首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier–Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.  相似文献   

2.
A model is presented to transform wind speed observations at a single height over sea or near the coast to any possible location and height in a topographic flat coastal region (up to distances of about 5 km from the coast and up to heights of 100 m). Only moderate and strong winds from the sea are considered, which are particularly important for wind energy applications. The model, called diabatic coast model, which is based on the well known internal boundary layer (IBL) concept and Monin-Obukhov similarity theory, describes the effects of the roughness transition from sea to land as well as the effect of stability on the shape of the profiles and the IBL growth. The predicted IBL heights are compared with published data.In the second part of this paper, the model is compared with measurements taken at the Maasvlakte location near the Dutch coast. It is shown that a neutral formulation of the IBL height is sufficient to model the overall mean wind speed with height, but that stability corrections are needed to describe the diurnal variations in wind speed properly. Finally, an application is given, where a single routine wind speed observation at the coast, combined with air-water temperature differences is used to predict the wind speed at 500m from the coast at heights of 10 and 53 m. The results are in good agreement with the measurements.  相似文献   

3.
The Askervein Hill Project: Wind-tunnel simulations at three length scales   总被引:1,自引:1,他引:1  
Wind-tunnel simulations of neutrally-stable atmospheric boundary-layer flow over an isolated, low hill (Askervein) have been carried out at three different length scales in two wind-tunnel facilities. The objectives of these simulations were to assess the reliability with which changes in mean wind and turbulence structure induced by the prototype hill on boundary-layer flow can be reproduced in the wind tunnel, and to determine the relative impact of certain modelling approaches (surface roughness, model scale, measurement techniques, etc.) on the quality of the simulations. The wind-tunnel results are compared with each other and with full-scale data and are shown in general to model the prototype flow very well. The effects of relaxing the criterion of aerodynamic roughness of the model surface were limited to certain regions in the lee of the hill and were linked to separation phenomena.  相似文献   

4.
An estimate of roughness length is required by some atmospheric models and is also used in the logarithmic profile to determine the increase of wind speed with height under neutral conditions. The choice of technique for determining roughness lengths is generally constrained by the available input data. Here, we compare sets of roughness lengths derived by different methods for the same site and evaluate their impact on the prediction of the vertical wind speed profile.Wind speed and direction data have been collected at four heights over a three-year period at the North Norfolk Wind Monitoring Site. Wind speed profiles were used to generate sector roughness lengths based on the logarithmic profile formula. This is the only direct way of determining roughness lengths. The simplest and cheapest method is to use maps with published tables giving roughness length estimates for different terrain types. Alternatively Wieringa (1976, 1986) and Beljaars (1987) give formulae for determining roughness lengths from wind speed gusts or standard deviations.The four sets of estimated roughness lengths vary considerably. They were used to estimate 34 m wind speeds from 12.7 m observations. The profile-derived roughnesses are used simply as a check on the prediction of the wind speed profiles. The terrain-derived roughness lengths give reasonable results. Gust-derived and standard deviation roughnesses both predict wind speeds which are lower than the observed ones. The error is greater in the case of standard deviation roughnesses. If stability corrections are applied in the prediction of the vertical wind speed profile, the results are considerably improved.  相似文献   

5.
We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters ( $D$ D ) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately $2D$ 2 D directly south of a wind turbine; the other lidar was moved approximately $3D$ 3 D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43–117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.  相似文献   

6.
The profile structure of wind speed and temperature in katabatic flow over a melting glacier is analyzed within the log-linear framework. Similarity between windspeed and temperature profiles is indicated but the log-linear model should be restricted to heights within 1.5 m of the ice. Marked deviation from the model occur at greater heights, probably due to the effects of flux divergence.Unlike results from other stable atmospheres, a decreases with increasing stability. This may arise from the use of the Obukhov length L. When the height H at which the wind speed reaches its maximum value is used instead, does not vary with stability. It has mean values of 4.5 and 4.3 for windspeed and temperature profiles, respectively.  相似文献   

7.
Wind profile and eddy-correlation data obtained at two sites on a melting glacier surface in Iceland during the summer of 1996 are presented. Throughout the experiment the surface roughness increased rapidly from smooth to very rough, with the largest roughness element height obtained being about 1.7 m. In a layer close to the rough surface we find that the wind speed profiles were disturbed showing horizontal inhomogeneities as in a roughness sublayer. Its height was approximately two times the height of the main roughness elements (h) at both sites throughout the experiment. From the wind profiles and eddy-correlation data we calculated corrections for the displaced zero plane as a function of time and compared these with results obtained from a drag partitioning model. In general, the agreement was reasonable considering the ranges of uncertainty but the results indicate that the increasing horizontal anisotropy of the surface probably limits the use of the model. The values obtained for the roughness lengths are in good agreement with those calculated from a simple linear model, i.e., z0/h = 0.5 with the frontal area index. Above the roughness sublayer the wind profiles, normalised standard deviations of wind speed, and the balance of the turbulence kinetic energy budget behaved as over an ideal homogeneous surface thereby confirming similarity of the flow.  相似文献   

8.
This paper summarizes some measurements of high-frequency turbulence made at Cardington during the years 1968, 1969 and 1970 at heights up to 900 m. It discusses the statistical distribution of the data which appears to be closely log-normal. Also it is shown how the mean profiles of the derived dissipation of turbulent kinetic energy () can be rationalized to some extent in terms of atmospheric stability and low-level wind speed. A close correlation between and the mean wind and temperature profiles up to 900 m is illustrated and some discussion of the turbulent energy budget throughout the boundary layer is presented. The use and limitations of the constant flux layer relations in calculatingz 0 andL from the estimates of, at the lower heights, is brought out.  相似文献   

9.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   

10.
Wind-tunnel experiments in a thermally stratified wind tunnel and direct numerical simulations were performed to simulate the thermal internal boundary layer (TIBL) that developed over a coastal area in a sea-breeze flow. The results of the simulations were analyzed to investigate turbulence structure in the TIBL. To study the effects of the atmospheric stability over the sea on the TIBL, two vertical profiles of temperature were created in the upstream portion of the wind-tunnel experiment and the direct numerical simulation. Turbulence statistics of the TIBL changed significantly according to the temperature profile over the sea, indicating that the stability of the flow over the sea has a significant effect on the structure and turbulence characteristics of the TIBL. Furthermore, the TIBL heights were estimated from the vertical profiles of the local Richardson number. The estimated TIBL heights agreed with those predicted by a pre-existing relation, suggesting that both the wind-tunnel experiment and the direct numerical simulation accurately reproduced the growth of the TIBL.  相似文献   

11.
A highly mobile system for accurate measurements of wind speed and horizontal turbulence in the lowest few hundred meters of the atmosphere is presented. It consists of a light-weight sonde (only 50 g, including batteries that permit 12 h of continuous operation) which can be easily lifted by a small kite in winds below 5 m/s and up to at least 25 m/s. In winds below 5 m/s, a small kytoon may be used instead. The signals from the sonde are received by a standard FM-radio equipped with a frequency converter, and data are recorded on ordinary cassette tapes. Field tests against towermounted precision instruments were performed at two sites during neutral and unstable conditions with the sonde suspended 25 m below a small kite, the measuring heights being 11 and 18 m respectively during the two test series. Mean wind speeds are found to be accurate to within ±0.2 m/s. Wind speed spectra obtained with the flying sonde can be evaluated up to 0.5 Hz and are found to agree closely with the spectra of the longitudinal component recorded simultaneously by the tower-mounted instrument at the same height. After correction for high frequency loss, which amounted to 5% at this low height (it is expected to decrease rapidly with height), the standard deviation of the wind recorded by the sonde agreed to within 2% with that obtained by the reference instrument. A notable result of the field tests is that there was no sign of degradation of the performance of the sonde in strong turbulence conditions.  相似文献   

12.
Vertical dispersion in the neutral surface layer is investigated using a Markov Chain simulation procedure. The conceptual basis of the procedure is discussed and computation procedures outlined. Wind and turbulence parameterizations appropriate to the neutral surface layer are considered with emphasis on the Lagrangian time scale. Computations for a surface release are compared with field data. Good agreement is found for the variation of surface concentration and cloud height to distances 500 m downwind of the source. The functional form of the vertical concentration profile is examined and an exponential with exponent 1.6 is found to give the best fit with simulations.For elevated releases, it is demonstrated that an initial dip of the mass mean height from the simulation can be normalized for various release heights using a non-dimensionalized downwind coordinate incorporating advective wind speed and wind shear. The vertical distribution standard deviation ( z ), as employed in Gaussian models, shows a fair degree of independence with source height but close examination reveals an optimum source height for maximum z at a given downwind distance,x. This source height increases with downwind distance. Also the simulations indicate that vertical wind shear is more important than vertical variation of Lagrangian time scale close to the source, with a reverse effect farther downwind.  相似文献   

13.
The neutrally stratified flow over the Askervein Hill was simulatedusing a terrain-following coordinatesystem and a two-equation(k - ) turbulence model. Calculations were performed on awide range of numerical grids to assess, among other things, theimportance of spatial discretization and the limitations of theturbulence model. Our results showed that a relatively coarse gridwas enough to resolve the flow in the upstream region of the hill;at the hilltop, 10 m above the ground, the speed-up was 10% lessthan the experimental value. The flow's most prominent feature wasa recirculating region in the lee of the hill, which determinedthe main characteristics of the whole downstream flow. This regionhad an intermittent nature and could be fully captured only in the caseof a time-dependent formulation and a third-order discretization ofthe advective terms. The reduction of the characteristic roughnessnear the top of the hill was also taken into account, showing theimportance of this parameter, particularly in the flow close to theground at the summit and in the downstream side of the hill.Calculations involving an enlarged area around the Askervein Hillshowed that the presence of the nearby topography affected the flowneither at the top nor downstream of the Askervein Hill.  相似文献   

14.
The Askervein Hill project was a collaborative study of boundary-layer flow over low hills carried out under the auspices of the International Energy Agency Programme of R & D on Wind Energy Conversion Systems. Two field experiments were conducted during September-October 1982 and 1983 on and around Askervein, a 116 m high hill on the west coast of the island of South Uist in the Outer Hebrides of Scotland. During the experiments, over 50 towers were deployed and instrumented for wind measurements. The majority were simple 10 m posts bearing cup anemometers but, in the 1983 study, two 50 m towers, a 30 m tower, a 16 m tower, and thirteen 10 m towers were instrumented for 3-component turbulence measurement.The present paper provides an overview of the project as a whole, including details of the instrumentation and a summary of the data obtained. Additional papers in the series, which are to appear in this journal, will consider different aspects of the experimental data and related numerical-model and wind-tunnel studies.
  相似文献   

15.
Summary A 1290MHz wind profiler (Radian Lap-3000), at present one of three operational wind profilers in Austria, is operated at Vienna airport. In spite of quality assurance procedures as consensus averaging included in the data evaluation process from profiler raw data, some spurious peaks of wind speed and unrealistic changes of the wind vector in time or height occur in the wind measurements. This is especially true for sampling intervals of only 5 minutes which are used to resolve the temporal evolution of summer thunderstorms and frontal passages. Averaging periods of only a few minutes are rather the lower limit apt for wind profiler observations and result in a low data availability of 28%, whereas about 55% of data (relative to the maximum height range according to the parameter setting) are available for 10 to 30 minutes profiles.Approaches to a posteriori quality control using checks for automatic error detection are proposed and tested on a one and a half year data-set: Flagging data when the three-dimensional wind divergence exceeds a predefined limit (0.5s–1) is in most cases successful in combination with thresholds for wind speed (2 times the median of the daily data-set) or wind shear (0.2s–1).The wind profiler data is compared to wind profiles from the next radiosonde station where soundings are launched 4 times a day at Hohe Warte, approx. 20km northwest, at the hill-side of the Viennese Woods. Deviations of about 1m s–1 in wind speed are found between the observations of the two systems. Differences between the wind profiles within the boundary layer can be explained by local differences in the wind regime observed at the airport and the radiosounding – blocking effects of the Viennese Woods during south-easterly flow. Comparing the profiler data to radiosoundings on a monthly basis gives a tool to monitor the profiler performance.  相似文献   

16.
利用WRF模式分别对沿海及山地条件下风电场风速进行高分辨数值模拟,并对其误差特征进行分析,结果表明:1)WRF模式对复杂地形条件下的风速模拟性能良好,模拟值较好地体现天气尺度的周期变化;2)沿海及山地条件下模拟与观测的误差特征各不相同。模式静态数据未能显现沿海的小岛,并且低估了山地测风塔所在的海拔,导致沿海平均模拟风速偏大,山地平均模拟风速偏小;3)分析不同风向的归一化均方根误差,沿海陆风情况下,下垫面相对复杂,误差明显增大;沿海海风情况下,下垫面均一,误差明显减小;4)仅作单个风电场周边数百平方千米的模拟,采用一台12核的服务器进行WRF模式的并行计算可满足48 h短期预测的时效性。仅仅提高模拟的网格分辨率,并不一定能提升模拟的准确性。  相似文献   

17.
There are many geometrical factors than can influence the aerodynamic parameters of urban surfaces and hence the vertical wind profiles found above. The knowledge of these parameters has applications in numerous fields, such as dispersion modelling, wind loading calculations, and estimating the wind energy resource at urban locations. Using quasi-empirical modelling, we estimate the dependence of the aerodynamic roughness length and zero-plane displacement for idealized urban surfaces, on the two most significant geometrical characteristics; surface area density and building height variability. A validation of the spatially-averaged, logarithmic wind profiles predicted by the model is carried out, via comparisons with available wind-tunnel and numerical data for arrays of square based blocks of uniform and heterogeneous heights. The model predicts two important properties of the aerodynamic parameters of surfaces of heterogeneous heights that have been suggested by experiments. Firstly, the zero-plane displacement of a heterogeneous array can exceed the surface mean building height significantly. Secondly, the characteristic peak in roughness length with respect to surface area density becomes much softer for heterogeneous arrays compared to uniform arrays, since a variation in building height can prevent a skimming flow regime from occurring. Overall the simple model performs well against available experimental data and may offer more accurate estimates of surface aerodynamic parameters for complex urban surfaces compared to models that do not include height variability.  相似文献   

18.
The Weibull distribution is commonly used to describe climatological wind-speed distributions in the atmospheric boundary layer. While vertical profiles of mean wind speed in the atmospheric boundary layer have received significant attention, the variation of the shape of the wind distribution with height is less understood. Previously we derived a probabilistic model based on similarity theory for calculating the effects of stability and planetary boundary-layer depth upon long-term mean wind profiles. However, some applications (e.g. wind energy estimation) require the Weibull shape parameter (k), as well as mean wind speed. Towards the aim of improving predictions of the Weibull- \(k\) profile, we develop expressions for the profile of long-term variance of wind speed, including a method extending our probabilistic wind-profile theory; together these two profiles lead to a profile of Weibull-shape parameter. Further, an alternate model for the vertical profile of Weibull shape parameter is made, improving upon a basis set forth by Wieringa (Boundary-Layer Meteorol, 1989, Vol. 47, 85–110), and connecting with a newly-corrected corollary of the perturbed geostrophic-drag theory of Troen and Petersen (European Wind Atlas, 1989, Risø National Laboratory, Roskilde). Comparing the models for Weibull-k profiles, a new interpretation and explanation is given for the vertical variation of the shape of wind-speed distributions. Results of the modelling are shown for a number of sites, with a discussion of the models’ efficacy and applicability. The latter includes a comparative evaluation of Wieringa-type empirical models and perturbed-geostrophic forms with regard to surface-layer behaviour, as well as for heights where climatological wind-speed variability is not dominated by surface effects.  相似文献   

19.
The flow solver “3DWind” is used to explore new aspects of the Askervein hill flow case. Previous work has investigated sensitivities to the grid, the inflow boundary profile, the roughness and the turbulence model. Several different linear and non-linear numerical models have also been validated by means of the Askervein hill case. This analysis focuses on the flow sensitivity to the grid spacing, the incident wind direction and the vertical resolution of topographic data. The horizontal resolution is found to be fine enough to cause only minor differences compared to a grid where every second node is removed. The vertical resolution dependence is mainly attributed to the wall functions. Simulations are performed for wind directions 200°, 205°, 210° and 215° at the reference station. The smallest directional biases compared to experimental values along a line through the hilltop are found for the directions 200° and 205°. There are larger wind direction changes along this line through the hilltop in the 200° case than in the 215° case. Still the simulation results give less veering than found in the experimental results, and this is maybe caused by a slightly stable atmosphere. The sensitivity to the vertical resolution of the topographical data is found to be particularly high close to the ground at the top of the hill; this is where the speed-up is most important. Differences decrease with the height from the ground. At higher levels the speed-ups are smaller and caused by terrain formations with larger scales.  相似文献   

20.
This is one of a series of papers on the Askervein Hill Project. It presents results on the variations in mean wind speed at fixed heights (z) above the ground from linear arrays of anemometer posts and towers. Most of the data are for z = 10 m but some are for z = 3 m. Selected and directionally grouped data from the 55 Mean Flow runs are presented together with mean flow data from Askervein '83 Turbulence runs. Comparisons are made between the data and guideline estimates of fractional speed-up ratio at hilltop locations and between the data and MS3DJH/3 model predictions along the tower lines. There is good agreement in most cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号