首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maxwell  A.  Rinehart  R. 《Solar physics》1974,37(2):437-442

The dynamic radio spectrum of the class 3B solar flare of 1972, August 7, 15: 00 UT, over the band 10 to 2000 MHz is examined. Type II and type IV bursts in the spectrum are interpreted in terms of a piston-driven shock, which appeared to be travelling at a velocity of about 1500 km s?1 and which generated pulsations in the band 100 to 200 MHz as it passed through the corona. The progress of the shock through the interplanetary plasma was subsequently monitored by Malitson et al. with radio equipment covering the band 0.03 to 2.6 MHz on the IMP-6 satellite.

  相似文献   

2.
Plasma temperature observations in the solar wind at 1 AU show that very low temperatures of electrons and protons appear not only after interplanetary shock waves, but also after solar wind streams. It is generally believed that the region embedded by a fast preceding and a slower following solar wind is expanding. In this way, the plasma inside may become cooler. In this analysis, we use plasma measurements made aboard the VELA and IMP satellites. Due to the limitations of data, we only give a qualitative picture of the possibility that low temperature regions may be given to local expansions of the plasma. In addition, we assume that these regions are not magnetically closed and therefore not thermically isolated, but are open and connected with the hot corona along the interplanetary magnetic field lines. Therefore, these regions are heated from the corona due to the thermal conduction. In this analysis both the theoretically predicted and the experimentally measured conducted electron heat fluxes are considered.  相似文献   

3.
Bravo  S.  Stewart  G. A.  Blanco-Cano  X. 《Solar physics》1998,179(2):223-235
The Sun's magnetic field extends far from the photosphere, into the corona, defining a magnetically dominated region before being drawn out radially by the solar wind flow. This region, where the internal sources of the solar field dominate the plasma structures and the energetic particle movement, can be properly considered the solar magnetosphere. The magnetic field in this region can be approximately described by models that extrapolate photospheric magnetic field observations under some simplifying assumptions. In this paper we use a potential field model which describes the solar field up to a source surface at 3.25 Rs, where the field is constrained to become radial. We present the variation of the magnitude and inclination of the various multipolar components throughout the solar magnetic cycle that characterise the changes in the structure of the solar magnetosphere over a period of 22 years. We also present some 3-D images of the coronal magnetic structure to show the global evolution of the solar magnetosphere throughout the solar cycle and discuss the importance of taking this structure into account in order to relate interplanetary and solar features.  相似文献   

4.
As is well known, the interplanetary magnetic field is the extension of the solar magnetic field, and the solar wind is the extension of the solar corona (Biermann, 1951; Parker, 1958). Consequently, knowledge of these two interplanetary structures reflects a knowledge of the solar corona itself.Calculations of radial proton temperature gradients within magnetic sector boundaries, observed by Helios-1 and Helios-2 heliocentric satellites between 0.3 and 1.0 AU, revealed lower temperatures in the solar corona in the region where these boundaries merge.  相似文献   

5.
We present the basics of the exospheric models of the solar wind acceleration. In these models the plasma is assumed fully collisionless above a typical altitude in the corona. The solar wind is accelerated by the interplanetary electrostatic potential which is needed to warrant the equality of the proton and electron fluxes. These models suggest that the fast wind emanating from the polar regions could be due to the presence of non-thermal electron distributions in the corona. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Observations of interplanetary scintillation of radio sources are used to estimate the size of plasma irregularities down to a distance of about 6 R from the Sun. This is compared with the values of the ion gyro-radius estimated for a range of distance from 1 AU to about 6 R from the Sun. The results of the calculations are discussed in the context of the hypothesis of plasma instability which is invoked to interpret the observations of the scattering of radio waves in the solar corona and of interplanetary scintillations.  相似文献   

7.
The numerical integration of hydrodynamics equations with an allowance for thermal conductivity was made using the temperature distribution in the corona situated above the active regions obtained from the damping time of solar radio bursts of Types III and V. It is essential that for the integration path serve the magnetic field lines along which exciters of bursts are moving and accelerated coronal plasma can move freely too.The main result is the discovery of such regions, where the high temperature gradient precludes the possibility of a continuous flow of coronal plasma. These regions, where intense heating and rapid acceleration of the coronal plasma take place, were situated at distances of about 2 R from the Sun's center. They probably possess the character of weak detonation waves. The waves of cooling can also be present in these regions of discontinuity of the flow. The observations of bursts of Type V at distances up to 6.3 R gives some evidence that discontinuities of flow of the solar wind of the same nature can possibly arise also in the more remote parts of the solar corona.It is important that the similar jumps of velocity and other parameters of coronal plasma were also discovered earlier in a quite independent way as a result of the interpretation of the solar radio echo data. It can be anticipated that the nonthermal heating of coronal plasma, which was postulated to remove discrepancies between the existing models and observations of solar wind, was localized mainly in these regions thus playing an important role in the formation of the fundamental properties of the interplanetary medium.The obtained results are of preliminary character since there are no reliable and homogeneous data on bursts of Types III and V especially at 20-10 MHz, where the work is difficult due to the man-made interference and also at still lower frequencies, observed by the cosmic probes. We can hope that the filling of this gap allows us to construct a realistic model of outflow of coronal plasma from active regions, which can be successfully compared with the results of direct measurement of parameters of solar wind.  相似文献   

8.
Observations of accelerated particle beams are used to probe the coronal and interplanetary magnetic field structures over large distances from the Sun on the order of a few AU and for various heliolatitudes. It is shown that the propagation of low energy particles is very much controled by discrete interplanetary magnetic field structures. These discrete magnetic structures are sometimes embedded within interplanetary solar wind plasma disturbances, commonly called CMEs. The connection between the corona and the interplanetary medium is discussed. These observations lead to new insights on the origin of accelerated particles detected in association with CMEs.  相似文献   

9.
Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He?ii Ly?α line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona, the contribution from the nearby Si?xi 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g. Mg?x 62.5 nm, Si?xii 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si?xi line dominates the He?ii line from just above the limb up to ≈?2?R in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ≈?2?–?3?R , the precise value being strongly dependent on the coronal temperature profile.  相似文献   

10.
This paper will review the input of 65 years of radio observations to our understanding of solar and solar–terrestrial physics. It is focussed on the radio observations of phenomena linked to solar activity in the period going from the first discovery of the radio emissions to present days. We shall present first an overview of solar radio physics focussed on the active Sun and on the premices of solar–terrestrial relationships from the discovery to the 1980s. We shall then discuss the input of radioastronomy both at metric/decimetric wavelengths and at centimetric/millimetric and submillimetric wavelengths to our understanding of flares. We shall also review some of the radio, X-ray and white-light signatures bringing new evidence for reconnection and current sheets in eruptive events. The input of radio images (obtained with a high temporal cadence) to the understanding of the initiation and fast development in the low corona of coronal mass ejections (CMEs) as well as the radio observations of shocks in the corona and in the interplanetary medium will be reviewed. The input of radio observations to our knowledge of the interplanetary magnetic structures (ICMEs) will be summarized; we shall show how radio observations linked to the propagation of electron beams allow to identify small scale structures in the heliosphere and to trace the connection between the Sun and interplanetary structures as far as 4AU. We shall also describe how the radio observations bring useful information on the relationship and connections between the energetic electrons in the corona and the electrons measured in-situ. The input of radio observations on the forecasting of the arrival time of shocks at the Earth as well as on Space Weather studies will be described. In the last section, we shall summarize the key results that have contributed to transform our knowledge of solar activity and its link with the interplanetary medium. In conclusion, we shall indicate the instrumental radio developments at Earth and in space, which are from our point of view, necessary for the future of solar and interplanetary physics.  相似文献   

11.
Ions heavier than 4He are treated as “minors” in the solar wind. This is justified for many applications since minor ions have no significant influence on the dynamics of the interplanetary plasma. However, minor ions carry information on many aspects of the formation, on the acceleration and on the transfer of solar plasma from the corona into the interplanetary space. This review concentrates on various aspects of minor ions as diagnostic tracers. The elemental abundance patterns of the solar wind are shaped in the chromosphere and in the lower transition region by processes, which are not fully understood at this moment. Despite this lack of detailed understanding, observed abundance patterns have been classified and are now commonly used to characterize the sources, and to trace back solar-wind flows to their origins in the solar atmosphere. Furthermore, the solar wind is the most important source of information for solar isotopic abundances and for solar abundances of volatile elements. In order to fully exploit this information, a comprehensive understanding of elemental and isotopic fractionation processes is required. We provide observational clues to distinguish different processes at work.  相似文献   

12.
A model is presented which shows that large numbers of energetic electrons (0.3-> 10 MeV) and protons (1–30 MeV) can be stored in the solar corona at altitudes around 3 × 105 km for periods in excess of 5 days. Specific reference is made to the time period July 6–16 1968 as an excellent example of energetic solar particle storage. Time histories of interplanetary charged particle intensities observed by the IMP-4 and Pioneer 8 satellites are used to substantiate this contention. Detailed reference is also made to solar X-ray, optical and radio data obtained during the period in question, in addition to interplanetary magnetometer data. This model provides a unique solution to many hitherto unexplained solar particle events, and can also account for the lack of prompt particle emission from certain large solar flares recorded in the past.  相似文献   

13.
When solar wind plasma in the trailing (eastern) edge of a high-speed stream is mapped back to its estimated source in the high corona using the constant radial velocity (EQRH) approximation, a large range of velocities appears to come from a restricted range in longitude, often only a few degrees. This actually constitutes a sharp eastern coronal boundary for the solar wind stream source, and demands that the boundary have a three-dimensional structure. Using interplanetary data, we infer a systematic variation in source altitude (identified approximately with the Alfvén point), with faster solar wind attaining its interplanetary characteristics at lower altitudes. This also affects the accuracy of the source longitude estimates, so that we infer a width in the high corona of 4–6° for the source of the trailing edges of streams which appear to originate from a single longitude. We demonstrate that the possible systematic interplanetary effects (in at least some cases) are not large ( 2° in heliocentric longitude). The relatively sharp boundaries imply that high-speed streams are well-defined structures all the way down to their low coronal sources, and that the magnetic field structure controls the propagation of the plasma through the corona out to the vicinity of the Alfvén point ( 20 R ).  相似文献   

14.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

15.
Fine time resolution observations of the angular distributions of the intensities of energetic electrons (220 ≤ E e ≤ 500 keV) by the IMP-7 and 8 spacecraft during the onsets of solar electron events and the technique of mapping the solar wind to the solar corona have been incorporated in this work in order to obtain the large-angle scattering distance of these particles under different configurations of the large scale structure of the interplanetary medium. It is found that in the presence of stream-stream interaction regions with compressed magnetic fields beyong 1 AU, the large-angle scattering is determined by the distance along the streamlines from the spacecraft to their intersection by a faster solar wind stream. In cases of diverging magnetic fields the estimated large-angle scattering distance exceeds 1 AU.  相似文献   

16.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

17.
Analysis of observations of the white-light corona performed aboard OSO-7 is evidence for the existence of coronal ribbon-structures, which may be observed on the limb as coronal streamers. It is shown that prolongation of these structures into interplanetary space forms a curved surface; intersection of this surface is accompanied by a change of polarity of the interplanetary magnetic field, which existed in May–July 1973; and its connection with several phenomena in the solar atmosphere, has been found.  相似文献   

18.
Reiner  M.J.  Kaiser  M.L.  Karlický  M.  Jiřička  K.  Bougeret  J.-L. 《Solar physics》2001,204(1-2):121-137
We describe the radio signatures that led up to and concluded the solar eruptive event of 14 July 2000 (Bastille Day Event). These radio signatures provide a means of remotely sensing the associated solar activity and transient phenomena. For many days prior to the Bastille Day Event kilometric Type III radio storm emissions were observed that were presumably associated with the active region NOAA 9077. These storm emissions continued until the X5.7 flare at ∼ 10 UT on 14 July 2000 that characterized the Bastille Day Event, then ceased abruptly. The Bastille Day Event itself produced very intense, complex, long-duration Type III-like radio emissions, which appear to have been associated with electrons generated (accelerated) deep in the solar corona. The coronal mass ejection (CME) associated with the Bastille Day Event generated decametric to kilometric Type II radio emissions as the CME propagated through the solar corona and interplanetary medium. The frequency drift of these Type II radio emissions are related to the dynamics of the propagating CME and indicate that the CME experienced significant deceleration as it propagated from the high corona into the interplanetary medium.  相似文献   

19.
Based on the data of the high-apogee satellite Prognoz-3, the April 29–30, 1973 solar particle event is analysed. The event's complex energetic particle, interplanetary magnetic field and solar wind plasma properties are discussed. The unusual behaviour of solar particles up to energies 100 MeV can well be explained in terms of the interaction with an interplanetary shock wave system passing the Earth. Assuming that the structure of the interplanetary shock wave system is similar to that considered first by Parker (1961) and Gold (1959) and reviewed later by Hundhausen (1972) and Dryer (1974, 1975), the main characteristics of the energetic particle fluxes, solar wind and interplanetary magnetic field can be understood.  相似文献   

20.
T. Takakura 《Solar physics》1977,52(2):429-461
Numerical analysis of quasi-linear relaxation has been made for four models of electron beam with a finite length travelling through the plasma. In Model 4, a model atmosphere of the corona is adopted and also an increase in the cross-section of the electron beam is taken into account. The electron velocity distribution generally becomes a quasi-plateau form in limited velocity and time ranges. If, however, collisional decay of the fast electrons is too strong and the initial beam density is not high enough, the plateau does not appear. Collisional damping of plasma waves cannot be neglected, since the growth rate of the waves is strongly suppressed by the appearance of the quasi-plateau.An approximate formula for the velocity distribution of the solar electrons passing through the corona has been derived analytically taking into account not only the interaction with plasma waves, but also the collisional damping of the plasma waves and collisions with thermal particles. By the use of this formula, we can easily compute the time profile of the plasma waves caused by these solar electrons at any given place in the interplanetary space. The validity of this semi-analytical approach is checked by the numerical analysis of Model 4, showing a satisfactory fit between the numerical and semi-analytical results.The direct application of this method to the problems of type III radio bursts is left to a later paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号