首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
On 1 June 2005, the prototype Nuclear Compton Telescope (NCT) flew on a high altitude balloon from Fort Sumner, New Mexico. NCT is a balloon-borne soft γ-ray (0.2–10 MeV) telescope for studying astrophysical sources of nuclear line emission and γ-ray polarization. Our program is designed to develop and test technologies and analysis techniques crucial for the Advanced Compton Telescope; however, our detector design and configuration is also well matched to the focal plane requirements for focusing Laue lenses. The NCT prototype utilizes two, 3D imaging germanium detectors (GeDs) in a novel, ultra-compact design optimized for nuclear line emission in the 0.5–2 MeV range. Our prototype flight provides a critical test of the novel detector technologies, analysis techniques, and background rejection procedures developed for high resolution Compton telescopes.  相似文献   

2.
The flare catalogue of the Yohkoh mission is compiled and linked to this article as an electronic supplement. For showing flare characteristics over wide energy range concisely, we provide the images of Hard X-ray Telescope (HXT) and the Soft X-ray Telescope (SXT), and the spectra of Hard X-ray Spectrometer (HXS) and Gamma-Ray Spectrometer (GRS) with the Wide Band Spectrometer (WBS) time profiles. The energy versus pulse height (PH) data channels in HXS and GRS are re-calibrated by using the data of the whole mission period. Secular gain changes are recognized in HXS, and the characteristics of power-law flare spectra simultaneously observed by HXT and HXS confirms the trend. The GRS gains are different for the flare observations during the previous maximum and for the current maximum. The total of 33 γ -ray events are observed, and for 12 of them γ-ray flare spectra are obtained. Electronic supplementary material to this article is available at and is accessible for authorized users.  相似文献   

3.
4.
通过几十年的观测研究, 黑洞X射线双星(X-Ray Binary, XRB)部分特征被揭示. 然而, 吸积盘结构尚不确定. 黑洞XRB功率密度谱的截断频率与准周期振荡(Quasi Periodic Oscillation, QPO)的相关性质(W-K关系)可以限制吸积盘结构. 利用慧眼-HXMT (Hard X-ray Modulation Telescope)观测到的5个黑洞XRB的数据, 对黑洞XRB的W-K关系进行了研究, 结果表明在慧眼-HXMT观测的3个探测器能段中W-K关系成立. 此外在MAXI J1535-571之中存在截断频率和吸积盘内半径的相关关系, 这和截断的吸积盘结构一致. 如果观测到的功率密度谱来自质量吸积率的扰动传播, 可以推测吸积盘内半径接近最内圆形稳定轨道, 此黑洞可能是高自旋系统.  相似文献   

5.
The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1mm, an energy resolution of a few keV at 500keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.  相似文献   

6.
Individual X-ray photons in the keV energy range produce hundreds of photoelectrons in a single pixel of a CCD array detector. The number of photoelectrons produced is a linear function of the photon energy, allowing the measurement of spectral information with an imaging detector system. Most solar X-ray telescopes, such as Yohkoh/SXT and Hinode/XRT, use CCD detectors in an integrating mode and are designed to make temperature estimates from multiband filter photometry. We show how such instruments can be used in a new way to perform a limited type of this photon spectroscopy. By measuring the variance in intensity of a series of repeated images through a single filter of an X-ray source, the mean energy per detected photon can be determined. This energy is related to the underlying coronal spectrum, and hence it can be used to deduce the mean plasma temperature. We apply this technique to data from the Yohkoh Soft X-Ray Telescope and compare the temperatures obtained with this technique with the temperatures derived using the standard filter ratio method for a postflare loop system. Given the large dynamic range of the soft X-ray flux observed from the Sun, we describe the requirements for a future instrument that would be better suited to performing photon spectroscopy. B.J. Labonte deceased 24 October 2005.  相似文献   

7.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   

8.
X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.  相似文献   

9.
利用日本YOHKOH卫星HXT提供的HXR爆发资料,和中国科学院北京天文台的太阳射电宽频带动态频谱仪(10-2.0GHZ,2.6-3.8GHZ)提供的微波爆发资料,对共生事件进行了初步统计分析,并对其中两例典型事件:1997年11月28日0503UT事件及1998年5月9日0340UT事件与共生的HXR爆发进行了详细比较,给出了几点有意义的结果及理论解释.  相似文献   

10.
We will report on the equipment and performance of the X-ray facility of the University of Ferrara. Initially developed to test the PDS (Phoswich Detection System) instrument aboard the BeppoSAX satellite and to perform reflectivity measurements of mosaic crystal samples of HOPG (Highly Oriented Pyrolytic Graphite), with time the facility has been improved and its applications extended. Now these applications include test and calibration of hard X-ray (> 10 keV) detectors, reflectivity measurements of hard X-ray mirrors, reflectivity tests of crystals and X-ray transparency measurements. The facility is being further improved in order to determine the optical axis mosaic crystals in Laue configuration within a project devoted to develop a hard X-ray (> 60 keV) focusing optics (Pisa, A. et al.: in press, Feasibility study of a Laue lens for hard X-rays for space astronomy, SPIE Proc., 5536).  相似文献   

11.
The Hard X-ray Modulation Telescope (HXMT) is a broadband X-ray (1250 keV) astronomical satellite. Its core payload, the High Energy X-ray Telescope (hereafter HE), is operated in the hard X-ray energy range (20250 keV) and dedicated to the hard X-ray high-sensitivity survey observation, hard X-ray sky mapping and high-sensitivity focused observations towards particular celestial bodies. In order to achieve a high sensitivity, it is important to reduce effectively the background that is caused by the interactions between the detector and space particles (γ-ray, protons, electrons, neutrons). Combining a series of references about the near-earth space background with the up-to-date observational data, this paper presents a set of self-consistent data and energy spectrum formulae of near-earth space particles for the convenience of applications. In addition, by the simulative calculations with the software Geant 4, the background of HXMT and its variations with the time and orbit are also given.  相似文献   

12.
The Joint European X-ray Telescope (JET-X) was the core instrument of the Russian Spectrum-X- γ space observatory. It consisted of two identical soft X-ray (0.3–10 keV) telescopes with focusing optical modules having a measured angular resolution of nearly 15 arcsec. Soon after the payload completion, the mission was cancelled and the two optical flight modules (FM) were brought to the Brera Astronomical Observatory where they had been manufactured. After 16 years of storage, we have utilized the JET-X FM2 to test at the PANTER X-ray facility a prototype of a novel X-ray polarimetric telescope, using a Gas Pixel Detector (GPD) with polarimetric capabilities in the focal plane of the FM2. The GPD was developed by a collaboration between INFN-Pisa and INAF-IAPS. In the first phase of the test campaign, we have re-tested the FM2 at PANTER to have an up-to-date characterization in terms of angular resolution and effective area, while in the second part of the test the GPD has been placed in the focal plane of the FM2. In this paper we report the results of the tests of the sole FM2, using an unpolarized X-ray source, comparing the results with the calibration done in 1996.  相似文献   

13.
We revisit the flare that occurred on 13 January 1992, which is now universally termed the “Masuda flare”. The new analysis is motivated not just by its uniqueness despite the increasing number of coronal observations in hard X-rays, but also by the improvement of Yohkoh hard X-ray image processing, which was achieved after the intensive investigations on this celebrated event. Using an uncertainty analysis, we show that the hard X-ray coronal source is located closer to the soft X-ray loop by about 5000 km (or 7 arcsec) in the re-calibrated Hard X-ray Telescope (HXT) images than in the original ones. Specifically, the centroid of the M1-band (23 – 33 keV) coronal source is above the maximum brightness of the Soft X-ray Telescope (SXT) loop by 5000±1000 km (9600 km in the original data) and above the apex of the SXT loop represented by the 30% brightness contour by 2000±1000 km (∼ 7000 km in the original data). The change is obviously significant, because most coronal sources are above the thermal loop by less than 6 arcsec. We suggest that this change may account for the discrepancy in the literature, i.e., the spectrum of the coronal emission was reported to be extremely hard below ∼ 20 keV in the pre-calibration investigations, whereas it was reported to be considerably softer in the literature after the re-calibration done by Sato, Kosugi, and Makishima (Pub. Astron. Soc. Japan 51, 127, 1999). Still, the coronal spectrum is flatter at lower energies than at higher energies, due to the lack of a similar, co-spatial source in the L-band (14 – 23 keV), for which a convincing explanation is absent.  相似文献   

14.
X-ray polarimetry can be an important tool for investigating various physical processes as well as their geometries at the celestial X-ray sources. However, X-ray polarimetry has not progressed much compared to the spectroscopy, timing and imaging mainly due to the extremely photon-hungry nature of X-ray polarimetry leading to severely limited sensitivity of X-ray polarimeters. The great improvement in sensitivity in spectroscopy and imaging was possible due to focusing X-ray optics which is effective only at the soft X-ray energy range. Similar improvement in sensitivity of polarisation measurement at soft X-ray range is expected in near future with the advent of GEM based photoelectric polarimeters. However, at energies >10 keV, even spectroscopic and imaging sensitivities of X-ray detector are limited due to lack of focusing optics. Thus hard X-ray polarimetry so far has been largely unexplored area. On the other hand, typically the polarisation degree is expected to increase at higher energies as the radiation from non-thermal processes is dominant fraction. So polarisation measurement in hard X-ray can yield significant insights into such processes. With the recent availability of hard X-ray optics (e.g. with upcoming NuSTAR, Astro-H missions) which can focus X-rays from 5 KeV to 80 KeV, sensitivity of X-ray detectors in hard X-ray range is expected to improve significantly. In this context we explore feasibility of a focal plane hard X-ray polarimeter based on Compton scattering having a thin plastic scatterer surrounded by cylindrical array scintillator detectors. We have carried out detailed Geant4 simulation to estimate the modulation factor for 100 % polarized beam as well as polarimetric efficiency of this configuration. We have also validated these results with a semi-analytical approach. Here we present the initial results of polarisation sensitivities of such focal plane Compton polarimeter coupled with the reflection efficiency of present era hard X-ray optics.  相似文献   

15.
The European Photon Imaging Camera(EPIC), is the X-ray imaging and medium spectroscopy instrument for theESA X-ray Multi Mirror telescope(XMM) mission. TheCCD detectors to be used in the three focal plane cameras will provide images in the energy band from 0.1 to 10 keV. However, spectral studies may be compromised by low energy, optical photon contamination. In order to reduce this effect, a number of filters will be incorporated onto a rotating mechanism in the camera head. The filters will be chosen to provide a significant reduction in the optical contamination from a source whilst minimising the attenuation of the X-ray flux. Four commercial filters are described here and their effects on calculated typical source fluxes evaluated. In addition, two alternative filter designs are described and their effects on a simulated source spectra are debated. In both cases, particular attention is given to the problem of maintaining high sensitivity at soft X-ray energies (less than 2 keV).  相似文献   

16.
The X-ray Telescope (XRT) of the Hinode mission provides an unprecedented combination of spatial and temporal resolution in solar coronal studies. The high sensitivity and broad dynamic range of XRT, coupled with the spacecraft’s onboard memory capacity and the planned downlink capability will permit a broad range of coronal studies over an extended period of time, for targets ranging from quiet Sun to X-flares. This paper discusses in detail the design, calibration, and measured performance of the XRT instrument up to the focal plane. The CCD camera and data handling are discussed separately in a companion paper.  相似文献   

17.
The scattering of soft protons inside the Wolter-type optics of X-ray observatories has been proven to concentrate these particles onto the focal plane instruments. The funneling of these protons increases the instrumental background and can also contribute to the degrading of the detectors. The instrumental background and degradation of the detector’s performance experienced by Chandra and XMM-Newton is significantly larger than what was expected on the basis of previous Monte Carlo simulations. For Chandra the main issue is the degradation of the energy resolution due to lattice displacements in the detectors. For XMM the contribution to the instrumental background is more significant. In between, new laboratory measurements as well as a revision of the theory are needed to correctly assess the impact of the environmental radiation for future missions. In this publication we present a Geant4 class that will allow future users to select between either theoretical models or measured data to simulate the scattering of soft protons at grazing angles. To develop this method, we revisit the theory of elastic scattering of protons on polished surfaces and implement these approaches into Geant4. We also implemented recently performed measurements using parts of eROSITA (extended ROentgen Survey with an Imaging Telescope Array) mirror shells as scattering targets as another scattering model to be used within the Geant4 toolkit.  相似文献   

18.
Yohkoh observations of an impulsive solar flare which occurred on 16 December, 1991 are presented. This flare was a GOES M2.7 class event with a simple morphology indicative of a single flaring loop. X-ray images were taken with the Hard X-ray Telescope (HXT) and soft X-ray spectra were obtained with the Bragg Crystal Spectrometer (BCS) on board the satellite. The spectrometer observations were made at high sensivity from the earliest stages of the flare, are continued throughout the rise and decay phases, and indicate extremely strong blueshifts, which account for the majority of emission in Caxix during the initial phase of the flare. The data are compared with observations from other space and ground-based instruments. A balance calculation is performed which indicates that the energy contained in non-thermal electrons is sufficient to explain the high temperature plasma which fills the loop. The cooling of this plasma by thermal conduction is independently verified in a manner which indicates that the loop filling factor is close to 100%. The production of superhot plasma in impulsive events is shown to differ in detail from the morphology and mechanisms appropriate for more gradual events.  相似文献   

19.
Kattenberg  A.  Allaart  M.  de Jager  C.  Schadee  A.  Schrijver  J.  Shibasaki  K.  Švestka  Z.  Van Tend  W. 《Solar physics》1983,88(1-2):315-327

A subflare of importance Sf was observed on June 13, 1980 simultaneously by instruments aboard the Solar Maximum Mission (SMM) and various ground based observatories. We describe and compare different kinds of observations, with emphasis on the Hard X-Ray Imaging Spectrometer (HXIS) images and spectra, and on the one-dimensional microwave images with high time and spatial resolution, obtained with the Westerbork Synthesis Radio Telescope (WSRT). The fast electrons causing the X-ray and microwave impulsive bursts had a common acceleration source, but the burst were produced at the opposite footpoints of the loops involved, with microwaves emitted near to a sunspot penumbra. The flare (of a ‘compact’ type) was probably triggered by an emerging flux, and two possible interpretations of this process are briefly discussed.

  相似文献   

20.
The Hinode Solar Optical Telescope (SOT) is the first space-borne visible-light telescope that enables us to observe magnetic-field dynamics in the solar lower atmosphere with 0.2 – 0.3 arcsec spatial resolution under extremely stable (seeing-free) conditions. To achieve precise measurements of the polarization with diffraction-limited images, stable pointing of the telescope (<0.09 arcsec, 3σ) is required for solar images exposed on the focal plane CCD detectors. SOT has an image stabilization system that uses image displacements calculated from correlation tracking of solar granules to control a piezo-driven tip-tilt mirror. The system minimizes the motions of images for frequencies lower than 14 Hz while the satellite and telescope structural design damps microvibration in higher frequency ranges. It has been confirmed from the data taken on orbit that the remaining jitter is less than 0.03 arcsec (3σ) on the Sun. This excellent performance makes a major contribution to successful precise polarimetric measurements with 0.2 – 0.3 arcsec resolution. K. Kobayashi now at NASA/Marshall Space Flight Center, Huntsville, AL 35812, USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号