首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Bengal Fan Miocene sediments were collected during International Ocean Discovery Program Expedition 354 and investigated using petrographic and detrital garnet chemistry analyses. The Miocene Siwalik Group, which is composed of sediments deposited in the Himalayan foreland basin, was also analyzed for comparison with the Bengal Fan data for the provenance change during the Miocene. Our petrographic analyses revealed that the Miocene sediments of the Bengal Fan and Siwalik Group consist predominantly of Higher Himalayan Crystalline (HHC)-derived detritus such as chloritoid, staurolite, sillimanite, and/or kyanite, which appear among the accessory minerals. The chemistry of the detrital garnet varies across the stratigraphy; most of the garnet is rich in almandine and poor in spessartine and pyrope. However, pyrope-rich garnet, which is considered to originate from the HHC core (granulite facies), was found in the lower to upper Miocene deposits. The deposition of HHC-derived detrital garnet began before the Middle Miocene (15 Ma) and before the Late Miocene (10–9 Ma) in the Siwalik Group. The Bengal Fan data, by contrast, indicated that pyrope-rich garnet appeared in the Early Miocene (17.3 Ma) and Late Miocene (8.5–6.5 Ma). We conclude that the Bengal Fan sediments record the erosion of the HHC zone since the Early Miocene that appears in the Siwalik sediments. Furthermore, we found that the HHC-derived inputs decreased from the late Middle Miocene (12 Ma) to the early Middle Miocene (10 Ma) in both the Nepal Himalaya foreland basin and the Bengal Fan. The disappearance of the HHC-derived detritus is probably the result of dilution by Lesser Himalayan detritus, which suggests that the Lesser Himalayan zone, which is composed of metamorphosed and unmetamorphosed sedimentary rocks, was uplifted.  相似文献   

2.
The Upper Triassic Langjiexue Group in southeastern Tibet has long been an enigmatic geological unit. It belongs tectonically to the northern Tethys Himalayan zone, but provenance signatures of the detritus it contains are significantly different from those of typical Tethys Himalayan sandstones. Because the Langjiexue Group is everywhere in fault contact with Tethys Himalayan strata, its original paleogeographic position has remained controversial for a long time. According to some researchers, the Langjiexue Group was deposited onto the northern edge of the Indian passive continental margin, whereas others interpreted it as an independent block accreted to the northern Indian margin only during final India-Asia convergence and collision in the Paleocene. This study compares the Langjiexue Group and coeval Upper Triassic strata of the southern Tethys Himalayan zone(Qulonggongba Formation). Our new provenance data indicate that Qulonggongba Formation sandstones contain common felsic volcanic rock fragments, minor plagioclase, and euhedral to subhedral zircon grains yielding Late Paleozoic to Triassic ages. These provenance features compare well with those of the Langjiexue Group. Because the Qulonggongba Formation certainly belongs to the Tethys Himalayan zone, the provenance similarity with the Langjiexue Group indicates that the latter is also an in situ Tethys Himalayan sedimentary sequence rather than part of an exotic block. Volcanic detritus including Late Paleozoic to Triassic zircon grains in both Langjiexue Group and Qulonggongba Formation are interpreted to have been derived from the distant Gondwanide orogen generated by Pan-Pacific subduction beneath the southeastern margin of Gondwana. The Qulonggongba Formation, deposited above marlstones of the lower Upper Triassic Tulong Group, is overlain by India-derived coastal quartzose sandstones of the uppermost Triassic Derirong Formation. Deposition of both the Qulonggongba Formation and the Langjiexue Group were most likely controlled by regional tectonism, possibly a rifting event along the northern margin of Gondwana.  相似文献   

3.
Abstract The Himalaya is a fold-and-thrust wedge formed along the northern margin of the Indian continent, and consists of three thrust-bounded lithotectonic units; the Sub-Himalaya, the Lesser Himalaya, and the Higher Himalaya with the overlying Tethys Himalaya from south to north, respectively. The orogen-scale, intracrustal thrusts which bound the above lithotectonic units are splays off an underlying subhorizontal dkcollement, and show a southward propagating piggy-back sequence with an out-of-sequence thrust. Among these thrusts, the Main Central Thrust zone (MCT zone) has played a major role in Himalayan tectonics. The MCT zone represents a shear zone which has accommodated southward thrusting of the Higher Himalayan crystalline thrust sheet over the Lesser Himalayan sequence for ~140 km. The Kathmandu Nappe in central Nepal has been transported over the Lesser Himalayan metasediments along the MCT zone, and is locally separated from the Higher Himalayan thrust sheet in the north by an out-of-sequence thrust. 40Ar/39Ar ages have been determined for one whole-rock phyllite and six muscovite concentrates from metasedimenta-ry rocks and variably deformed granites in the Kathmandu Nappe. These ages range from 44 Ma to 14 Ma, and suggest a record of both Eo-Himalayan (Eocene) and Neo-Himalayan (Miocene) tectonothermal events in the Tertiary Himalayan orogeny. The Miocene event was associated with translation along the MCT zone. No tectonothermal event of the Late Miocene to Early Pliocene ages have been reported near the MCT zone in southern Lesser Himalayan crystalline nappe or klippe, although such events have been documented within and around the MCT zone in the northern root zone of the Higher Himalaya. This suggests that out-of-sequence thrusting may have occurred between 14 Ma and 5 Ma, probably during the period 10-7.5 Ma. Since then the frontal MCT zone below the Kathmandu Nappe has been inactive, but the MCT zone in the northern root zone has remained active. The rapid increase in denudation rates of the Higher Himalaya since the Late Miocene may have been caused by ramping along the out-of-sequence thrust at depth.  相似文献   

4.
A geological survey and morphological analysis of quartz grains were performed to investigate the distribution of ductile deformation caused by the Himalayan Main Central Thrust (MCT) around Dhankuta, southeastern Nepal. The MCT was mapped as the lithological boundary between the gneiss of the Higher Himalayan Crystalline (HHC) as the hanging wall and the inverted metamorphic sequence of the Lesser Himalayan Sediments (LHS) as the footwall. The MCT was found to truncate various stratigraphic levels of LHS and cuts a map‐scale gentle fold developed in the LHS. Ductile deformation was quantified by fractal dimension between size and perimeter of dynamically recrystallized quartz grains in bedded metaquartzite intercalated in both HHC and LHS. Serrate and polygonal shapes of quartz indicate large and small strain rates, respectively, when the temperature during ductile deformation was assumed to be uniform. A peak of strain rate was found at the lithological boundary with the peak width of ca. 500 m. Such a thin shear zone is favorable for producing frictional heat to promote the inverted metamorphism in LHS.  相似文献   

5.
Kazuo Kimura 《Island Arc》1999,8(1):99-113
The geomorphology and related geostructures in the region of the dun valleys in Nepal (e.g. the Deukhuri Dun, the Chitwan Dun, the Hetauda Dun and the Trijuga Dun) have been surveyed in order to understand the neotectonics along the Himalayan front. The sub-Himalayan intermontane basins developed as piggyback basins located on the thrust-sheet of the Himalaya Front Fault (HFF equivalent to the Frontal Churia Thrust, the Main Siwalik Thrust or the Main Frontal Thrust). Each piggyback basin is a result of the north-northeast–south-southwest crustal shortening between the Indian Shield and the Himalayas. The evolution of the dun valleys is recorded as current reversals between the Upper Siwalik Group and the basin fills. The Upper Siwalik Group formed as piedmont alluvial fans distributed along the foot of the Lesser Himalaya and/or the Inner Churia Range, and show predominantly southerly current directions. In contrast, the basin fills distributed along the southern margin of the dun valleys formed by north-flowing drainage systems. The oldest basin fills of the piggyback basins appear to have commenced by the middle Pleistocene in the Deukhuri Dun and the Chitwan Dun, by the late Pleistocene in the Hetauda Dun, and by the latest Pleistocene in the Trijuga Dun. The diachronous evolution of the dun valleys suggest that the morphogenesis of the HFF zone was controlled by west-to-east propagation in late Quaternary time. These morphotectonics suggest the oblique-slip thrusting of the HFF zone which can be related to the oblique convergence between the Indian Shield and the Himalayas, and/or the counter-clockwise rotation of the Indian Subcontinent.  相似文献   

6.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   

7.
From the point of view of plate kinematics a unified convergence velocity model is employed to derive a series of kinematic equations for deformation of Himalaya and Lhasa-Gangdise terranes during the Himalayan orogeny.These equations describe terrane shortening,crust-upper mantle thickening,lateral strike-slip movement,plateau surface uplift,erosion planation and isostatic height of the crust,etc.These kinematic equations for terrane deformation derived on the basis of mass conservat  相似文献   

8.
The collision of the Indian plate and the Eurasian plate created shortening and imbrications with thrusting and faulting which influences northward tectonic movement. This plate movement has divided the Himalaya into four parts, viz. Outer Himalaya, Lesser Himalaya, Greater Himalaya, and Tethys Himalaya. The crystalline basement rock plays an imperative role for structural and tectonic association. The study has been carried out near Rishikesh-Badrinath neighborhood in the northwestern part of the Himalayan girdle with multifarious tectonic set up with thrusted and faulted geological setting. In this study area, 3D Euler deconvolution, horizontal gradient analysis, tilt angle (TILT) and horizontal tilt angle (TDX) analysis have been carried out using gravity data to delineate the subsurface geology and heterogeneity in the northwestern part of Himalaya. The Euler depth solutions suggest the source depth of about 12 km and various derivative analyses suggest the trend of the delineation thrust-fault boundaries along with the dip and strike direction in the study area.  相似文献   

9.
Petrographic analysis and chemical analysis of major and trace elements including rare earth elements of the Neoproterozoic sandstones from the Chandarpur Group and the Tiratgarh Formation have been carried out to determine their provenance, tectonic setting and weathering conditions. All sandstone samples are highly enriched in quartz but very poor in feldspar and lithic fragments. Petrographically and geochemically these sandstones are classified as subarkose, sublitharenite and arenite. The Chemical Index of Alteration (CIA mean 68) and Th/U ratios (mean 4.2) for these sandstones suggest their moderate weathering nature. Generally, all sandstone samples are strongly depleted in major elements (except SiO2), trace elements (except Zr) and REE in comparison with Post Archean Australian Shale (PAAS) and Upper Continental Crust (UCC). Their mineralogy and mean of elemental ratios suitable for determination of provenance and tectonic setting, e.g. Al2O3/SiO2 (0.02), K2O/Na2O (10), Eu/Eu* (0.67), (La/Lu)n (10.4), La/Sc (3), Th/Sc (1.2), La/Co (0.22), Th/Co (0.08), and Cr/Th (7.2), support a felsic source and a passive margin tectonic setting for these sandstones. Also these key elemental ratios do not show much variation over a range of SiO2. Thus we attest their significance in determining source rock characteristics of quartz rich sandstones. Chondrite‐normalized REE patterns with LREE enrichment and a strong negative Eu anomaly are also attributed to felsic source rock characteristics for these sandstones. The source rocks identified are granite and gneiss of the Bastar craton. Minor amounts may have been derived from older supracrustals of the Bastar craton. However, the major element data of the Paleoproterozoic Sakoli schists when compared with those of the Neoproterozoic sandstones indicate that the schists were derived from a mafic source and deposited in an active continental margin tectonic setting. There is, however, little difference in CIA values between the Paleoproterozoic Sakoli schists and Neoproterozoic sandstones, indicating prevailing of similar (moderate‐intense) weathering conditions throughout the Proterozoic in the Bastar craton. Our study also suggests a change in the provenance and tectonic setting of deposition of sediments from dominantly a mafic source and an active continental margin in the Paleoproterozoic to dominantly granite and gneiss (felsic source) and a passive continental margin in the Neoproterozoic in the Bastar craton.  相似文献   

10.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

11.
Thick terminal Proterozoic–lowest Cambrian successions allow reference of the Saint John, New Brunswick, and MacCodrum Brook, southern Cape Breton Island, areas to the marginal platform of the Avalon microcontinent. Marginal-platform siliciclastic-dominated sequences form a cover on Late Precambrian arc successions from southern New Brunswick to North Wales. Their deposition in fault-bounded basins began with the origin of the Avalon microcontinent and development of a persistent transtensional regime in the latest Precambrian. The terminal Proterozoic–lowest Cambrian on the Avalonian marginal platform consists of three successive lithofacies associations: lower subaerial rift to marginal-marine facies; overlying cool-water, wave-influenced, marine platform sandstones and shales; and higher macrotidal quartz arenites (=Avalonian depositional sequences 1–2). Only the Lower Cambrian macrotidal quartz arenites onlap southeast, where they form the oldest Cambrian unit on the inner platform. These major lithofacies are the Rencontre, Chapel Island, and Random formations, respectively, in Avalonian North America. Southwest thinning of the Rencontre–Chapel Island–Random interval in southern New Brunswick reflects slower subsidence of a fault-bounded area in the city of Saint John. The depositional sequence 1–2 unconformity, which falls in the sub-trilobitic Lower Cambrian Watsonella crosbyi Zone of the Chapel Island Formation, persists for 650 km along the marginal platform from southeastern Newfoundland to southern New Brunswick and, potentially, appears in Cape Breton Island. Latest Precambrian-earliest Cambrian epeirogenic and depositional history was very uniform along the marginal platform, and a unified lithostratigraphic nomenclature is appropriate.  相似文献   

12.
The Devonian–Carboniferous Tsetserleg terrane of Mongolia forms part of the complex Central Asian Orogenic Belt (CAOB). The Tsetserleg terrane consists mainly of clastic sediments, and is situated in the southern Hangay–Hentey Basin. Internally the terrane is divided into the Erdenetsogt (Middle Devonian), Tsetserleg (Middle‐Upper Devonian) and Jargalant (Lower Carboniferous) Formations. Provenance and tectonic setting of the Hangay–Hentey Basin remains controversial, with proposals ranging from passive margin through to island‐arc. A suite of 94 Tsetserleg sandstones and mudrocks was collected with the aim of constraining provenance, source weathering, and depositional setting, using established petrographic and whole‐rock geochemical parameters. Petrographically the sandstones are immature, with average compositions of Q22F14L64, Q14F17L69, and Q18F12L70 in the Erdenetsogt, Tsetserleg, and Jargalant Formations, respectively. Lv/L ratios range from 0.81 to 1.00 (average 0.95), and P/F from 0.68 to 0.93 (average 0.83). Framework compositions indicate deposition in an undissected or transitional arc. Geochemically, the sandstones are classified as greywackes. Geochemical contrasts between sandstone and mudrock averages in each formation are small, with lithotype means for SiO2 ranging only from 65.54 to 68.62 wt.%. These features and weak trends on variation diagrams reflect the immaturity of the sediments. Comparison of elemental abundances with average upper continental crust, major element discriminant scores, and immobile element ratios indicate a uniform average source composition between dacite and rhyolite. The maximum value for the Chemical Index of Alteration in the Erdenetsogt Formation is about 78 after correction for K‐metasomatism, indicating moderate source weathering. Lower maximum values (61 and 63, respectively) in the Tsetserleg and Jargalant Formations indicate they were derived from a virtually unweathered and tectonically active source. Tectonic setting discrimination parameters indicate a continental island‐arc environment, similar to several other CAOB suites of similar age. This arc source may have been built on a continental fragment situated within the Mongol–Okhotsk Ocean during Middle Devonian‐Lower Carboniferous time.  相似文献   

13.
Abstract The Archean to Paleo–Proterozoic Bundelkhand massif basement of the central Indian shield has been dissected by numerous mafic dykes of Proterozoic age. These dykes are low‐Ti tholeiites, ranging in composition from subalkaline basalt through basaltic‐andesite to dacite. They are enriched in light rare earth elements (LREE), large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE: Nb, P and Ti). Negative Sr anomaly is conspicuous. Nb/La ratios of the dykes are much lower compared with the primitive mantle, not much different from the average crustal values, but quite similar to those of continental and subduction related basaltic rocks. Bulk contamination of the mantle derived magma by crustal material is inadequate to explain the observed geochemical characteristics; instead contamination of the mantle/lithospheric source(s) via subduction of sediment is a better proposition. Thus, in addition to generating juvenile crust along the former island arcs, subduction processes appear to have influence on the development of enriched mantle/lithospheric source(s). The Bundelkhand massif basement is inferred to represent subduction related juvenile crust, that experienced lithospheric extension and rifting possibly in response to mantle plume activities. The latter probably supplied the required heat, material (fluids) and extensional environment to trigger melting in the refractory lithospheric source(s) and emplacement of the mafic dykes. Proterozoic mafic magmatic rocks from Bundelkhand, Aravalli, Singhbhum and Bastar regions of the Indian shield and those from the Garhwal region of the Lesser Himalaya display remarkably similar enriched incompatible trace elements characteristics, although limited chemical variations are observed in all these rocks. This may indicate the existence of a large magmatic province, different parts of which might have experienced similar petrogenetic processes and were probably derived from mantle/lithospheric source(s) with similar trace element characteristics. The minor, less enriched to depleted components of the Jharol Group of the Aravalli terrane and those from the Singhbhum terrane may represent protracted phases of rifting, that probably caused thinning and mobilization of the lithosphere, facilitating the eruption/emplacement of the asthenospheric melts (with N‐ to T‐types mid‐oceanic ridge basalts signatures) and deposition of deep water facies sediments in the younger developing oceanic basins. In contrast, Bundelkhand region did not experience such protracted rifting, although dyke swarms were emplaced and shallow water Bijawar Group and Vindhyan Supergroup sediments were deposited in continental rift basins. All these discrete Proterozoic terranes appear to have experienced similar petrogenetic processes, tectonomagmatic and possibly temporal evolution involving subduction processes, influencing the lithospheric source characteristics, followed by probably mantle plume induced ensialic rifting through to the development of oceanic basins in the Indian shield regions and their extension in the Lesser Himalaya.  相似文献   

14.
Geological studies indicate that the southeastern Sanandaj–Sirjan Zone, located in the southeastern Zagros Orogenic Belt, is subdivided transversally into the Esfahan–Sirjan Block with typical Central Iranian stratigraphic features and the Shahrekord–Dehsard Terrane consisting of Paleozoic and Lower Mesozoic metamorphic rocks. The Main Deep Fault (Abadeh Fault) is a major lithospheric fault separating the two parts. The purpose of this paper is to clarify the role of the southeastern Sanandaj–Sirjan Zone in the tectonic evolution of the southeastern Zagros Orogenic Belt on the basis of geological evidence. The new model implies that Neo‐Tethys 1 came into being when the Central Iran Microcontinent split from the northeastern margin of Gondwana during the Late Carboniferous to Early Permian. During the Late Triassic a new spreading ridge, Neo‐Tethys 2, was created to separate the Shahrekord–Dehsard Terrane from Afro–Arabian Plate. The Zagros sedimentary basin was formed on a continental passive margin, southwest of Neo‐Tethys 2. The two ophiolitic belts of Naien–Shahrebabak–Baft and Neyriz were developed to the northeast of Neo‐Tethys 1 and southwest of Neo‐Tethys 2 respectively, related to the sinking of the lithosphere of the Neo‐Tethys 1 in the Late Cretaceous. It can be concluded that deposition of the Paleocene conglomerate on the Central Iran Microcontinent and Pliocene conglomerate in the Zagros Sedimentary Basin is directly linked to the uplift generated by collision.  相似文献   

15.
青藏高原地体划分的地球物理标志研究   总被引:27,自引:9,他引:27       下载免费PDF全文
基于青藏高原巨厚的地壳结构和复杂的地球物理场特征,提出依据地震活动与波场标志、岩石层结构与速度场标志、古地磁标志、位场标志、温度场标志、地质与构造标志作为进行青藏高原地体划分的原则.据此,由北向南将青藏高原及其相邻地带划分为7个地体,即柴达木地体、昆仑地体、可可西里-巴颜喀拉地体、羌塘地体、拉萨-冈底斯地体、喜马拉雅地体和恒河平原地体,它们的分布格局与特征对青藏高原的形成、演化和板块运动及动力机制的研究起着重要的作用.  相似文献   

16.
The petrography and major and trace element concentrations of the sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, are studied to determine their provenance, intensity of weathering and tectonic setting. The detrital compositions of the Tumengela sandstone samples are dominated by quartz (58.0–70.1 %, average 64.7 %) and lithic fragments (21.8–35.9 %, average 27.3 %), but low in feldspar content (4.9–12.9 %, average 8.0 %). The sandstones can be classified as litharenite and feldspathic litharenite according to their detrital compositions, which is consistent with the geochemical data. The detrital modal compositions reflect that these sandstones are probably derived from a recycled orogenic source. The index of chemical variability (ICV) and SiO2/Al2O3 ratio values suggest that the compositional maturity and recycling were moderate. The weathering indices such as the chemical index of alteration (CIA), plagioclase index of alteration (PIA), chemical index of weathering (CIW), and Al2O3–(CaO* + Na2O)–K2O (A–CN–K) diagram indicate that the intensities of weathering in the source area were moderate. The Al2O3/TiO2, Th/Co, La/Sc, La/Co, Th/Sc, Cr/Th ratio values and the discriminant function of the Tumengela sandstones indicate that the sediments were mainly derived from felsic source rocks, while also mixed with intermediate source rocks. The comparison of rare earth element patterns and its Eu anomalies to the probable source rocks infer that the sandstones were derived from the combination of granite, rhyolite, dacite, and gneisses. The proximal central uplift belt was probably the primary provenance area as evidenced by the petrographical and geochemical features of the Tumengela sandstones. The multidimensional tectonic discrimination diagram based on major elements show a collision setting (80 %) combined with a rift setting (20 %) for the Tumengela sandstones, which is consistent with the general geology of the study areas.  相似文献   

17.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

18.
New geologic mapping in the Marsyandi Valley of central Nepal reveals the existence of tectonically significant Quaternary thrust faults at the topographic front of the Higher Himalaya. The zone of recent faulting is coincident with an abrupt change in the gradient of the Marsyandi River and its tributaries, which is thought to mark the transition from a region of rapid uplift in the Higher Himalayan ranges to a region of slower uplift to the south. Uplift of the Higher Himalaya during the Quaternary is not entirely due to passive uplift over a deeply buried ramp in the Himalayan sole thrust, as is commonly believed, but partially reflects active thrusting at the topographic front. The zone of active thrusting is also coincident with a zone of intense monsoon precipitation, suggesting a positive feedback relationship between focused erosion and deformation at the front of the Higher Himalayan ranges.  相似文献   

19.
Study indicates that the major paleocurrent and source direction for the Chang 8 Member of the Yangchang Formation, Upper Triassic in the Xifeng area of the southwestern Ordos Basin derived from the southwest direction with the southeast source as the subordinate one. While the Chang 6 Member was influenced not only by the same source as that of the Chang 8 Member from the southwest and the southeast direction, but also affected by the northeast and the east provenance around the Ordos Basin, based upon measurement of paleocurrents on outcrops located in the periphery Ordos Basin, analysis of framework grains and heavy minerals in sandstones of the Chang 6 and Chang 8 Members and their spatial distribution in the study area, combined with characteristics of trace elements and rare-earth elements of mudstones and of a small amount of sandstones in the Xifeng area and outcrops in margin of the Ordos Basin. The Yuole-Xuanma-Gucheng-Heshui-Ningxia region located in the northeastern and the eastern Xifeng area was the mixed source area where the southwest, southeast, northeast and the east sources were convergent till the Chang 6 Member was deposited. The rare earth elements of the Chang 6 and Chang 8 Members are characterized by slight light rare earth-elements (LREE) enrichment and are slightly depleted in heavy rare earth-elements (HREE) with weak to moderate negative abnormal Eu, resulting in a right inclined REE pattern, which implies that the source rocks are closely related with better differential crust material. Analysis on geochemical characteristics of the mudstones and sandstones, features of parent rocks in provenance terranes and tectonic settings shows that source rocks for the Chang 8 Member mainly came from metamorphic and sedimentary rocks in transitional continental and basement uplift terranes with a small amount of rocks including metamorphic, sedimentary and igneous rocks coming from mixed recycle orogenic belt located in the southwest margin of the Ordos basin. Rocks in the crystalline basement and the overlying sedimentary cover in a basement uplift setting in the northeast periphery of the basin also contributed a part of the sources for the Chang 6 Member, in addition to the sources deriving from transitional continental and basement uplift terranes in the southwest margin of the basin. Parent rocks of the provenance terrane in the northeast margin of the Ordos Basin are characterized by having more felsic rocks.  相似文献   

20.
The Precordillera of Argentina is widely accepted as an exotic terrane of Laurentian (North American) affinity. Newly acquired U/Pb ages on individual detrital zircons from Lower Cambrian and Upper Ordovician quartz sandstone beds in the Argentine Precordillera indicate a Gondwanan provenance not associated with any known part of Laurentia. Accordingly, the Precordillera terrane is likely underlain by basement rock of Gondwanan affinity. In addition, detrital zircons from the Upper Ordovician sandstone bed provide no evidence for a Mid Ordovician position against the inboard Famatina arc. These results demand critical re-evaluation of widely held assumptions regarding the paleogeography of the Argentine Precordillera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号