首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

2.
Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany   总被引:5,自引:0,他引:5  
Primitive nephelinites and basanites from the Tertiary Hocheifelarea of Germany (part of the Central European Volcanic Province;CEVP) have high Mg-number (>0·64), high Cr and Nicontents and strong light rare earth element enrichment butsystematic depletion in Rb, K and Ba relative to trace elementsof similar compatibility in anhydrous mantle. Alkali basaltsand more differentiated magmatic rocks have lower Mg-numberand lower abundances of Ni and Cr, and have undergone fractionationof mainly olivine, clinopyroxene, Fe–Ti oxide, amphiboleand plagioclase. Some nephelinites and basanites approach theSr–Nd–Pb isotope compositions inferred for the EAR(European Asthenospheric Reservoir) component. The Nd–Sr–Pbisotope composition of the differentiated rocks indicates thatassimilation of lower crustal material has modified the compositionof the primary mantle-derived magmas. Rare earth element meltingmodels can explain the petrogenesis of the most primitive maficmagmatic rocks in terms of mixing of melt fractions from anamphibole-bearing garnet peridotite source with melt fractionsfrom an amphibole-bearing spinel peridotite source, both sourcescontaining residual amphibole. It is inferred that amphibolewas precipitated in the asthenospheric mantle beneath the Hocheifel,close to the garnet peridotite–spinel peridotite boundary,by metasomatic fluids or melts from a rising mantle diapir orplume. Melt generation with amphibole present suggests relativelylow mantle potential temperatures (<1200°C); thus themantle plume is not thermally anomalous. A comparison of recentlypublished Ar/Ar ages for Hocheifel basanites with the geochemicaland isotopic composition of samples from this study collectedat the same sample sites indicates that eruption of earlierlavas with an EM signature was followed by the eruption of laterlavas derived from a source with EAR or HIMU characteristics,suggesting a contribution from the advancing plume. Thus, theHocheifel area represents an analogue for magmatism during continentalrift initiation, during which interaction of a mantle plumewith the overlying lithosphere may have led to the generationof partial melts from both the lower lithosphere and the asthenosphere. KEY WORDS: alkali basalts; continental volcanism; crustal contamination; partial melting; Eifel, Germany  相似文献   

3.
Post-collisional magmatism in the southern Iberian and northwesternAfrican continental margins contains important clues for theunderstanding of a possible causal connection between movementsin the Earth's upper mantle, the uplift of continental lithosphereand the origin of circum-Mediterranean igneous activity. Systematicgeochemical and geochronological studies (major and trace element,Sr–Nd–Pb-isotope analysis and laser 40Ar/39Ar-agedating) on igneous rocks provide constraints for understandingthe post-collisional history of the southern Iberian and northwesternAfrican continental margins. Two groups of magmatic rocks canbe distinguished: (1) an Upper Miocene to Lower Pliocene (8·2–4·8Ma), Si–K-rich group including high-K (calc-alkaline)and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene(6·3–0·65 Ma), Si-poor, Na-rich group includingbasanites and alkali basalts to hawaiites and tephrites. Maficsamples from the Si–K-rich group generally show geochemicalaffinities with volcanic rocks from active subduction zones(e.g. Izu–Bonin and Aeolian island arcs), whereas maficsamples from the Si-poor, Na-rich group are geochemically similarto lavas found in intraplate volcanic settings derived fromsub-lithospheric mantle sources (e.g. Canary Islands). The transitionfrom Si-rich (subduction-related) to Si-poor (intraplate-type)magmatism between 6·3 Ma (first alkali basalt) and 4·8Ma (latest shoshonite) can be observed both on a regional scaleand in individual volcanic systems. Si–K-rich and Si-poorigneous rocks from the continental margins of southern Iberiaand northwestern Africa are, respectively, proposed to havebeen derived from metasomatized subcontinental lithosphere andsub-lithospheric mantle that was contaminated with plume material.A three-dimensional geodynamic model for the westernmost Mediterraneanis presented in which subduction of oceanic lithosphere is inferredto have caused continental-edge delamination of subcontinentallithosphere associated with upwelling of plume-contaminatedsub-lithospheric mantle and lithospheric uplift. This processmay operate worldwide in areas where subduction-related andintraplate-type magmatism are spatially and temporally associated. KEY WORDS: post-collisional magmatism; Mediterranean-style back-arc basins; subduction; delamination; uplift of marine gateways  相似文献   

4.
Kimberlites from the Kaapvaal craton have sampled numerous mantlegarnet lherzolites in addition to garnet harzburgites. Traceelement characteristics of constituent clinopyroxenes allowtwo groups of garnet lherzolites to be distinguished. Traceelement compositions of all clinopyroxenes are characterizedby enrichment in light rare earth elements (LREE) and largeion lithophile elements and by a relative depletion in Ti, Nb,Ta, and to a lesser extent Zr and Hf. However, the LREE enrichmentand the depletion in Nb and Zr (Hf) are less in the Type 1 clinopyroxenesthan in the Type 2 clinopyroxenes. Our study suggests that thetwo melts responsible for the metasomatic imprints observedin the two garnet lherzolite groups are highly alkaline maficsilicate melts. Type 1 clinopyroxenes that have trace elementsimilarities to those of PIC (Phlogopite–Ilmenite–Clinopyroxene)rocks appear to have crystallized from, or been completely equilibratedwith, the same melt related to Group I kimberlite magma. TheType 2 clinopyroxenes have trace element similarities to thoseof MARID (Mica– Amphibole–Rutile–Ilmenite–Diopside)rocks and are therefore probably linked to melt related to GroupII kimberlite magma. KEY WORDS: garnet lherzolites; Kaapvaal craton; mantle xenoliths; mantle metasomatism; trace elements  相似文献   

5.
Geochemical data are presented for primitive alkaline lavasfrom the Chyulu Hills Volcanic Province of southern Kenya, situatedsome 100 km east of the Kenya Rift Valley. In addition to theirprimitive compositions, a striking and ubiquitous feature isa strong but variable depletion in K relative to other highlyincompatible elements when normalized to primitive mantle values.Semi-quantitative models are developed that best explain thepetrogenesis of these lavas in terms of partial melting of asource that contained residual amphibole (but not phlogopite).The presence of amphibole implies a source in the subcontinentallithosphere rather than the asthenosphere. It is suggested thatthe amphibole is of metasomatic origin and was precipitatedin the lithospheric mantle by infiltrating fluids and/or meltsderived from rising mantle plume material. A raised geothermas a consequence of the continued ascent of the plume materialled to dehydration melting of the metasomatized mantle and generationof the Chyulu Hills lavas. It is proposed that the Chyulu HillsVolcanic Province represents an analogue for the earliest stagesof continental rift initiation, during which interaction betweena plume and initially refractory lithosphere may lead to thegeneration of lithospheric melts. KEY WORDS: rift-related alkaline volcanism; residual amphibole; subcontinental lithosphere  相似文献   

6.
Xenoliths hosted by Quaternary basanites and alkali basaltsfrom Marsabit (northern Kenya) represent fragments of Proterozoiclithospheric mantle thinned and chemically modified during riftingin the Mesozoic (Anza Graben) and in the Tertiary–Quaternary(Kenya rift). Four types of peridotite xenoliths were investigatedto constrain the thermal and chemical evolution of the lithosphericmantle. Group I, III and IV peridotites provide evidence ofa cold, highly deformed and heterogeneous upper mantle. Textures,thermobarometry and trace element characteristics of mineralsindicate that low temperatures in the spinel stability field(750–800°C at <1·5 GPa) were attained bydecompression and cooling from initially high pressures andtemperatures in the garnet stability field (970–1080°Cat 2·3–2·9 GPa). Cooling, decompressionand penetrative deformation are consistent with lithosphericthinning, probably related to the development of the Mesozoicto Paleogene Anza Graben. Re-equilibrated and recrystallizedperidotite xenoliths (Group II) record heating (from 800°Cto 1100°C). Mineral trace element signatures indicate enrichmentby mafic silicate melts, parental to the Quaternary host basanitesand alkali basalts. Relationships between mineral textures,P–T conditions of equilibration, and geochemistry canbe explained by metasomatism and heating of the lithosphererelated to the formation of the Kenya rift, above a zone ofhot upwelling mantle. KEY WORDS: East African Rift System; Anza Graben; in situ LA-ICPMS; peridotite xenoliths; thermobarometry  相似文献   

7.
BELL  KEITH; TILTON  G. R. 《Journal of Petrology》2001,42(10):1927-1945
New Pb isotopic data are presented for 10 young Mesozoic toCenozoic (0–116 Ma) carbonatites from a 1400 km long segmentof the East African Rift. Patterns observed in Pb vs Pb, Srvs Pb and Nd vs Pb isotope diagrams define unusual, nearly linear,trends that are interpreted as mixing between two componentsthat are broadly similar to the two mantle end-member components,HIMU and EM1, which were first recognized from ocean-islandbasalts. The two plutons with isotope signatures closest toHIMU and EM1 crop out within 140 km of each other. From thesedata, EM1 and HIMU are now known to occur in both continentaland oceanic settings that are associated with plumes or rifts.Moreover, these isotopic signatures tend to occur in regionswhere seismic tomography indicates prominent low-velocity zonesin the lower mantle. For these reasons, we favour a model forthe origin of the East African Rift carbonatites that involvesmelting and mixing of HIMU and EM1 components contained withinan isotopically heterogeneous mantle plume. We consider theHIMU and EM1 sources to be stored within the deep (lower 1000km) mantle, possibly the core–mantle boundary. The rolethat continental lithosphere plays in carbonatite generationis probably one of concentrating volatiles at the upper levelsof an ascending mantle plume. KEY WORDS: carbonatites; isotopes; rifts; plumes; FOZO  相似文献   

8.
This study is based on a set of coarse-grained igneous rockscollected from two zoned plutons located in the central partof Tahiti Nui and Raiatea. The Ahititera pluton (central depressionof Tahiti Nui) comprises a great diversity of rocks, rangingfrom ultrabasic to felsic in composition. It shows a concentriczonation with nepheline-free rocks in its periphery and nepheline-bearingrocks in its central part. The Faaroa pluton (central depressionof Raiatea) is entirely mafic and includes only gabbros andtheralites. The two plutons have variable Nd–Sr isotopicsignatures, especially the Ahititera rocks, which are subdividedinto three groups based on their mineralogy, geochemistry andisotope composition. The isotopic variability probably reflectslocal heterogeneities in the Society mantle plume. Petrographicand isotopic data have been used to define two magmatic suitesin Ahititera, identifiable from their degree of Si undersaturation.The evolution of the mildly Si-undersaturated suite is controlledby simple fractional crystallization, whereas the strongly Si-undersaturatedsuite requires additional H2O influx. The third isotopic groupincludes only theralites. The rare earth element (REE) compositionsof the mafic rocks from both plutons do not correlate with theirisotopic signature. The REE patterns of the most Si-undersaturatedrocks are systematically characterized by steeper slopes. Suchfeatures are also observed in lavas from seamounts located withinthe present-day hotspot area. It appears that REE concentrationsin Society lavas and intrusives are probably mainly governedby variable degrees of partial melting of a garnet-free mantlesource and are independent of their isotopic signature. KEY WORDS: cumulates; fractional crystallization; partial melting; French Polynesia; plutonic rocks; Society Islands; Tahiti; Raiatea  相似文献   

9.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   

10.
After an unusually long quiet period of nearly 6 years, in 1998the Piton de la Fournaise volcano started a new cycle of intensevolcanic activity. We report geochemical data on the first nineevents (53 samples), from the long-lived initial eruption (sixand a half months) of 1998 to the high-flux picritic eruptionof January 2002. Pb isotopes and trace elements display systematic,coupled variations, which are mostly confined to the beginningand the end of the period. Two well-defined binary mixing trendsare shown by Pb–Pb and Pb–trace element relationships.These trends indicate a change of end-member components betweenMarch and June 2001 that coincides with the transition fromsteady-state basalts to picrites. A three-component mixing modelinvolving a homogeneous plume and two contaminants successfullyexplains the data. The Pb–Pb relationship requires thattwo mixing processes occur successively: plume-derived magmainteracts first with altered oceanic crust, and the resultinghybrid product then interacts at shallower level with the oldlavas constituting the base of the volcanic edifice. Assimilationof edifice material decreased continuously from 1998 to 2002,whereas assimilation of oceanic crust drastically increasedduring the late-stage picritic eruption. These results suggestthat picrites may have resided for an unusually long time atan oceanic crustal level before ascending rapidly through thevolcanic edifice with little interaction with channel walls. KEY WORDS: assimilation; lead isotopes; picrites; Piton de la Fournaise; trace elements  相似文献   

11.
陈龙  郑永飞 《地球科学》2019,44(12):4144-4151
大陆弧安山岩的形成是大洋板片向大陆边缘之下俯冲的结果,但是在具体形成机制上存在很大争议.针对这个问题,对长江中下游地区中生代安山质火山岩及其伴生的玄武质和英安质火山岩进行了系统的岩石地球化学研究,结果对大陆弧安山质火成岩的成因提出了新的机制.分析表明,这些岩石形成于早白垩世,它们不仅表现出典型的岛弧型微量元素分布特征,而且具有高度富集的Sr-Nd-Hf同位素和高的放射成因Pb以及高的氧同位素组成.通过全岩和矿物地球化学成分变化检查发现,地壳混染和岩浆混合作用对其成分的富集特征贡献有限,而其岩浆源区含有丰富的俯冲地壳衍生物质才是其成分富集的根本原因.虽然这些火山岩的喷发年龄为中生代,但是其岩浆源区形成于新元古代早期的华夏洋壳俯冲对扬子克拉通边缘之下地幔楔的交代作用.大陆弧安山岩地幔源区中含有大量俯冲洋壳沉积物部分熔融产生的含水熔体,显著区别于大洋弧玄武岩的地幔源区,其中只含有少量俯冲洋壳来源的富水溶液和含水熔体.正是这些含水熔体交代上覆地幔楔橄榄岩,形成了不同程度富集的超镁铁质-镁铁质地幔源区.在早白垩纪时期,古太平洋俯冲过程的远弧后拉张导致中国东部岩石圈发生部分熔融,其中超镁铁质地幔源区熔融形成玄武质火山岩,镁铁质地幔源区则熔融形成安山质火山岩.因此,大陆弧安山岩成因与大洋弧玄武岩一样,可分为源区形成和源区熔融两个阶段,其中第一阶段对应于俯冲带壳幔相互作用.   相似文献   

12.
The Hawaiian–Emperor Seamount Chain (ESC), in the northernPacific Ocean, was produced during the passage of the PacificPlate over the Hawaiian hotspot. Major and trace element concentrationsand Sr–Nd–Pb isotopic compositions of shield andpost-shield lavas from nine of the Emperor Seamounts providea 43 Myr record of the chemistry of the oldest preserved Hawaiianmagmatism during the Late Mesozoic and Early Cenozoic (from85 to 42 Ma). These data demonstrate that there were large variationsin the composition of Hawaiian magmatism over this period. Tholeiiticbasalts from Meiji Seamount (85 Ma), at the northernmost endof the ESC, have low concentrations of incompatible trace elements,and unradiogenic Sr isotopic compositions, compared with youngerlavas from the volcanoes of the Hawaiian Chain (<43 Ma).Lavas from Detroit Seamount (81 Ma) have highly depleted incompatibletrace element and Sr–Nd isotopic compositions, which aresimilar to those of Pacific mid-ocean ridge basalts. Lavas fromthe younger Emperor Seamounts (62–42 Ma) have trace elementcompositions similar to those of lavas from the Hawaiian Islands,but initial 87Sr/86Sr ratios extend to lower values. From 81to 42 Ma there was a systematic increase in 87Sr/86Sr of boththoleiitic and alkalic lavas. The age of the oceanic lithosphereat the time of seamount formation decreases northwards alongthe Emperor Seamount Chain, and the oldest Emperor Seamountswere built upon young, thin lithosphere close to a former spreadingcentre. However, the inferred distance of the Hawaiian plumefrom a former spreading centre, and the isotopic compositionsof the oldest Emperor lavas appear to rule out plume–ridgeinteraction as an explanation for their depleted compositions.We suggest that the observed temporal chemical and isotopicvariations may instead be due to variations in the degree ofmelting of a heterogeneous mantle, resulting from differencesin the thickness of the oceanic lithosphere upon which the EmperorSeamounts were constructed. During the Cretaceous, when theHawaiian plume was situated beneath young, thin lithosphere,the degree of melting within the plume was greater, and incompatibletrace element depleted, refractory mantle components contributedmore to melting. KEY WORDS: Emperor Seamounts; Hawaiian plume; lava geochemistry; lithosphere thickness; mantle heterogeneity  相似文献   

13.
The Yampa volcanic field (late Miocene) consists of about 70 outcrops of monogenetic cinder cones, lavas, dykes, volcanic necks and hydrovolcanic pyroclastic deposits and is situated in the most northerly part of the Rio Grande rift. Contemporaneous extension in this part of the rift was small, but there is geological and geophysical evidence that, by the late Miocene, the area was underlain by hot asthenosphere convected by the Yellowstone mantle plume. The Yampa rocks are mafic and chemically diverse, including basanites, alkali basalts, potassic trachybasalts, hawaiites and shoshonites. About half the rocks bear the xenocryst suite feldspar, pyroxene, Fe–Ti oxide, amphibole, biotite. There is a tendency for xenocryst-free rocks to be the most mafic, interpreted to indicate that the xenocrysts are cognate, and represent cumulate material from fractional crystallization of the magmas in deep crustal magma chambers. The elemental and isotopic (Nd and Sr) variations can be modelled by mixing variable proportions of partial melts of local lithospheric mantle with an OIB end-member formed by partial melting of asthenosphere. The OIB end-member appears to have the elemental and isotopic composition of typical Northern Hemisphere OIB, in particular the plume-derived basanites of Loihi seamount, Hawaii. The OIB end-member at Yampa is interpreted to have been derived from mantle convected in the Yellowstone mantle plume.  相似文献   

14.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

15.
Geochemical, isotopic, and geochronologic data for exhumed rocks in the Woodlark Rift of Papua New Guinea (PNG) allow a tectonic link to be established with the Late Cretaceous Whitsunday Volcanic Province (WVP) of northeastern Australia. Most of the metamorphic rocks in the Woodlark Rift have Nd isotopic compositions (εNd = + 1.7 to + 6.2) similar to the Nd isotopic compositions of rocks in the WVP (εNd = + 1.3 to + 6.6; Ewart et al., 1992), and contain inherited zircons with 90 to 100 Ma U–Pb ages that overlap the timing of magmatism in the WVP. None of the metamorphic rocks in the Woodlark Rift have the highly evolved Hf and Nd isotopic compositions expected of ancient continental crust. Magmas were erupted in the WVP during the middle Cretaceous as eastern Gondwana was rifted apart. The protoliths of felsic and intermediate metamorphic rocks in the Woodlark Rift are interpreted to be related to the magmatic products produced during this Cretaceous rifting event. Some mafic metamorphic rocks exposed in the western Woodlark Rift (eclogites and amphibolites) are not related to the WVP and instead could have originated as basaltic lavas crystallized from mantle melts at (U)HP depths in the Late Cenozoic, or as fragments of Mesozoic aged oceanic lithosphere.Isotopic and elemental comparisons between basement gneisses and Quaternary felsic volcanic rocks demonstrate that felsic lavas in the D'Entrecasteaux Islands did not form solely from partial melting of metamorphic rocks during exhumation. Instead, the isotopic compositions and geochemistry of Quaternary felsic volcanic rocks indicate a significant contribution from the partial melting of the mantle in this region. When combined with geophysical data for the western Woodlark Rift, this suggests that future seafloor spreading will commence south of Fergusson Island, and west of the present-day active seafloor spreading rift tip.  相似文献   

16.
The Jurassic Grayback pluton was emplaced in a back-arc settingbehind a contemporaneous oceanic arc. Th\alphae main stage ofthe pluton consists of an early, reversely zoned tonalite togabbro that was intruded by synplutonic noritic and gabbroicmagmas. Late-stage activity was characterized by intrusion oftonalitic and granitic dikes, many of which contain mafic enclavesand hybrid zones. Most mafic rocks in the pluton are calc-alkaline,with characteristic magnesian clinopyroxene, calcic cores inplagioclase, and elemental abundances similar to H2O-rich arcbasalts. However, some mafic rocks contain relatively Fe-richclinopyroxene, lack calcic cores in plagioclase, and are compositionallysimilar to evolved high-alumina tholeiite. Compositional variation in the main stage can be modeled inpart by fractional crystallization and crusted assimilationduring which parental calc-alkaline basalt evolved to graniticcompositions. Cumulates related to this process are representedby modally variable melagabbro and pyroxenite. Mixing of basalticand tonalitic magmas accounts for the compositions of most main-stageintermediate rocks, but mixing of basaltic and granitic magmaswas uncommon until late in the pluton's history. Oxygen, Sr and Nd isotopic data indicate that virtually allmain-stage magmas in the pluton contain a crustal component.Isotopic and trace element data further suggest that late-stagetonalitic dikes represent melts derived from older, metavolcanicarc crust Deep crustal contamination of main-stage rocks tookplace below the level of emplacement, probably in a magma-richzone where basalts ponded and mixed with crustal melts. The Grayback pluton illustrates the diversity of Jurassic back-arcmagmatism in the Klamath province and demonstrates that ancientmagmatism with arc-like features need not be situated in anarc setting. KEY WORDS: Grayback Pluton; Klamath Mountains; Oregon; back arc; crustal contamination *Corresponding author  相似文献   

17.
The only known post-Archaean komatiites are found on Gorgona,a small island off the Colombian coast that forms part of theCaribbean oceanic plateau. Mafic and ultramafic intrusions arelocated in the interior of the island. To establish the relationshipbetween intrusive and extrusive phases of ultramafic magmatism,and to help understand how an oceanic plateau is constructed,we undertook the first petrological and geochemical study ofthe intrusive rocks. Rare earth element patterns in gabbrosrange from almost flat to moderately depleted; in dunites andwehrlites, the depletion is more pronounced. These patternsfall midway in the range measured in Gorgona volcanics, whosecompositions vary from slightly enriched to extremely depleted.Nd isotope compositions indicate two distinct mantle sources,one highly depleted, the other less depleted. MgO contents ofparental liquids are estimated from olivine compositions at20–25 % in ultramafic lavas, and 12–13% in the intrusives.Petrographic observations and similarities in trace-elementcontents indicate that the two magma types are comagmatic, relatedthrough olivine fractionation. Modelling of major and traceelements indicates that the primary ultramafic magmas formedby advanced critical melting at high pressure in a rising mantleplume. The plumbing system that fed the Gorgona plateau wascomplex, being characterized by a series of magma chambers atdifferent crustal levels. Mantle-derived ultramafic liquidseither travelled directly to the surface to erupt as komatiiteflows, or were trapped in magma chambers where they differentiatedinto basaltic liquid and mafic to ultramafic cumulates. Gorgonagabbros and peridotites formed in shallow-level examples ofthese intrusions. KEY WORDS: Gorgona Island, Colombia; komatiite; mantle melting; oceanic plateau; melt transport  相似文献   

18.
The Dominique drill hole has penetrated the volcanic shieldof Eiao island (Marquesas) down to a depth of 800 m below thesurface and 691•5 m below sea-level with a percentage ofrecovery close to 100%. All the lavas encountered were emplacedunder subaerial conditions. From the bottom to the top are distinguished:quartz and olivine tholeiites (800–686 m), hawaiites,mugearites and trachyte (686–415 m), picritic basalts,olivine tholeiites and alkali basalts (415–0 m). The coredvolcanic pile was emplaced between 5•560•07 Ma and5•220•06 Ma. Important chemical changes occurred during this rather shorttime span (0•34 0•13 Ma). In particular, the lowerbasalts differ from the upper ones in their lower concentrationsof incompatible trace elements and their Sr, Nd and Pb isotopicsignature being closer to the HIMU end-member, whereas the upperbasalts are EM II enriched. The chemical differences betweenthe two basalt groups are consistent with a time-related decreasein the degree of partial melting of isotopically heterogeneoussources. It seems unlikely that these isotopic differences reflectchanges in plume dynamics occurring in such a short time span,and we tentatively suggest that they result from a decreasingdegree of partial melting of a heterogeneous EM II–HIMUmantle plume. Some of the intermediate magmas (the uppermost hawaiites andmugearites) are likely to be derived from parent magmas similarto the associated upper basalts through simple fractionationprocesses. Hawaiites, mugearites and a trachyte from the middlepart of the volcanic sequence have Sr–Nd isotopic signaturessimilar to those of the lower basalts but they differ from themin their lower 206Pb/204Pb ratios, resulting in an increasedDMM signature. Some of the hawaiites-mugearites also displayspecific enrichments in P2O5, Sr and REE which are unlikelyto result from simple fractionation processes. The isotopicand incompatible element compositions of the intermediate rocksare consistent with the assimilation of MORB-derived wall rocksduring fractional crystallization. The likely contaminant correspondsto Pacific oceanic crust, locally containing apatite-rich veinsand hydrothermal sulphides. We conclude that a possible explanationfor the DMM signature in ocean island basalts is a chemicalcontribution from the underlying oceanic crust and that studiesof intermediate rocks may be important to document the originof the isotopic features of plume-derived magmas. KEY WORDS: alkali basalt; assimilation; mantle heterogeneity; Marquesas; tholeiile *Corresponding author  相似文献   

19.
康定杂岩Rb-Sr、Sm-Nd同位素系统及其意义   总被引:1,自引:0,他引:1  
通过对康定—冕宁地区出露的英云闪长岩、黑云角闪斜长片麻岩、角闪变粒岩全岩及其中所分离出的角闪石、黑云母、斜长石、钾长石的Rb-Sr、Sm-Nd同位素的系统测定,结合岩石的锆石U-Pb年龄结果,确定这些变质杂岩由于经历了复杂的形成过程与变质历史,Rb-Sr、Sm-Nd同位素体系难以确定其结晶年龄。由单矿物与全岩Rb-Sr、Sm-Nd体系拟合的~700 M a的等时线年龄反映了角闪岩相-高角闪岩相的变质作用年龄。Sm-Nd同位素体系由于在变质作用过程中的部分开放性,很容易给出无意义的较老的混合年龄。康定杂岩结晶后并没有经历麻粒岩相变质作用,区域上所含的麻粒岩透镜体可能是新元古代(773~721 M a)期间由Rod in ia超大陆裂解产生的新生洋壳向扬子克拉通陆块俯冲消减过程的变质产物。俯冲到一定深度后,由于板片被拉断,软流圈上涌导致变质洋壳板片岩石、先前底侵变质的镁铁质岩石及扬子陆块长英质基底岩石发生部分熔融,以镁铁质岩石熔融产生的熔浆为主(>70%),与长英质基底岩石熔融产生的熔浆混合形成w(Na2O)/w(K2O)>1的TTG组合。  相似文献   

20.
High mantle potential temperatures and local extension, associated with the Late-Cretaceous impact of the Trindade mantle plume, produced substantial widespread and voluminous magmatism around the northern half of the Paraná sedimentary basin. Our previous studies have shown that, above the central and eastern portions of the postulated impact zone where lithosphere extension is minimal, heat conducted by the plume caused large-scale melting of the more fusible parts of the subcontinental lithospheric mantle beneath the margin of the São Francisco craton and the surrounding Brasilía mobile belt. Here we combine geochemical data and field evidence from the Poxoreu Igneous Province, western Brazil to show how more intense lithospheric extension above the western margin of the postulated impact zone permitted greater upwelling and melting of the Trindade plume than further east. Laser 40Ar/39Ar age determinations indicate that rift-related basaltic magmas of the Poxoreu Igneous Province were emplaced at ? 84 Ma. Our detailed geochemical study of the mafic magmas shows that the parental melts underwent polybaric crystal fractionation within the crust prior to final emplacement. Furthermore, some magmas (quartz-normative) appear to have assimilated upper crust whereas others (nepheline- and hypersthene-normative) appear to have been unaffected by open-system crustal magma chamber processes. Incompatible trace element ratios (e.g. chondrite-normalised La/Nb?=?1) and isotopic ratios (87Sr/86Sr?=?0.704 and 143Nd/144Nd?=?0.51274) of the Hy-normative basalts resemble those of oceanic islands (OIB). We therefore propose that these “OIB-like” magmas were predominantly derived from convecting-mantle-source melts (i.e. Trindade mantle plume). Inverse modelling of rare-earth element (REE) abundances suggests that the initial melts were predominantly generated within the depth range of ?80–100 km, in mantle with a potential temperature of ?1500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号