首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

2.
132 soft X-ray flare events have been observed with The Aerospace Corporation/Marshall Space Flight Center S-056 X-ray telescope that was part of the ATM complement of instruments aboard Skylab. Analyses of these data are reported in this paper. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-rays emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. Loop structures are found to constitute a fundamental characteristic of flare cores and arcades of loops are found to play a more important role in the flare phenomena than previously thought. Size distributions of these core features are presented and a classification scheme describing the brightest flare X-ray features is proposed. The data show no correlations between the size of core features and: (1) the peak X-ray intensity, as indicated by detectors on the SOLRAD satellite; (2) the rise time of the X-ray flare event, or (3) the presence of a nonthermal X-ray component. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be the result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or re-orientation of these features. Brief comparisons with several theories are presented.  相似文献   

3.
γ射线暴是宇宙中恒星尺度的最剧烈爆发现象。γ射线暴瞬时辐射结束后,进入余辉辐射阶段。X射线耀发是γ射线暴X射线辐射衰减过程中出现的短时标闪耀现象。X射线耀发的脉冲轮廓具有不对称性,其上升时标小于下降时标。在部分γ射线暴中,X射线耀发的亮度达到瞬时辐射的亮度。X射线耀发的持续时间与峰值时间具有线性关系。X射线耀发的光谱比X射线余辉的光谱硬。早期X射线耀发与晚期X射线耀发相比,其脉冲轮廓较窄,光谱较硬。X射线耀发产生的物理过程类似于γ射线暴瞬时辐射的物理过程。在火球(fireball)模型中,内部壳层之间发生碰撞,产生的内激波加速电子,电子的同步辐射产生X射线耀发。当火球扫过星际介质,外激波加速电子时,电子的同步辐射也可产生X射线耀发。在光球(photospere)模型中,能量耗散发生在光学厚的区域,热辐射的光谱峰值落在X射线能段附近,γ射线暴的喷流在光球半径处会产生X射线耀发。如果射线暴喷流由坡印亭能流主导,喷流就会与星际介质相互作用,磁场的不稳定性使磁场发生耗散,产生的能量形成X射线耀发。γ射线暴的喷流具有几何效应。一部分同步辐射可能发生在喷流辐射面的高纬度处。由于曲率效应(curvature effect),各向异性辐射与各向同性辐射相比,X射线耀发的峰值出现较晚。此外,在γ射线暴发生后,黑洞会间歇性地吸积外部介质。在吸积过程中,黑洞周围的磁场会调节吸积的速率和喷流中的能量,这是出现多个X射线耀发的原因。  相似文献   

4.
The determination of the location of the region of origin of hard X-rays is important in evaluating the importance of 10–100 keV electrons in solar flares and in understanding flare particle acceleration. At present only limb-occulted events are available to give some information on the height of X-ray emission. In fifteen months of OSO-7 operation, nine major soft X-ray events had no reported correlated Hα flare. We examine the hard X-ray spectra of eight of these events with good candidate X-ray flare producing active regions making limb transit at the time of the soft X-ray bursts. All eight bursts had significant X-ray emission in the 30–44 keV range, but only one had flux at the 3σ level above 44 keV. The data are consistent with most X-ray emission occurring in the lower chromosphere, but some electron trapping at high altitudes is necessary to explain the small nonthermal fluxes observed.  相似文献   

5.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

6.
The mean density of the UV Cet-type flare stars in the solar neighbourhood is estimated. If differences of activity levels on different flare stars are taken into account, their summary flare activity is equivalent to 0.03 YZ CMi's flare activity per cubic parsec or to 4×1026 erg s–1 pc–3 in U-passband. From the X-ray flare observation on YZ CMi of 19.10.74 we estimate the luminosity of stellar flares in soft and intermediate X-ray. The ratio of X-ray to optical radiation for stellar flares is close to the respective ratio for strong solar chromospheric flares. It is shown the set of red-dwarf flare stars has all essential features of an ensemble of discrete X-ray sources to represent the galactic diffuse X-ray background.  相似文献   

7.
Statistical analysis of the relationship between type II radio bursts appearing in the metric (m) and decameter-to-hectometer (DH) wavelength ranges is presented. The associated X-ray flares and coronal mass ejections (CMEs) are also reported. The sample is divided into two classes using the frequency-drift plots: Class I, representing those events where DH-type-II bursts are not continuation of m-type-II bursts and Class II, where the DH-type-II bursts are extensions of m-type-II bursts. Our study consists of three steps: i) comparison of characteristics of the Class I and II events; ii) correlation of m-type-II and DH-type-II burst characteristics with X-ray flare properties and iii) correlation of m-type-II and DH-type-II burst characteristics with CME properties. We have found no clear correlation between properties of m-type-II bursts and DH-type-II bursts. For example, there is no correlation between drift rates of m-type-II bursts and DH-type-II bursts. Similarly there is no correlation between their starting frequencies. In Class I events we found correlations between X-ray flare characteristics and properties of m-type-II bursts and there is no correlation between flare parameters and DH-type-II bursts. On the other hand, the correlation between CME parameters and m-type-II bursts is very weak, but it is good for CME parameters and DH-type-II bursts. These results indicate that Class I m-type-II bursts are related to the energy releases in flares, whereas DH-type-II bursts tend to be related to CMEs. On the contrary, for Class II events in the case of m-type-II and DH-type-II bursts we have found no clear correlation between both flare and CMEs.  相似文献   

8.
We have re-evaluated the association of type II solar radio bursts with flares and/or coronal mass ejections (CMEs) using the year 2000 solar maximum data. For this, we consider 52 type II events whose associations with flares or CMEs were absent or not clearly identified and reported. These events are classified as follows; group I: 11 type IIs for which there are no reports of GOES X-ray flares and CMEs; group II: 12 type IIs for which there are no reports of GOES X-ray flares; and group III: 29 type IIs for which the flare locations are not reported. By carefully re-examining their association from GOES X-ray and H, Yohkoh SXT and EIT-EUV data, we attempt to answer the following questions: (i) if there really were no X-ray flares associated with the above 23 type IIs of groups I and II; (ii) whether they can be regarded as backside events whose X-ray emission might have been occulted. From this analysis, we have found that two factors, flare background intensity and flare location, play important roles in the complete reports about flare–type II–CME associations. In the above 23 cases, for more than 50% of the cases in total, the X-ray flares were not noticed and reported, because the background intensity of X-ray flux was high. In the remaining cases, the X-ray intensity might be greatly reduced due to occultation. From the H flare data, Yohkoh SXT data and EIT-EUV data, we found that ten cases out of 23 might be frontside events, and the remaining are backside events. While the flare–type II association is found to be nearly 90%, the type II–CME association is roughly around 75%. This analysis might be useful to reduce some ambiguities regarding the association among type IIs, flares and CMEs.  相似文献   

9.
During the solar flare of June 10, 1990, the WATCH instrument of the GRANAT space observatory obtained 110 localizations of the X-ray source in the X-ray range 8–20 keV. Its coordinates were measured with an accuracy of ~2 arcmin at a 3σ confidence level. The coordinates of the X-ray source do not coincide with the coordinates of the Hα-line flare. The X-ray source moved over the solar disk during the flare. This probably implies that, as the X-ray emission was generated, different parts of one loop or a system of magnetic loops dominated at different flare times.  相似文献   

10.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

11.
The effect of partial ionisation of a thick target bremsstrahlung source on the emitted X-ray intensity is analysed. It is shown that a totally ionised target produces an X-ray burst only about one third as intense as that from an unionised target.In the case of a solar flare plasma target, the ionisation decreases with increasing depth in the flare. Thus, in an X-ray flare model in which electrons are continuously accelerated down into the chromosphere, high energy photons are produced with increased efficiency in the deeper layers of the flare plasma with consequent hardening of the X-ray spectrum. As a result, the spectra of nonthermal electrons in flares, inferred from X-ray spectra, are steepened and their total energy correspondingly increased.  相似文献   

12.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

13.
A multi-wavelength spatial and temporal analysis of solar high-energy electrons is conducted using the August 20, 2002 flare of an unusually flat (γ1 = 1.8) hard X-ray spectrum. The flare is studied using RHESSI, Hα, radio, TRACE, and MDI observations with advanced methods and techniques never previously applied in the solar flare context. A new method to account for X-ray Compton backscattering in the photosphere (photospheric albedo) has been used to deduce the primary X-ray flare spectra. The mean electron flux distribution has been analysed using both forward fitting and model-independent inversion methods of spectral analysis. We show that the contribution of the photospheric albedo to the photon spectrum modifies the calculated mean electron flux distribution, mainly at energies below ∼100 keV. The positions of the Hα emission and hard X-ray sources with respect to the current-free extrapolation of the MDI photospheric magnetic field and the characteristics of the radio emission provide evidence of the closed geometry of the magnetic field structure and the flare process in low altitude magnetic loops. In agreement with the predictions of some solar flare models, the hard X-ray sources are located on the external edges of the Hα emission and show chromospheric plasma heated by the non-thermal electrons. The fast changes of Hα intensities are located not only inside the hard X-ray sources, as expected if they are the signatures of the chromospheric response to the electron bombardment, but also away from them.  相似文献   

14.
An occultation of X-ray emission from a solar flare occurred during the eclipse of 7 March, 1970 and was observed by an NRL instrument aboard the OSO-5 satellite. Ionization chamber photometers covering the wavelength ranges 0.5–3 Å, 1–8 Å, and 8–16 Å provided flux measurements once every 15 s providing a spatial resolution of 20 arc sec at the solar surface. Within this limitation the X-ray flare was observed to be confined within a region 136 000 km in one dimension.However, the measurements indicate the existence of a denser core 54 000 km wide in the direction of advance of the Moon's limb. Comparison of these results with X-ray photographs of flare regions are made and a model for the development of the soft X-ray flare is proposed.  相似文献   

15.
We have observed the eclipsing low-mass X-ray binary MS 1603.6+2600 with Chandra for 7 ks. The X-ray spectrum is well fit with a single absorbed power law with an index of ∼2. We find a clear sinusoidal modulation in the X-ray light curve with a period of  1.7 ± 0.2 h  , consistent with the period of 1.85 h found before. However, no (partial) eclipses were found. We argue that if the X-ray flare observed in earlier X-ray observations was a type I X-ray burst, then the source can only be an accretion disc corona source at a distance of ∼11–24 kpc (implying a height above the Galactic disc of ∼8–17 kpc). It has also been proposed in the literature that MS 1603.76+2600 is a dipper at ∼75 kpc. We argue that, in this dipper scenario, the observed optical properties of MS 1603.6+2600 are difficult to reconcile with the optical properties one would expect on the basis of comparisons with other high-inclination, low-mass X-ray binaries, unless the X-ray flare was not a type I X-ray burst. In that case, the source can be a nearby soft X-ray transient accreting at a quiescent rate, as was proposed by Hakala et al., or a high-inclination source at ∼15–20 kpc.  相似文献   

16.
J. Vorpahl  H. Zirin 《Solar physics》1970,11(2):285-290
A hard X-ray pulse in the 11–12 September 1968 flare is identified with the formation of a brilliant kernel. Each stage in the X-ray event corresponds to a definite phase in flare development.  相似文献   

17.
We present a detailed analysis of the soft X-ray (0.1–2.4 keV) emission of the Seyfert 1 galaxy Mrk 926 in order to investigate its long-term variation. The X-ray data were obtained from the ROSAT-PSPC archives. The light curves show a gradual decrease of brightness for a time scales of 36months with the exception of a single flare event superimposed on the gradual variation of brightness. The light variations for three different energy bands and the hardness ratios were investigated to search for correlations; no correlation was confirmed. In order to compare spectral variations during the flare event with other periods, the spectral parameters were determined. Results of our analysis are discussed within the framework of the accretion disk phenomenon. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
W Comae has significant variability in multi-wavelengthes, from radio to gamma-ray bands. A bright outburst in optical and X-ray bands was observed in 1998, and most recently, a strong TeV flare was detected by VERITAS in 2008. It is the first TeV intermediate-frequency-peaked BL Lacertae source. I find that both the broadband spectral energy distributions (SEDs) which were quasi-simultaneously obtained during the TeV flare and during the optical/X-ray outburst are well fit by using a single-zone synchrotron + synchrotron-self-Compton model. The satisfactory fitting requires a large beaming factor, i.e., δ~25 and δ~20 for the TeV flare and the optical/X-ray outburst, respectively, suggesting that both the optical/X-ray outburst and the TeV flare are from a relativistic jet. The size of the emission region of the TeV flare is three times larger than that of the optical/X-ray outburst, and the strength of the magnetic field for the TeV flare is~14 times smaller than that of the X-ray/optical outburst, likely indicating that the region of the TeV flare is more distant from the core than that of the X-ray/optical outburst. The inverse Compton component of the TeV flare peaks around 1.3 GeV, but it is around 0 MeV for the X-ray/optical outburst, lower than that for the TeV flare by two orders of magnitude. The model predicts that the optical/X-ray outburst might be accompanied by a strong MeV/GeV emission, but the TeV flare may be not associated with the X-ray/optical outburst. The GeV emission is critical for characterizing the SEDs of the optical/X-ray outburst and the TeV flare. The predicted GeV flux is above the sensitivity of Fermi/LAT, and it could be verified with the observations by Fermi/LAT in the near future.  相似文献   

19.
Designing a statistical solar flare forecasting technique can benefit greatly from knowledge of the flare frequency of occurrence with respect to sunspot groups. This study analyzed sunspot groups and Hα and X-ray flares reported for the period 1997 – 2007. Annual catalogs were constructed, listing the days that numbered sunspot groups were observed (designated sunspot group-days, SSG-Ds) and for each day a record for each associated Hα flare of importance category one or greater and normal or bright brightness and for each X-ray flare of intensity C 5 or higher. The catalogs were then analyzed to produce frequency distributions of SSG-Ds by year, sunspot group class, likelihood of producing at least one flare overall and by sunspot group class, and frequency of occurrence of numbers of flares per day and flare intensity category. Only 3% of SSG-Ds produced a substantial Hα flare and 7% had a significant X-ray flare. We found that mature, complex sunspot groups were more likely than simple sunspot groups to produce a flare, but the latter were more prevalent than the former. More than half of the SSG-Ds with flares had a maximum intensity flare greater than the lowest category (C-class of intensity five and higher). The fact that certain sunspot group classes had flaring probabilities significantly higher than the combined probabilities of the intensity categories when all SSG-Ds were considered suggest that it might be best to first predict the flaring probability. For sunspot groups found likely to flare, a separate diagnosis of maximum flare intensity category appears feasible.  相似文献   

20.
Fárník  F.  Savy  S.K. 《Solar physics》1998,183(2):339-357
The goal of this study is to improve our knowledge of the spatial relation between pre-flare and flare X-ray sources, to find other connections between the two phenomena (if they exist) and to study the role of pre-flare heating in flare build-up. We selected all flares with available preflare data observed by Yohkoh during the period October 1993–October 1994 and thus created a data base of 32 flares. When studying the spatial relation we discovered that our events can be classified into 3 categories: Co-spatial, Adjacent/Overlapping and Distant according to the spatial separation between the pre-flare and flare source(s) in the same field of view. The 'Co-spatial class of events, of which we found 8 cases, refers to flares that had a visible pre-flare soft X-ray structure with the same size, shape, and orientation as the main flare loops at the flare site at least 5 min before the start of the impulsive phase. We suggest that this is strong evidence that for a significant number of flares the flare structure is active in soft X-rays several minutes or more before the flare begins. However, an analysis of the physical properties of the flare sites, including temperature and intensity variation found no consistent feature distinguishable from other non-flaring active region emission and hence no definite evidence of a special 'pre-flare or 'precursor phase in solar flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号