首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Multilayer analytic element modeling of radial collector wells   总被引:1,自引:0,他引:1  
A new multilayer approach is presented for the modeling of ground water flow to radial collector wells. The approach allows for the inclusion of all aspects of the unique boundary condition along the lateral arms of a collector well, including skin effect and internal friction losses due to flow in the arms. The hydraulic conductivity may differ between horizontal layers within the aquifer, and vertical anisotropy can be taken into account. The approach is based on the multilayer analytic element method, such that regional flow and local three-dimensional detail may be simulated simultaneously and accurately within one regional model. Horizontal flow inside a layer is computed analytically, while vertical flow is approximated with a standard finite-difference scheme. Results obtained with the proposed approach compare well to results obtained with three-dimensional analytic element solutions for flow in unconfined aquifers. The presented approach may be applied to predict the yield of a collector well in a regional setting and to compute the origin and residence time, and thus the quality, of water pumped by the collector well. As an example, the addition of three lateral arms to a collector well that already has three laterals is investigated. The new arms are added at an elevation of 2 m above the existing laterals. The yield increase of the collector well is computed as a function of the lengths of the three new arms.  相似文献   

2.
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model.  相似文献   

3.
In recent years, there has been a fast growing interest in the space–time data processing capacity of Geographic Information Systems (GIS). In this paper we present a new GIS-based tool for advanced geostatistical analysis of space–time data; it combines stochastic analysis, prediction, and GIS visualization technology. The proposed toolbox is based on the Bayesian Maximum Entropy theory that formulates its approach under a mature knowledge synthesis framework. We exhibit the toolbox features and use it for particulate matter spatiotemporal mapping in Taipei, in a proof-of-concept study where the serious preferential sampling issue is present. The proposed toolbox enables tight coupling of advanced spatiotemporal analysis functions with a GIS environment, i.e. QGIS. As a result, our contribution leads to a more seamless interaction between spatiotemporal analysis tools and GIS built-in functions; and utterly enhances the functionality of GIS software as a comprehensive knowledge processing and dissemination platform.  相似文献   

4.
分析地震电磁信息仪器对信号处理和采集中存在的问题,提出基于ARM9的地震电磁信息数据服务器的解决方案,成功实现了对地震电磁信息的高速采集、海量存储和网络传输。文中介绍地震电磁信息数据服务器设计思路及基本构架,对各个模块给出硬件设计,并介绍系统的软件流程。  相似文献   

5.
The groundwater inverse problem of estimating heterogeneous groundwater model parameters (hydraulic conductivity in this case) given measurements of aquifer response (such as hydraulic heads) is known to be an ill-posed problem, with multiple parameter values giving similar fits to the aquifer response measurements. This problem is further exacerbated due to the lack of extensive data, typical of most real-world problems. In such cases, it is desirable to incorporate expert knowledge in the estimation process to generate more reasonable estimates. This work presents a novel interactive framework, called the ‘Interactive Multi-Objective Genetic Algorithm’ (IMOGA), to solve the groundwater inverse problem considering different sources of quantitative data as well as qualitative expert knowledge about the site. The IMOGA is unique in that it looks at groundwater model calibration as a multi-objective problem consisting of quantitative objectives – calibration error and regularization – and a ‘qualitative’ objective based on the preference of the geological expert for different spatial characteristics of the conductivity field. All these objectives are then included within a multi-objective genetic algorithm to find multiple solutions that represent the best combination of all quantitative and qualitative objectives. A hypothetical aquifer case-study (based on the test case presented by Freyberg [Freyberg DL. An exercise in ground-water model calibration and prediction. Ground Water 1988;26(3)], for which the ‘true’ parameter values are known, is used as a test case to demonstrate the applicability of this method. It is shown that using automated calibration techniques without using expert interaction leads to parameter values that are not consistent with site-knowledge. Adding expert interaction is shown to not only improve the plausibility of the estimated conductivity fields but also the predictive accuracy of the calibrated model.  相似文献   

6.
A new apparatus, Venturi Effect System (VES), designed for sampling volcanic plumes is described and tested at Vulcano (Italy). This device, together with purified basic NH4OH solutions, supplies optimal conditions to obtain reliable Stotal/Cl/F ratios and enrichment factors for metallic trace elements (MTE). Good concordance for acid gas ratios and metal enrichment factors in both the gas phase and the related plume allows the procedure to be validated. The VES appears in Vulcano conditions as a simple, robust and easily portable apparatus that allows reliable collection of both acid gases and MTE within a single sample and the analysis with current chemical methods (High Pressure Liquid Chromatography, Inductively Coupled Plasma–Mass Spectrometry). This apparatus may be suitable for more difficult volcanoes where only the plume can be sampled.  相似文献   

7.
8.
9.
Kalwij IM  Peralta RC 《Ground water》2006,44(4):574-582
A new simulation/optimization modeling approach is presented for addressing uncertain knowledge of aquifer parameters. The Robustness Enhancing Optimizer (REO) couples genetic algorithm and tabu search as optimizers and incorporates aquifer parameter sensitivity analysis to guide multiple-realization optimization. The REO maximizes strategy robustness for a pumping strategy that is optimal for a primary objective function (OF), such as cost. The more robust a strategy, the more likely it is to achieve management goals in the field, even if the physical system differs from the model. The REO is applied to trinitrotoluene and Royal Demolition Explosive plumes at Umatilla Chemical Depot in Oregon to develop robust least cost strategies. The REO efficiently develops robust pumping strategies while maintaining the optimal value of the primary OF-differing from the common situation in which a primary OF value degrades as strategy reliability increases. The REO is especially valuable where data to develop realistic probability density functions (PDFs) or statistically derived realizations are unavailable. Because they require much less field data, REO-developed strategies might not achieve as high a mathematical reliability as strategies developed using many realizations based upon real aquifer parameter PDFs. REO-developed strategies might or might not yield a better OF value in the field.  相似文献   

10.
We have integrated the Fok radiation belt environment (RBE) model into the space weather modeling framework (SWMF). RBE is coupled to the global magnetohydrodynamics component (represented by the Block-Adaptive-Tree Solar-wind Roe-type Upwind Scheme, BATS-R-US, code) and the Ionosphere Electrodynamics component of the SWMF, following initial results using the Weimer empirical model for the ionospheric potential. The radiation belt (RB) model solves the convection–diffusion equation of the plasma in the energy range of 10 keV to a few MeV. In stand-alone mode RBE uses Tsyganenko's empirical models for the magnetic field, and Weimer's empirical model for the ionospheric potential. In the SWMF the BATS-R-US model provides the time dependent magnetic field by efficiently tracing the closed magnetic field-lines and passing the geometrical and field strength information to RBE at a regular cadence. The ionosphere electrodynamics component uses a two-dimensional vertical potential solver to provide new potential maps to the RBE model at regular intervals. We discuss the coupling algorithm and show some preliminary results with the coupled code. We run our newly coupled model for periods of steady solar wind conditions and compare our results to the RB model using an empirical magnetic field and potential model. We also simulate the RB for an active time period and find that there are substantial differences in the RB model results when changing either the magnetic field or the electric field, including the creation of an outer belt enhancement via rapid inward transport on the time scale of tens of minutes.  相似文献   

11.
A simple correction for slug tests in small-diameter wells   总被引:2,自引:0,他引:2  
Butler JJ 《Ground water》2002,40(3):303-308
A simple procedure is presented for correcting hydraulic conductivity (K) estimates obtained from slug tests performed in small-diameter installations screened in highly permeable aquifers. Previously reported discrepancies between results from slug tests in small-diameter installations and those from tests in nearby larger-diameter wells are primarily a product of frictional losses within the small-diameter pipe. These frictional losses are readily incorporated into existing models for slug tests in high-K aquifers, which then serve as the basis of a straightforward procedure for correcting previously obtained K estimates. A demonstration of the proposed procedure using data from a series of slug tests performed in a controlled field setting confirms the validity of the approach. The results of this demonstration also reveal the detailed view of spatial variations in K that can be obtained using slug tests in small-diameter installations.  相似文献   

12.
13.
14.
Hydrologic cycle is a complex system associated with both certain and uncertain constituents. The propagation of confidence bounds from different uncertainty sources to model output is of great significance for hydrologic modeling. In this paper, we applied the integrated bayesian uncertainty estimator to quantify the effects of parameter, input and model structure uncertainty on hydrologic modeling progressively. Two hydrologic models (Xinanjiang model and TOPMODEL) were applied to a humid catchment under three scenarios. Case I: the shuffled complex evolution metropolis (SCEM-UA) algorithm was conducted to determine the posterior parameter distribution of hydrologic models and analyze the corresponding forecast uncertainty. Case II: input uncertainty was also considered by assuming rain depth bias follows a normal distribution, and integrated with SCEM-UA. Case III: Simulations from two models were combined by the Bayesian model averaging to fully quantify multisource uncertainty effects. Results suggested that, from Case I to II, the containing ratio (percentage of observed streamflow enveloped by 95% confidence interval) obviously increased by an average magnitude of 10% for the study period 2000–2006. Besides, it also found that the width of 95% confidence interval became wider and narrower for Xinanjiang model and TOPMODEL, respectively, from Case I to II. This may indicate that the uncertainty of TOPMODEL results was more remarkable than Xinanjiang model in Case I. By combining results from two models, model structure uncertainty was also considered in Case III. The accuracy of uncertainty bounds further improved with the containing ratio of 95% confidence interval >95%. In addition, the optimized deterministic results from the uncertainty analysis showed that the average Nash–Sutcliffe coefficient increased continually from Case I to II and III (0.82, 0.84 and 0.90, respectively) for the study period. The analysis demonstrated the improvement of modeling accuracy when extra uncertainty sources were also quantified, and this finding also proved the applicability of IBUNE framework in hydrologic modeling.  相似文献   

15.
Tsunami preparedness is fundamentally enhanced having available a comprehensive catalogue of procedures to be applied one by one thus ensuring a fully working evacuation plan over time. All these procedures are grouped into three basic steps to be performed subsequently: a first step in order to generate a fully valid first instance of an evacuation plan, a second step needed to install and to disseminate the evacuation plan, and a third step to deploy, integrate and maintain the plan in a long-term. The application of each procedure requires input from previously applied procedures as well as other input to be obtained from scientific insights (expected wave height, expected arrival time of the first tsunami wave) obtainable through the analysis of realistic scenarios. The output of each procedure may trigger other procedures (within the current step or by going back towards a procedure of a previous step). Thus the whole methodology mirrors a nested and recursive approach.Though the whole methodology is based on the use of dedicated tools (GIS tools, simulation tools) it should also be applicable by decision makers not having available the full range of such tools. In such cases responsible stakeholders have to switch to a more qualitative approach by using some rules of thumb or just normal logical thinking.Proposing this kind of framework it clearly addresses the needs of many decision makers in the world in enhancing the tsunami preparedness in their communities. First tests along some Mediterranean communities have shown the applicability of realistic scenarios thus producing inundation and further maps with which all other procedures of this framework could subsequently be worked out.  相似文献   

16.
This investigation was undertaken to develop an integrated method of downhole fracture characterization using a tracer. The method presented can be used to locate water-bearing fractures that intersect the well, to determine the ambient fracture flow rate and hydraulic head, and to calculate fracture transmissivity. The method was tested in two fractured crystalline bedrock wells located at the University of Connecticut in Storrs. The method entails injecting a tracer (uranine dye) into the well, while at the same time water is pumped out of the well. After steady-state conditions are reached, a borehole tracer concentration profile is developed. The dilution of the tracer is used to locate the inflowing fractures and to determine their flow rate. The fracture flow rate, plus the drawdown in the well, is then used to determine the fracture hydraulic head, transmissivity, and ambient flow rate.  相似文献   

17.
Rowland M 《Ground water》2005,43(5):700-705
This paper describes a methodology for resolving transboundary water disputes that arise when people/states/nations sharing a resource that crosses legal/political jurisdictions disagree about the use of the resource. Laws and treaties written in an attempt to settle disputes are frequently neither enforced nor effective, and disagreements continue. Crises, arising through resource overuse or shortages, worsen the conflict and typically result in further discord, lawsuits, depletion of the resource, and even open-armed hostility. Many water management experts call for either private/market-based or state/command-and-control resource management systems, but these eventually break down during crisis. The crises therefore necessitate the adoption of a more effective institutional arrangement to address and resolve present and future problems. A better alternative to management by private or state entities and the resolution of conflicts by the mere application of law is a cooperative approach. The Rowland-Ostrom Framework, introduced in this paper, incorporates Ostrom's eight design principles for sustainable common pool resource management within the context of crisis that involves an urgent threat to the quantity or quality of a resource such as water, as described by the author. This paper demonstrates that although established 15 years ago, Ostrom's design principles remain applicable today for effective, sustainable transboundary water management, and the Rowland-Ostrom Framework is a model for the equitable use of shared water resources throughout the world.  相似文献   

18.
Klusman K 《Ground water》2004,42(6-7):945-948
A new computer program has been developed to automate analysis of brief single-well pumping tests. Adapted from a procedure developed by Picking (1994) that does not require measurement of the pumping rate, this new program is menu-driven and eliminates one significant source of imprecision in Picking's original method, namely, selection of "well function of u" values by interpolation in a lookup table. This new program has been applied to tests of 25 domestic wells penetrating bedrock, each pumped for <2 min.  相似文献   

19.
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.  相似文献   

20.
In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号