首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In structured clay soils, water levels in open auger holes (dipwells) respond to water movement through macropores and may mask the existence of drier zones either at depth or within peds. Variability between replicated dipwells expresses the small scale variation in the soil, and statements about soil water regimes should be made in statistical terms. Suitably replicated dipwells give sufficiently precise measurements of mean watertable position for studies of soil water regimes.  相似文献   

2.
Infiltration of water into two frozen engineered soils of different gradation was studied in laboratory soil columns 1.2 m long and 0.1 m in diameter. Prior to testing, the soil moisture was adjusted to two levels, described by the gravimetric water content of 5% or 10%, and soils were compacted to about 80–90% of the maximum dry density and refrigerated to temperatures ranging from ?8 to ?2 °C. Water with temperatures 8–9 °C was thereafter fed on the top of columns at a constant head, and the times of water breakthrough in the column and reaching a steady percolation rate, as well as the percolation rate, were recorded. The soil water content was a critical factor affecting the thawing process; during freezing, soil moisture was converted into ice, which blocked pores, and its melting required high amounts of energy supplied by infiltrating water. Hence, the thawing of soils with higher initial water content was much slower than in lower moisture soils, and water breakthrough and the attainment of steady percolation required much longer times in higher moisture soils. Heat transfer between infiltrating water, soil ice, and frozen soil particles was well described by the energy budget equations, which constitute a parsimonious model of the observed processes. The finer grained soil and more compacted soil columns exhibited reduced porosity and required longer times for soil thawing. Practical implications of study results for design of bioretention facilities (BFs) in cold climate include the use of coarse engineered soils and fitting bioretention facilities with a drain facilitating soil drainage before the onset of freezing weather. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Difficult access conditions have limited techniques for groundwater system characterization and monitoring in bedrock exposed landscapes. This condition is common in the mining industry and resulted in the development of lightweight portable drills. This paper describes how these drills were used at a contaminated site to understand the groundwater flow system by adapting piezometer designs, ensuring effective seals to obtain reliable hydraulic head, hydrochemistry, and contaminant concentrations. Two drilling machines were evaluated: the Shaw Portable Core Drill? fits in a backpack and can advance continuously cored rock holes, nominal 51 millimeters (mm) diameter, to depths up to approximately 15 meters (m); and the larger Winkie Drill? requires a two or more people to mobilize and can advance continuously cored holes, nominal 48 mm diameter, to depths of approximately 45 m. The resulting small diameter coreholes were accommodated in the design of each well using a seal created by injecting grout into a semipermeable fabric sleeve. This “fabric sleeve” serves as a means to contain the grout and ensures that the entire annulus above the screen is sealed without loss of grout into the formation, allowing the well to perform as a piezometer. To develop and demonstrate this methodology for groundwater monitoring in bedrock, the two drills were used in drainages located along the slopes of an elevated sandstone outcrop near Los Angeles, California. Unique insights into the groundwater flow system of this bedrock environment, which would otherwise be unattainable, were achieved. This methodology overcomes the accessibility limitations of conventional drilling methods that prevent installation of wells in remote and rugged mountainous terrains.  相似文献   

4.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   

5.
Kettle holes are glacially created, small, shallow, depressional wetlands collecting their water from internal or closed catchments in young moraine landscapes. Their water body is defined by having a maximum of 1 ha in extent. Mostly they undergo a wet-dry circle. In North-East Germany, kettle holes are widely spread, mostly on arable land. They are characterised by large differences in hydroperiod (HP), size, shape and edge steepness. They also have a high potential for both, geomorphic structural diversity and biological species diversity. However, kettle holes are subject to pollution, drainage and structural reduction that result from intensive land use practices.Although kettle holes in Germany are protected by law, protection strategies are not specific enough with respect to the variability of kettle holes, especially of HP. Therefore, the study objective was to characterise hydrogeomorphic (HGM) kettle hole types to create a basis for a decision support system with regard to the selection of the type dependent conservation and management measures.In three agricultural landscapes in North-East Germany, geomorphological and hydrological variables of 268 kettle holes (HP, shore overflow tendency, depth, area, form, shore width and slope) as well as those of their catchments (area, wetland to catchment area ratio, relief) were investigated from 1993 to 2003. By statistical analysis of datasets of 144 kettle holes, 10 HGM kettle hole types were defined. The basic types are “silted fen type” and “open-water type”. Basic subtypes of the latter type are “storage type”, “shore overflow type” and “puddle type”. Differences in spreading of kettle hole types in dependency on landscape relief were found.  相似文献   

6.
G. A. Lehrsch 《水文研究》2013,27(12):1739-1750
Surfactants may affect soil structure differently depending upon the soil or the quality of rainfall or irrigation water. This study examined whether the water‐stable aggregation of 11 wettable soils was affected by surfactants and the water in which the soils were sieved. The study also examined whether the wettable soils' water drop penetration time (WDPT) was affected by surfactants, water drop quality, and elapsed time since the surfactants were applied. Two nonionic surfactants and a surfactant‐free water control were sprayed (by misting) upon air‐dry soil, then WDPT was measured 1 and 72 h thereafter. Subsequently, this treated soil was slowly wetted with an aerosol to its water content at a matric potential of ?3 kPa, then immediately sieved for 600 s in water that contained either appreciable or few electrolytes. Water‐stable aggregation, quantified as mean weight diameter (MWD), varied widely among soils, ranging from 0.10 to 1.36 mm. The MWDs were affected (at p = 0.06) by surfactant treatments, depending upon the soil but not sieving water quality. Surfactants affected the MWD of an Adkins loamy sand and Feltham sand, two of the three coarsest‐textured soils. Although WDPTs never exceeded 5 s, depending upon the soil WDPTs were affected by surfactant treatments but not by water drop quality. After surfactant application, WDPTs generally decreased with time for three soils but increased with time for one soil. Findings suggested that surfactants interacted (1) with clay mineralogy to affect MWD and (2) with soluble calcium to affect WDPT for certain soils. Surfactant treatments but not water quality affected both MWD and WDPT for some but not all of 11 wettable, US soils. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

7.
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water.
Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.  相似文献   

8.
Raindrop impact can be a major contributor to particle mobilization for soils and other granular materials. In previous work, water repellent soils, comprised of hydrophobic particles, have been shown to exhibit greater splash erosion losses under multiple drop impact. However, the underlying principle differences in splash behavior between hydrophobic and hydrophilic granular surfaces have not been studied to date. In this study the effects of particle hydrophobicity on splash behaviour by a single water drop impact were examined using high‐speed videography. Water drops (4 mm in diameter) were dropped on beds of hydrophilic and hydrophobic glass beads (sieved range: 350–400 µm), serving as model soil particles. The drop velocity on impact was 2.67 m s‐1, which corresponds to ~30% of the terminal velocity of a raindrop of similar size. The resulting impact behaviour was measured in terms of the trajectories of particles ejected from the beds and their final resting positions. The response to the impacting water drop was significantly different between hydrophilic and hydrophobic particles in terms of the distance distribution, the median distance travelled by the particles and number of ejected particles. The greater ejection distances of hydrophobic particles were mainly the result of the higher initial velocities rather than differences in ejecting angles. The higher and longer ejection trajectories for hydrophobic particles, compared with hydrophilic particles, indicate that particle hydrophobicity affects splash erosion from the initial stage of rainfall erosion before a water layer may be formed by accumulating drops. The ~10% increase in average splash distance for hydrophobic particles compared with hydrophilic particles suggests that particle hydrophobicity can result in greater net erosion rate, which would be amplified on sloping surfaces, for example, by ridges in ploughed agricultural soils or hillslopes following vegetation loss by clearing or wildfire. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The New Jersey Department of Environmental Protection's Technical Regulations require the horizontal and vertical delineation of contamination. Monitor wells screened at increasingly deeper intervals are used to delineate vertical contamination. In New Jersey, the open interval in a bedrock well cannot exceed 7.6 m. Since contamination has been found at depths as great as 91.4 m in a production well in the study area, it would be prohibitively expensive to install monitor wells with 7.6 m open holes at ever-increasing depths until no contamination was found. Isolation of discrete zones in boreholes using pneumatic packers was implemented at a site in north central New Jersey. Ground water samples were collected from selected 6.1 m sections of boreholes drilled into fractured bedrock at three locations on the property and one offsite location. The ground water samples were analyzed in a field laboratory. The analytical results were used to determine the vertical extent of gasoline-related compounds dissolved in the ground water on the property and offsite. These compounds include benzene, ethylbenzene, methyl tertiary butyl ether, toluene, and xylenes. The four boreholes were converted into bedrock monitor wells. The intake interval for each of the wells was selected through evaluation of the vertical distribution of contaminants as determined from analytical results obtained from a field laboratory located onsite. Three wells are used for the recovery of contaminated ground water. The recovered water will be treated at the onsite air-stripping unit. The fourth well is used to chemically and hydraulically monitor the progress of the ground water recovery program.  相似文献   

10.
Masataka Ando 《Island Arc》2001,10(3-4):206-214
Abstract The Nojima Fault Zone Probe was designed to study the properties and recovery processes of the Nojima Fault, which moved during the Hyogo-ken Nanbu earthquake ( M JMA7.2) of 1995. Three holes, 500 m, 800 m and 1800 m deep, were drilled into or near the fault zone by the Disaster Prevention Research Institute, Kyoto University. The 500 m and 800 m holes were drilled in November 1995, and in December 1996 the last hole reached its final depth of 1760 m. The significant results are: (i) Geological and geophysical reconstruction of the structure and evolution of the Nojima Fault was obtained; (ii) the maximum compression axis was found to be perpendicular to the fault, approximately 45° to the regional compression stress axis; (iii) micro-earthquakes (m = –2 to +1) were induced by water injections 1–3 km from the injection points in the 1800 m hole; (iv) the fault zone was measured to be 30 m wide from microscopic studies of core samples. Instruments such as three-component seismometers, crustal deformation instruments, and thermometers were installed in the holes.  相似文献   

11.
Atomic Energy of Canada Limited is constructing an Underground Research Laboratory (URL) at a depth of 250m in a plutonic rock body near Lac du Bonnet, Manitoba. The facility is being constructed to carry out a variety of in situ geotechnical experiments as part of the Canadian Nuclear Fuel Waste Management Program. A unique feature of the URL, in comparison to other similar facilities such as the Stripa Mine in Sweden, is that it is to be constructed below the ground water table in a previously undisturbed plutonic rock body. One of the main research objectives of the project is to develop and validate comprehensive three-dimensional models of the hydrogeology of the rock mass encompassing the URL site. These models will be used, before excavation of the URL shaft begins, to predict the hydrogeological perturbation that will be created by the excavation of the shaft and the horizontal working levels below the ground water table. As a model-validation exercise, these drawdown predictions will be compared with actual hydrogeological perturbations that will be monitored at the study area over the next several years by an extensive network of instrumented boreholes. Measurements made in an array of boreholes extending to depths of 1,000m on the 4.8 km2 study area have established that the permeability distribution in three major extensive subhorizontal fracture zones controls the movement of ground water within the rock mass. Several types of multiple-interval completion systems have been installed in the boreholes to monitor the three-dimensional, physico-chemical hydrogeological conditions within the fractured rock mass. These include conventional piezometer nests and water-table wells that have been installed in shallow holes (less than 30m deep), and multiple-packer/ multiple-standpipe piezometers and multiple-interval casing systems installed in deeper holes (30 to 1,000m deep). An automated, electronic, piezometric pressure-monitoring system has been designed to collect continuous measurements from 75 isolated hydrogeological monitoring positions within the rock mass. Another 200 positions are being monitored frequently using a variety of techniques. Piezometric data have been collected from this monitoring network to establish baseline conditions prior to any excavation into the rock mass. These data have also been used to determine the steady-state, three-dimensional ground water flow regimes that exist at the URL site under natural conditions.  相似文献   

12.
A borehole permeameter is well suited for testing saturated hydraulic conductivity (K(sat)) at specific depths in the vadose zone. Most applications of the method involve fine-grained soils that allow hand auguring of test holes and require a small water reservoir to maintain a constant head. In non-cohesive gravels, hand-dug test holes are difficult to excavate, holes are prone to collapse, and large volumes of water are necessary to maintain a constant head for the duration of the test. For coarse alluvial gravels, a direct-push steel permeameter was designed to place a slotted pipe at a specific sampling depth. Measurements can be made at successive depths at the same location. A 3790 L (1000 gallons) trailer-mounted water tank maintained a constant head in the permeameter. Head in the portable tank was measured with a pressure transducer and flow was calculated based on a volumetric rating curve. A U.S. Bureau of Reclamation analytical method was utilized to calculate K(sat). Measurements with the permeameter at a field site were similar to those reported from falling-head tests.  相似文献   

13.
An in situ redox manipulation (ISRM) method for creating a permeable treatment zone in the subsurface has been developed at the laboratory bench and intermediate scales and deployed at the field scale for reduction/immobilization of chrornate contamination. At other sites, the same redox technology is currently being tested for dechlorination of TCE. The reduced zone is created by injected reagents that reduce iron naturally present in the aquifer sediments from Fe(III) to surface-bound and structural Fe(II) species. Standard ground water wells are used, allowing treatment of contaminants too deep below the ground surface for conventional treneh-and-fill technologies.
A proof-of-principle field experiment was conducted in September 1995 at a chromate (hexavalent chromium) contaminated ground water site on the Hartford Site in Washington. The test created a 15 m (˜50 feet) diameter cylindrical treatment zone. The three phases of the test consisted of (1) injection of 77, 000 L (20, 500 gallons) of buffered sodium dithionite solution in 17.1 hours, (2) reaction for 18.5 hours, and (3) withdrawal of 375, 000 L (99, 600 gallons) in 83 hours. The withdrawal phase recovered 87% to 90% of the reaction products. Analysis of post-experimental sediment cores indicated that 60% to 100% of the available reactive iron in the treated zone was reduced. The longevity of the reduced zone is estimated between seven and 12 years based on the post-experiment core samples. Three and half years after the field test, the treatment zone remains anoxic, and hexavalent chromium levels have been reduced from 0.060 mg/L to below detection limits (0.008 mg/L). Additionally, no significant permeability changes have been detected during any phase of the experiment.  相似文献   

14.
The ecological quality of water depends largely on the amount of oxygen that the water can hold. The higher the level of dissolved oxygen, the better the quality of a water system. By measuring dissolved oxygen, scientists determine the quality of water and health of an ecosystem. Oxygen enters water by entrainment of air bubbles. Many industrial and environmental processes involve the aeration of a liquid by such entrainment of air bubbles. Venturi aeration is a method of aeration that has become popular in recent years. When a minimal amount of differential pressure exists between the inlet and outlet sides of a venturi tube, a vacuum (air suction) occurs at the suction holes of the venturi tube. The present paper describes the effect of Reynolds Number, air inlet hole diameter, inlet diameter, pipe length, and angle of pipe downstream of the venturi tube, on the air injection rate. It is observed from the results that venturi tubes have high air injection efficiencies. Therefore, venturi tubes can be used as highly effective aerators in ponds, lakes, fish hatcheries, water treatment plants, etc.  相似文献   

15.
Seabed impacted by settling solids from a turbidity plume can be surveyed by submersible using a ‘bounce’ technique to determine depth of the turbidity front, and hence depth above which benthos observations are practical. The protocol adopted was that after frontal depth was determined by a preliminary dive, the site for the benthic survey was selected. On arrival on the seabed a reconnaisance was made for the observers to agree on the identification of visible benthos. Then 100 × 1 m2 transects were surveyed using a 1 m2 quadrat attached to the submersible in view of the port-side observer. At the site investigated, two shallow water stations (depths 13–15 m, and 16–18 m) showing light deposits of mine tailings were seen to support associations of large epifauna and infauna. The first station had an almost single-species stand of the burrowing anenome Pachycerianthus fimbriatus at approximately 100 · 100 m?2, and the second a diverse species association with several starfish and other species at 1–2 · 100 m?2. Burrow holes (up to 3–5 cm diameter) of various sizes indicated that large infaunal species were present. At a deeper station (36–27 m) with heavy tailings and almost no burrow holes, a single Dungeness crab, Cancer magister, and an unidentified shrimp were seen in the 100 m2 transect. Each dive site was inshore (shallower) from a routinely monitored benthos station shown repeatedly to support a population of small infauna in the tailings. Burrow holes have the potential for determining the identity and abundance of large infaunal species present if an identification system can be developed. The technique of epifaunal and burrow hole surveys (by submersible and scuba diver), combined with infaunal and sediment core surveys and contemporary theory on infaunal succession, provides the potential for a procedure to map the distribution in shallow water of tailings impact and benthic recovery (succession).  相似文献   

16.
The liquefaction potential of soils is traditionally assessed through geotechnical approaches based on the calculation of the cyclical stress ratio (CSR) induced by the expected earthquake and the ‘resistance’ provided by the soil, which is quantified through standard penetration (SPT), cone penetration (CPT), or similar tests. In more recent years, attempts to assess the liquefaction potential have also been made through measurement of shear wave velocity (VS) in boreholes or from the surface. The latter approach has the advantage of being non-invasive and low cost and of surveying lines rather than single points. However, the resolution of seismic surface techniques is lower than that of borehole techniques and it is still debated whether it is sufficient to assess the liquefaction potential.In this paper we focus our attention on surface seismic techniques (specifically the popular passive and active seismic techniques based on the correlation of surface waves such as ReMiTM, MASW, ESAC, SSAP, etc.) and explore their performance in assessing the liquefaction susceptibility of soils. The experimental dataset is provided by the two main seismic events of ML=5.9 and 5.8 (MW=6.1, MW=6.0) that struck the Emilia-Romagna region (Northern Italy) on May 20 and 29, 2012, after which extensive liquefaction phenomena were documented in an area of 1200 km2.The CPT and drillings available in the area allow us to classify the soils into four classes: A) shallow liquefied sandy soils, B) shallow non-liquefied sandy soils, C) deep non-liquefied sandy soils, and D) clayey–silty soils, and to determine that on average class A soils presented a higher sand content at the depth of 5–8 m compared to class B soils, where sand was dominant in the upper 5 m. Surface wave active–passive surveys were performed at 84 sites, and it was found that they were capable of discriminating among only three soil classes, since class A and B soils showed exactly the same VS distribution, and it is possible to show both experimentally and theoretically that they appear not to have sufficient resolution to address the seismic liquefaction issue.As a last step, we applied the state-of-the art CSR–VS method to assess the liquefaction potential of sandy deposits and we found that it failed in the studied area. This might be due to the insufficient resolution of the surface wave methods in assessing the Vs of thin layers and to the fact that Vs scales with the square root of the shear modulus, which implies an intrinsic lower sensitivity of Vs to the shear resistance of the soil compared to parameters traditionally measured with the penetration tests. However, it also emerged that the pure observation of the surface wave dispersion curves at their simplest level (i.e. in the frequency domain, with no inversion) is still potentially informative and can be used to identify the sites where more detailed surveys to assess the liquefaction potential are recommended.  相似文献   

17.
A key question in designing any managed retreat site concerns the nature of the habitats which will be created, and their likely long‐term sustainability and development. Studies of historical sea wall failures in Essex have shown that former reclaimed areas may respond to renewed tidal ?ooding in different ways depending on a number of factors, most importantly the elevation of the land at the time of breach, which governs the frequency and duration of tidal ?ooding. This paper demonstrates how digital terrain modelling using airborne lidar data can be used to calculate the elevation of the land behind a breach and to predict the likely habitats which will be created. When combined with data from sites of historical sea wall failure, predictions can also be made about the likely geomorphological and biological evolution of the created habitats in the longer term. At Abbotts Hall on the northern side of Salcott Creek, Essex, where a managed retreat scheme was activated in October 2002, the highest areas above 2·35 m OD were predicted to develop stable saltmarsh, intermediate areas between 2·1 and 2·34 m OD to develop potentially unstable saltmarsh which is likely undergo internal dissection, and the lowest areas below 2·1 m OD to remain as mud?at or lagoon. Approximately 38 per cent of the site was predicted to develop stable saltmarsh, and nearly 50 per cent to remain as lagoon or mud?at. Monitoring is now being undertaken but it will be several years before the accuracy of the predictions can be assessed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
M. C. Ramos 《水文研究》2006,20(11):2271-2283
The objective of this paper was to analyse the combined influence of the Mediterranean climate variability (particularly the irregular rainfall distribution throughout the year) and the land transformations carried out in vineyards of northeastern Spain on soil water content evolution and its influence on grape production. The study was carried out in a commercial vineyard located in the Anoia–Alt Penedès region (Barcelona province, northeastern Spain), which was prepared for mechanization with important land transformations. Two plots were selected for the study: one with low degree of transformation of the soil profile, representing a non‐disturbed situation, and the second one in which more than 3 m were cut in the upper part of the plot and filled in the lower part, representing the disturbed situation. Soil water content was evaluated at three positions along the slope in each plot and at three depths (0–20, 20–40, 40–60 cm) during the period 1999–2001, years with different rainfall characteristics, including extreme events and long dry periods. Rainfall was recorded in the experimental field using a pluviometer linked to a data‐logger. Runoff rates and yield were evaluated at the same positions. For the same annual rainfall, the season of the year in which rainfall is recorded and its intensity are critical for water availability for crops. Soil water content varies within the plot and is related to the soil characteristics existing at the different positions of the landscape. The differences in soil depth created by soil movements in the field mechanization give rise to significant yield reductions (up to 50%) between deeper and shallow areas. In addition, for the same annual rainfall, water availability for crops depends on its distribution over the year, particularly in soils with low water‐storage capacity. The yield was strongly affected in years with dry or very dry winters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Transient high pore‐water pressures, up to 50 cm higher than ambient pressure, developed over the summer season at various depths in a shallow (1 m) fen peat. The excess pressures had a pattern of gradual increases and sharp drops, and their initiation and release typically corresponded to abrupt changes in atmospheric pressure. We conclude that these phenomena depend on gas bubbles (probably methane) generated by biological activity, both by clogging pores and by building up pressure as they grow. These transient and spatially discontinuous high‐pressure zones were found using pressure transducers in sealed (backfilled) pits, but not in piezometers open to the atmosphere. Piezometers may provide a conduit for the release of gas and pressure, thus rendering them unsuitable for measuring this phenomenon. Although the development of localized zones of high pressure causes erratic and unpredictable hydraulic gradients, we suggest that their effect on the flow of water or solutes is offset by the reduced permeability caused by the bubbles, which allows them to be sustained. These zones, however, probably deflect flows driven by the dominant hydraulic gradients. Furthermore, they may cause the peat volume to adjust (swell). The use and interpretation of traditional methods for estimating hydraulic head and conductivity in peat soils thus require great caution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号