimated to be from 1,050°C to 850°C at 9 to 15 kbar. The presence of similar zoning and exsolution features mainly documented in pyroxenes along with similar maximum and minimum temperatures requires all sampled xenoliths to have undergone the same temperature regime within the upper mantle. The sheared spinel lherzolites from the Sto. Domingo field are interpreted as formerly protogranular material which was sheared during uplift and cooling. The estimated mantle temperatures are higher than those predicted by low heat-flow measurements at the SLP fild, indicating that surface heat flow has not equilibrated to elevated temperatures at depth. This strongly supports a young perturbation event beneath the SLP area and connects the onset of uplift and cooling of the SLP-mantle segment with the back-arc extensional regime of the Quaternary volcanic cycle of the Transmexican Volcanic Belt.  相似文献   

5.
Garnet-spinel peridotites form small, isolated, variably retrogressed bodies within the low-pressure high-temperature gneisses and migmatites of the Variscan basement of the Schwarzwald, southwest Germany. Detailed mineralogical and textural studies as well as geothermobarometric calculations on samples from three occurrences are presented. Two of the garnet-spinel peridotites have equilibrated at 680–770°C, 1.4–1.8 GPa within the garnet-spinel peridotite stability field, one of the samples having experienced an earlier stage within the spinel peridotite stability field (790°C, <1.8 GPa). The third sample, with only garnet and spinel preserved, probably equilibrated within the garnet peridotite stability field at higher pressures. These findings are in line with the distinction of two groups of ultramafic garnet-bearing high-pressure rocks with different equilibration conditions within the Schwarzwald (670–740°C, 1.4–1.8 GPa and 740–850°C, 3.2–4.3 GPa) which has previously been established (Kalt et al. 1995). The equilibration conditions of 670–770°C and 1.4–1.8 GPa for garnet-spinel peridotites from the Central Schwarzwald Gneiss Complex (CSGC) are similar to those for eclogites of the Schwarzwald and also correspond quite well to those for garnet-spinel peridotites from the Moldanubian zone of the Vosges mountains and of ecologites from the Moldanubian s.str. of the Bohemian Massif.  相似文献   

6.
Summary A garnet peridotite lens from Monte Duria (Adula nappe, Central Alps, Northern Italy) contains porphyroblastic garnet and pargasitic amphibole and reached peak metamorphic conditions of ∼830 C, ∼2.8 GPa. A first stage of near isothermal decompression to pressures <2.0 GPa is characterised by domains where fine grained spinel, clinopyroxene, orthopyroxene and amphibole form. The newly formed amphibole contains elevated levels of fluid mobile elements such as Rb, Ba and Pb indicating that recrystallization was assisted by infiltration of a crustal-derived fluid. Further decompression and cooling to ∼720 °C, 0.7–1.0 GPa associated with limited fluid influx is documented by the formation of orthopyroxene-spinel-amphibole symplectites around garnet. Zircon separated from this garnet peridotite exhibits two distinct zones. Domain 1 displays polygonal oscillatory zoning and high trace element contents. It contains clinopyroxene and amphibole inclusions with the same composition as the same minerals formed during the spinel peridotite equilibration, indicating that this domain formed under sub-solidus conditions during decompression and influx of crustal fluids. Domain 2 has no zoning and much lower trace element contents. It replaces domain 1 and is likely related to zircon recrystallization during the formation of the symplectites. SHRIMP dating of the two domains yielded ages of 34.2 ± 0.2 and 32.9 ± 0.3 Ma, respectively, indicating fast exhumation of the peridotite within the spinel stability field. We suggest that the Duria garnet peridotite originates from the mantle wedge above the tertiary subduction of the European continental margin and that it was assembled to the country rock gneisses between 34 and 33 Ma. Third author was Deceased  相似文献   

7.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

8.
The basanite tuffs of Bullenmerri and Gnotuk maars, Victoria,enclose abundant xenoliths of spinel lherzolites, many of whichcontain amphibole ± apatite ± phlogopite. Thexenolith suite also includes cumulate wehrlites, spinel metapyroxenitesand garnet metapyroxenites. All xenolith types contain abundantlarge CO2-rich fluid inclusions. Microstructural evidence forthe exsolution of spinel, orthopyroxene, garnet and rare plagioclasefrom complex clinopyroxenes suggests that all of the metapyroxeniteshave formed from clinopyroxene (± spinel ± orthopyroxene)cumulates by exsolution and recrystallization during coolingto the ambient geotherm. Pyroxene chemistry implies that a rangeof parental magma types was involved. Garnet pyroxenites showa series of reactions to successively finer-grained, lower-Pmineral assemblages, which imply a relatively slow initial upwardtransport of the xenoliths in the magma, prior to explosiveeruption. The same process has allowed crystallization of phenocrystsfrom small patches of interstitial melt within xenoliths oflherzolite, wehrlite and metapyroxenite. Critically selected P-T estimates for 16 garnet websteritesare consistent with published experimental studies of the spinel/garnetpyroxenite transition, and define a geotherm from 900 °C,11 kb to 1100 °C, 16 kb. Other published data extend thecurve down to c. 7 kb and up to 25 kb. This elevated geothermsuggests that the high regional heat flow is related to convectiveheat transfer by dike injection accompanying the vulcanism.T estimates for the lherzolites range from 850–1050 °C;comparison with the derived geotherm implies that the spinellherzolites are derived from depths of 30–55 km. Thiszone has low seismic velocities (Vp = 6.8–7.8 km/sec)and has thus previously been regarded as a thick, largely maficlower crust. The xenolith data show that this Mower crust' isdominantly ultramafic, with layers, dikes and some large bodiesof pyroxenites and mafic granulites. The anomalously low Vpmay be due to the high T, the high proportion of fluid-filledpore volume, and the magnesian composition of the lherzolites.The seismically defined Moho (Vp >8.0 km/sec) coincides withthe experimentally determined position of the spinel lherzolite-garnetlherzolite transition.  相似文献   

9.
The Lherz orogenic lherzolite massif (Eastern French Pyrenees) displays one of the best exposures of subcontinental lithospheric mantle containing veins of amphibole pyroxenites and hornblendites. A reappraisal of the petrogenesis of these rocks has been attempted from a comprehensive study of their mutual structural relationships, their petrography and their mineral compositions. Amphibole pyroxenites comprise clinopyroxene, orthopyroxene and spinel as early cumulus phases, with garnet and late-magmatic K2O-poor pargasite replacing clinopyroxene, and subsolidus exsolution products (olivine, spinel II, garnet II, plagioclase). The original magmatic mineralogy and rock compositions were partly obscured by late-intrusive hornblendites and over a few centimetres by vein–wallrock exchange reactions which continued down to subsolidus temperatures for Mg–Fe. Thermobarometric data and liquidus parageneses indicate that amphibole pyroxenites started to crystallize at P ≥ 13 kbar and recrystallized at P < 12 kbar. The high AlVI/AlIV ratio (>1) of clinopyroxenes, the early precipitation of orthopyroxene and the late-magmatic amphibole are arguments for parental melts richer in silica but poorer in water than alkali basalts. Their modelled major element compositions are similar to transitional alkali basalt with about 1–3 wt% H2O. In contrast to amphibole pyroxenites, hornblendites only show kaersutite as liquidus phase, and phlogopite as intercumulus phase. They are interpreted as crystalline segregates from primary basanitic magmas (mg=0.6; 4–6 wt% H2O). These latter cannot be related to the parental liquids of amphibole pyroxenites by a fractional crystallization process. Rather, basanitic liquids mostly reused pre-existing pyroxenite vein conduits at a higher structural level (P ≤ 10 kbar). A continuous process of redox melting and/or alkali melt/peridotite interaction in a veined lithospheric mantle is proposed to account for the origin of the Lherz hydrous veins. The transitional basalt composition is interpreted in terms of extensive dissolution of olivine and orthopyroxene from wallrock peridotite by alkaline melts produced at the mechanical boundary layer/thermal boundary layer transition (about 45–50 km deep). Continuous fluid ingress allowed remelting of the deeper veined mantle to produce the basanitic, strongly volatiles enriched, melts that precipitated hornblendites. A similar model could be valid for the few orthopyroxene-rich hydrous pyroxenites described in basalt-hosted mantle xenoliths. Received: 15 September 1999 / Accepted: 31 January 2000  相似文献   

10.
An alkali basalt near Glen Innes, northeastern New South Wales, contains a suite of Cr-diopside group ultramafic xenoliths which includes some spinel peridotites but which is dominated by a diverse spinel pyroxenite assemblage. Pyroxenite xenoliths range from subcalcic clinopyroxenites (composed largely of unmixed prismatic subcalcic clinopyroxene megacrystals and lesser orthopyroxene megacrystals) to equant mosaic textured websterites (orthopyroxene and Ca-rich clinopyroxene ± spinel). Rare orthopyroxenite xenoliths also occur. The pyroxenite xenoliths are characterised by high 100Mg/(Mg + Fe2+) ratios (M˜ 90) and low concentrations of Ti, K, P, La, Ce and Zr. The websterites are mineralogically and chemically similar to many spinel pyroxenites occurring as layers or dykes in peridotite massifs such as those at Ronda in southern Spain and at Ariège (French Pyrénées). T / P estimates indicate crystallization temperatures of 1250–1350 °C for subcalcic clinopyroxene-orthopyroxene megacrystal pairs and 900–1000 °C for the equilibrated mosaic textured websterites and associated peridotites at pressures of 9–13 kbar. Subcalcic clinopyroxene megacrystals, websterites and orthopyroxenites have LREE-depleted chondrite-normalised REE abundances with (La/Yb)CN < 1 and their convex-upwards REE patterns are typical of subcalcic clinopyroxene-dominated cumulates. The pyroxenites are not residua from partially melted pyroxenite layers or dykes in mantle peridotites nor are they completely crystallized protobasaltic or protopicritic magmas. They are interpreted as high-pressure crystal segregations from basaltic magmas (probably mildly alkaline or transitional) flowing within narrow mantle conduits (the flow crystallization model of Irving, 1980). The parental magma(s) was Ti-poor (0.6–0.7% TiO2) and relatively Mg-rich (M˜ 74 − 70). Pyroxenite genesis was a two-stage process involving crystallization of tschermakitic subcalcic clinopyroxenes and orthopyroxenes  ±spinel as liquidus or near-liquidus phases at 1250–1350 °C and 9–13 kbar to yield “primary” subcalcic clinopyroxenites which then re-equilibrated at 900–1000 °C and similar pressures to produce the mosaic textured “secondary” websterites. The pyroxenites show a wide range of 143Nd/144Nd and 87Sr/86Sr values (0.513298–0.512473 and 0.702689–0.704659, respectively). Their isotopic ratios appear to have been variably modified by exchange with adjacent mantle peridotites or migrating basaltic melts. Received: 11 December 1995 / Accepted: 3 December 1996  相似文献   

11.
Garnet-bearing and garnet-free pyroxenite xenoliths from Quaternary basanites of Marsabit, northern Kenya, were analysed for microstructures and mineral compositions (major and trace elements) to constrain the thermal and compositional evolution of the lithospheric mantle in this region. Garnet-bearing rocks are amphibole-bearing websterite with ~5–10 vol% orthopyroxene. Clinopyroxene is LREE-depleted and garnet has high HREE contents, in agreement with an origin as cumulates from basaltic mantle melts. Primary orthopyroxene inclusions in garnet suggest that the parental melts were orthopyroxene-saturated. Rock fabrics vary from weakly to strongly deformed. Thermobarometry indicates extensive decompression and cooling (~970–1,100°C at ~2.3–2.6 GPa to ~700–800°C at ~0.5–1.0 GPa) during deformation, best interpreted as pyroxenite intrusion into thick Paleozoic continental lithosphere subsequently followed by continental rifting (i.e., formation of the Mesozoic Anza Graben). During continental rifting, garnet websterites were decompressed (garnet-to-spinel transition) and experienced the same P–T evolution as their host peridotites. Strongly deformed samples show compositional overlaps with cpx-rich, initially garnet-bearing lherzolite, best explained by partial re-equilibration of peridotite and pyroxenite during deformation and mechanical mingling. In contrast, garnet-free pyroxenites include undeformed, cumulate-like samples, indicating that they are younger than the garnet websterites. Major and trace element compositions of clinopyroxene and calculated equilibrium melts suggest crystallisation from alkaline basaltic melt similar to the host basanite, which suggests formation in the context of alkaline magmatism during the development of the Kenya rift. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Mantle derived xenoliths in India are known to occur in the Proterozoic ultrapotassic rocks like kimberlites from Dharwar and Bastar craton and Mesozoic alkali igneous rocks like lamrophyres, nephelinites and basanites. The xenoliths in kimberlites are represented by garnet harzburgites, lherzolites, wehrlite, olivine clinopyroxenites and kyaniteeclogite varieties. The PT conditions estimated for xenoliths from the Dharwar craton suggest that the lithosphere was at least 185 km thick during the Mid-Proterozoic period. The ultrabasic and eclogite xenoliths have been derived from depths of 100–180 km and 75–150 km respectively. The Kalyandurg and Brahmanpalle clusters have sampled the typical Archaean subcontinental lithospheric mantle (SCLM) with a low geotherm (35 mW/m2) and harzburgitic to lherzolitic rocks with median Xmg olivine > 0.93. The base of the depleted lithosphere at 185–195 km depth is marked by a 10–15 km layer of strongly metasomatised peridotites (Xmg olivine > ∼0.88). The Anampalle and Wajrakarur clusters 60 km to the NW show a distinctly different SCLM; it has a higher geotherm (37.5 to 40 mW/m2) and contains few subcalcic harzburgites, and has a median Xmg olivine = 0.925. In contrast, the kimberlites of the Uravakonda and WK-7 clusters sampled quite fertile (median Xmg olivine ∼0.915) SCLM with an elevated geotherm (> 40 mW/m2). The lamrophyres, basanites and melanephelinites associated with the Deccan Volcanic Province entrain both ultramafic and mafic xenoliths. The ultramafic group is represented by (i) spinel lherzolites, harzburgites, and (ii) pyroxenites. Single pyroxene granulite and two pyroxene granulites constitutes the mafic group. Temperature estimates for the West Coast xenoliths indicate equilibration temperatures of 500–900°C while the pressure estimates vary between 6–11 kbar corresponding to depths of 20–35 km. This elevated geotherm implies that the region is characterized by abnormally high heat flow, which is also supported by the presence of linear array of hot springs along the West Coast. Spinel peridotite xenoliths entrained in the basanites and melanephelinites from the Kutch show low equilibrium temperatures (884–972°C). The estimated pressures obtained on the basis of the absence of both plagioclase and garnet in the xenoliths and by referring the temperatures to the West Coast geotherm is ∼ 15 kbar (40–45 km depth). The minimum heat flow of 60 to 70 mW/m2 has been computed for the Kutch xenolith (Bhujia hill), which is closely comparable to the oceanic geotherm. Xenolith studies from the West Coast and Kutch indicate that the SCLM beneath is strongly metasomatised although the style of metasomatism is different from that below the Dharwar Craton.  相似文献   

13.
We combined microstructural observations and high-resolution crystallographic preferred orientation (CPO) mapping to unravel the active deformation mechanisms in garnet clinopyroxenites, garnet–spinel websterites, and spinel websterites from the Beni Bousera peridotite massif. All pyroxenites display microstructures recording plastic deformation by dislocation creep. Pyroxene CPOs are consistent with dominant slip on [001]{110} in clinopyroxene and on [001](100) or [001](010) in orthopyroxene. Garnet clinopyroxenites have however high recrystallized fractions and finer grain sizes than spinel websterites. Recrystallization mechanisms also differ: subgrain rotation dominates in garnet clinopyroxenites, whereas in spinel websterites nucleation and growth also contribute. Elongated shapes and strong intracrystalline misorientations suggest plastic deformation of garnet, but CPOs are weak. Clinopyroxene porphyroclasts in spinel websterites show deformation twins underlined by orthopyroxene exsolutions. Thermodynamic calculations indicate that garnet clinopyroxenites deformed at 2.0 GPa and 950–1000 °C and spinel pyroxenites at 1.8 GPa and 1100–1150 °C. The lower temperatures may explain the faster work rates implied by the finer grained microstructures in garnet clinopyroxenites. Greater stresses may have also reduced the competence contrast between garnet and pyroxene in the garnet pyroxenites and, at the outcrop scale, lowered the competence contrast between pyroxenites and peridotites, favoring mechanical dispersion of pyroxenites in the cooler lithospheric mantle.  相似文献   

14.
BECKER  HARRY 《Journal of Petrology》1996,37(4):785-810
Gamet-bearing high-temperature peridotite massifs in lower Austriawere exhumed during Carboniferous plate convergence in the Bohemianmassif. The peridotite massifs contain garnet pyroxenite layers,most of which are high-pressure cumulates that crystallizedin the deep lithosphere during ascent and cooling of hot asthenosphericmelts. Many of the pyroxenites have negative Eu anomalies andhigh LREE abundances in pyroxenes and bulk rocks, 87Sr/86Sr(335 Ma) as high as 0.7089, and Nd (335 Ma) as low as –4.8(leached clinopyroxenes and garnets). These pyroxenites alsoshow strong depletions in Rb, K, Ta, P and Ti compared withthe REE Equilibrium melt compositions calculated from the cumulatecompositions have very high LREE abundances (Lan = 300–600)and show strong LREEfractionation [(La/Sm)n = 7–47)].Trace element abundances, the Ca–Al-rich composition ofthe cumulates and possible Ti saturation in the melts suggestthat these melts were of primitive carbonatitic–meliliticor lamprophyrt-like composition. Other garnet pyroxenites suchas Al-rich garnet-kyanite clinopyroxemtes with positive Eu anomaliesprobably represent metamorphosed crustal rocks which were subductedand accreted to the lithospheric mantle. The high 87Sr/86Sr,low Nd (335 Ma) and negative Eu anomalies of the high-pressurecumulates can be explained if their equilibrium melts containeda component derived from subducted upper-crustal rocks. Thehigh equilibration pressures of the host peridotites (3–3.5GPa) and the high equilibration temperatures of the pyroxenites(1100–1400C) indicate that these melts are likely tobe derived from the sub-lithospheric mantle. There, meltingmay have been triggered by small amounts of melt or fluids derivedfrom a subducting slab at greater depth. KEY WORDS: garnet pyroxenites; geochemistry; lower Austria; ultramafic massifs; subduction  相似文献   

15.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


16.
Garnet-bearing mantle xenoliths have been recovered from Quaternary alkali basalts, both within and peripheral to the Hangay dome of central Mongolia. Microfabric analysis and thermobaromery, combining empirical thermobarometers and the self-consistent dataset of THERMOCALC, indicate that garnet websterites from the Shavaryn-Tsaram volcanic centre at the dome core were formed in the spinel-lherzolite upper mantle at pressures of 17–18 kbars and temperatures of 1,070–1,090°C, whereas garnet lherzolites were derived from greater depths (18–20 kbars). Garnet lherzolites from the Baga Togo Uul vents near the dome edge were formed at 18–22 kbars under significantly cooler conditions (960–1,000°C). These xenoliths reveal reaction coronas of (1) orthopyroxene, clinopyroxene, plagioclase and spinel mantling garnets; (2) spongy rims of olivine replacing orthopyroxene and (3) low-Na, low-Al clinopyroxene replacing primary clinopyroxene. Trace-element abundances indicate that clinopyroxene from these coronas is in chemical equilibrium with the host magma. The thermobarometric and textural data suggest that lherzolite xenoliths from both sites were derived from depths of 60–70 km and entrained in magma at 1,200–1,300°C. The average rate of ascent, as determined by olivine zoning, lies in the range 0.2–0.3 m s−1. The contrast in thermal profiles of the upper mantle between the two sites is consistent with a mantle plume beneath the Hangay dome with elevated thermal conditions beneath the core of the dome being comparable to estimates of the Pleistocene geotherm beneath the Baikal rift.  相似文献   

17.
Ultramafic xenoliths were found in recent alkali basalts from São Tomé Island. These include spinel peridotites (lherzolites, harzburgites and dunites) and pyroxenites (orthopyroxenites and clinopyroxenites). Textures and mineral compositions indicate that pyroxenites originated from crystal/liquid separation processes operating on magmas similar to those giving rise to their present host rocks whereas spinel peridotite xenoliths had an accidental origin; Fo (>89) and Ni (>0.36 wt.%) contents in olivines, Mg# (91–95) of orthopyroxenes and low Ti in clinopyroxene (primary crystals: TiO2<0.06 wt.%) and in spinel (TiO2<0.1 wt.%) are within the range reported for abyssal peridotites, indicating São Tomé spinel peridotites represent refractory residues of melting. Nevertheless, the lack of correlation between mineral chemistry and modal composition suggests that spinel peridotite xenoliths are not simple residues and were affected by infiltration of fluid/melts within the mantle. The wide temperature range obtained for spinel peridotites (700 to >1150 °C) is compatible with a long period of pre-entrainment cooling supporting Fitton's [Tectonophysics 94 (1983) 473] hypothesis that proposes oceanic lithosphere uprising in the Cameroon Volcanic Line prior to the initiation of the current thermal regime, related to São Tomé magmatism. The association of upper mantle (peridotite) xenoliths with igneous cumulates (pyroxenites) suggests that the spinel peridotite suite originated in the uppermost mantle above the São Tomé magma storage zone(s), probably in a region of high strain rate, near the boundary between the mantle and the overlying oceanic crust.  相似文献   

18.
Petrographic and geochemical studies of peridotites and melagabbros from the Maures massif (SE France) provide new constraints on the Early Palaeozoic evolution of the continental lithosphere in Western Europe. Peridotites occur as lenses along a unit rooted in the main Variscan suture zone. They are dominantly spinel peridotites and minor garnet–spinel peridotites. Spinel peridotites represent both residual mantle and ultramafic cumulates. Mantle-related dunites and harzburgites display high temperature textures, with olivine (Mg#0.90), orthopyroxene (Mg#0.90) and spinel (TiO2 < 0.2%; Cr#0.64–0.83) compositions typical of fore-arc upper mantle. Ultramafic cumulates are dunite adcumulates, harzburgite heteradcumulates and mesocumulates, melagabbro heteradcumulates and amphibole peridotites, with olivine (Mg#0.85–0.89), orthopyroxene (Mg#0.86–0.89) and Cr-spinel (TiO2 = 0.5–3.3%; Cr#0.7–0.98) compositions typical of ultramafic cumulates. Cr-spinel compositions of both spinel peridotite types suggest their genesis in a supra-subduction zone lithosphere. Core to rim zoning in spinel is related to the incomplete influence of regional metamorphism and serpentinisation. The covariation of major and minor elements with Al2O3 for cumulates is consistent with igneous processes involving crystal accumulation. Both mantle and cumulate dunites and harzburgites have U-shaped REE patterns and extremely low trace element contents, similar to peridotites from modern fore-arc peridotites (South Atlantic) and from ophiolites related to supra-subduction zones (Semail, Cyclops, Pindos, Troodos). Melagabbros also have U-shaped REE patterns similar to xenoliths from the Philippine island arc, but also similar to intrusive ultramafic cumulates from the Semail nappe of Oman related to a proto-subduction setting. A wehrlite has a REE pattern similar to that of amphibole peridotites reflecting metasomatism of clinopyroxene-bearing peridotites due to subduction-related fluids. The Maures spinel peridotites and melagabbros are therefore interpreted as the lowermost parts of a crustal sequence and minor residual mantle of lithosphere generated in a supra-subduction zone during Early Palaeozoic time. Garnet–spinel peridotites are chemically close to melagabbros, but have recorded high pressure metamorphism before their retrogression similar to spinel peridotites into amphibolites to greenschists facies metamorphism. They indicate burial to mantle depths of the margin of the supra-subduction lithosphere during the Early Palaeozoic continental subduction. Both peridotite types were exhumed during the Upper Palaeozoic continental collision. Comparable observations from other Variscan-related peridotites, in particular of the Speik complex of the Autroalpine basement, and a common age for the subduction stage allow extension of these regional conclusions to a broad area sharing the Cambrian suture zone, extending from the Ossa-Morena to the Bohemian massif.  相似文献   

19.
Experimental clinopyroxenes synthesized at 850–1500 °C and 0–60 kbar in the CMS and CMAS-Cr systems and in more complex lherzolitic systems have been used to calibrate a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer for Cr-diopsides derived from garnet peridotites. The experiments cover a wide range of possible natural peridotitic compositions, from fertile pyrolite to refractory, high-Cr lherzolite. The barometer is based on the Cr exchange between clinopyroxene and garnet. Pressure is formulated as a function of temperature and clinopyroxene composition:
where a CaCrTs Cpx=Cr−0.81·Cr#·(Na+K) and Cr#= , with elements in atoms per 6 oxygens. This formulation reproduces the experimental pressures to ±2.3 kbar (1σ) and has a temperature dependence (1.2–2.4 kbar/50 °C, varying with composition) that is weaker than that of the widely used Al-in-Opx barometer (2–3 kbar/50 °C). The enstatite-in-Cpx thermometer includes corrections for the effect of minor components and is formulated as
where K)). The thermometer reproduces the experimental temperatures to ±30 °C (1σ). The uncertainties of the present formulations are comparable to, or better than, those of the most widely used thermobarometers for garnet peridotites. P-T estimates obtained for diamond-bearing and graphite-bearing lherzolite xenoliths and peridotitic clinopyroxene inclusions in kimberlitic and lamproitic diamonds confirm the reliability of the thermobarometer. Cr-diopside thermobarometry appears to be a potential tool for obtaining information on the thermal state of the upper mantle and the extent of mantle sampling by deep-seated magmas. We consider the Cr-in-Cpx barometer to be the best alternative to the Al-in-Opx barometer for the evaluation of pressure conditions of equilibration of natural garnet lherzolites. P-T conditions of equilibration can be directly retrieved from the composition of Cr-diopside alone, thus allowing application to partially altered xenoliths, inclusions in diamonds, and loose grains from sediments. We foresee application of the present thermobarometer to evaluation of the diamond potential of kimberlite and lamproite provinces and in diamond exploration where Cr-diopside from deep mantle sources is preserved in the surficial weathering environment. Received: 16 August 1999 / Accepted: 17 March 2000  相似文献   

20.
Deep-seated xenoliths entrained in the Hannuoba basalts of the northern Sino-Korean Craton include mafic and felsic granulites, mantle wall-rock from spinel– and garnet–spinel peridotite facies, and basaltic crystallisation products from the spinel-pyroxenite and garnet-pyroxenite stability fields. The mineral compositions of the xenoliths have been used to estimate temperatures and, where possible, pressures of equilibration, and to construct a geothermal framework to interpret the upper mantle and lower crustal rock-type sequences for the region. The xenolith-derived paleogeotherm is constrained in the depth interval of 45–65 km and like others from areas of young basalt magmatism, is elevated and strongly convex toward the temperature axis. Two-pyroxene granulites give the lowest temperatures and garnet pyroxenites the highest, while the spinel lherzolites fall between these two groups. The present-day Moho beneath the Hannuoba area is defined at 42 km by seismic data, and coincides with the deepest occurrence of granulite. Above this boundary, there is a lower crust–upper mantle transition zone about 10-km thick, in which spinel lherzolites and mafic granulites (with variable plagioclase contents) are intermixed. It is inferred that this underplating has resulted in a lowering of the original pre-Cenozoic Moho (then coinciding with the crust–mantle boundary, CMB) from about 30 km to its present-day position and was due to intrusions of basaltic magmas that displaced peridotite mantle wall-rock and equilibrated to mafic granulites. Trace element patterns of the diopsides (analysed by laser ablation-ICPMS) from the Cr-diopside series spinel lherzolites and associated layered xenoliths (spinel lherzolites and pyroxenites) indicate a fertile uppermost mantle with moderate depletion by low degrees of partial melting and little evidence of metasomatic activity. The similarity in major and trace element compositions of the minerals in both rock types suggests that the layered ultramafic xenoliths formed by mantle deformation processes (metamorphic segregation), rather than by melt veining or metasomatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号