首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T.C. Hales  J.J. Roering 《Geomorphology》2009,107(3-4):241-253
In the Southern Alps, New Zealand, large gradients in precipitation (< 1 to 12 m year− 1) and rock uplift (< 1 to 10 mm year− 1) produce distinct post-glacial geomorphic domains in which landslide-driven sediment production dominates in the wet, rapid-uplift western region, and rockfall controls erosion in the drier, low-uplift eastern region. Because the western region accounts for < 25% of the active orogen, the dynamics of erosion in the extensive eastern region are of equal importance in estimating the relative balance of uplift and erosion across the Southern Alps. Here, we assess the efficacy of frost cracking as the primary rockfall mechanism in the eastern Southern Alps using air photo and topographic analysis of scree slopes, cosmogenic radionuclide dating of headwalls, paleo-climate data, and a numerical model of headwall temperature. Currently, active scree slopes occur at a relatively uniform mean elevation ( 1450 m) and their distribution is independent of hillslope aspect and rock type, consistent with the notion that frost cracking (which is maximized between − 3 and − 8 °C) may control rockfall erosion. Headwall erosion rates of 0.3 to 0.9 mm year− 1, measured using in-situ 10Be and 26Al in the Cragieburn Range, confirm that rockfall erosion is active in the late Holocene at rates that roughly balance rock uplift. Models of the predicted depth of frost activity are consistent with the scale of fractures and scree blocks in our field sites. Also, vegetated, paleo-scree slopes are ubiquitous at elevations lower than active scree slopes, consistent with the notion that lower temperatures during the last glacial advance induced pervasive rockfall erosion due to frost cracking. Our modeling suggests temporally-averaged peak frost cracking intensity occurs at 2300 m a.s.l., the approximate elevation of the highest peaks in the central Southern Alps, suggesting that the height of these peaks may be limited by a “frost buzzsaw.”  相似文献   

2.
Allen G. Hunt  Joan Q. Wu   《Geomorphology》2004,58(1-4):263-289
A detailed study of a small hill in NE Mojave Desert in eastern California was conducted to elucidate the effect of climate on the variations in soil erosion rates through Holocene. Field surveys and sampling were carried out to obtain information on topography, geomorphology, soil and vegetation conditions, seismic refraction, sediment deposition, and hillslope processes. Integration of this information allowed reconstruction of the hill topography at the end of the Pleistocene, deduction of the evolution of the hill from the end of the Pleistocene to the present, and estimation of total soil losses resulting from various hillslope processes. The estimates are consistent with the premise that early Holocene climate change resulted in vegetation change, soil destabilization, and topographic roughening. Current, very slow, hillslope transport rates (e.g., 5 mm ky−1 by rodent burrowing, a presently important transport form) appear inconsistent with the inferred total soil loss rate (31 mm ky−1). Packrat midden studies imply that the NE Mojave Desert experienced enhanced monsoonal precipitation in the early Holocene, presumably accentuating soil loss. Water erosion on one slope of the hill was simulated using Water Erosion Prediction Project (WEPP), a process-based erosion model, using 4 and 6 ky of precipitation input compatible with an appropriate monsoonal climate and the present climate, respectively. The WEPP-predicted soil losses for the chosen slope were compatible with inferred soil losses. Identification of two time periods within the Holocene with distinct erosion characteristics may provide new insight into the current state of Mojave Desert landform evolution.  相似文献   

3.
Wind erodibility of major soils in the farming-pastoral ecotone of China   总被引:2,自引:0,他引:2  
Wind erosion and desertification are severe problems in China's farming-pastoral ecotone. In this study, wind erodibility of five major soils in both uncultivated and simulated cultivated conditions, were determined through wind tunnel tests at nine wind speeds ranging from 10 to 26 m s−1. The average wind erosion rate (g m−2 min−1) under the uncultivated condition (q0) for the five soils could be set in the order: chestnut soil (28.5)>brown soil (24.8)>sierozem (21.8)>chernozem (19.9)>fixed sandy soil (11.4). The highest natural wind erosion might take place in the semi-arid steppe zone where the Chestnut soils predominate. Cultivation can significantly accelerate wind erosion, the mean wind erosion rate under the cultivated condition (qc) for all five soils was 743.7 g m−2 min−1 in the following order: sandy soil (3313.2)>brown soil (227.2)>chernozem (221.8)>sierozem (85.1)>chestnut soil (81.2). For both the uncultivated and cultivated soil samples, the relationship between wind erosion rate (q) and wind speed (U) could be expressed in general as q=A eBU (A and B are constant coefficients). There was a critical wind speed for each soil type except for the sandy soil. Below the critical wind speed, cultivation reduced wind erosion rate possibly due to soil clodiness and roughness effects. Above the critical speed, cultivation greatly intensified wind erosion rates due to the break down of the original soil structure. The critical wind speed measured at 20 cm above the soil surface was 20 m s−1 for the brown soil, 14 m s−1 for chernozem and the chestnut soils, and 10 m s−1 for the sierozem. Among the five tested soils, the high wind erosion rate of the cultivated sandy soil showed its extreme sensitivity to cultivation, possibly because of the structureless nature of the loose sand. The “effect of cultivation on wind erosion” index, η (=qc/q0), increased exponentially with the increase of wind speed, indicating that under higher wind speed conditions, cultivation could result in more severe wind erosion.  相似文献   

4.
中国南方山地的土地荒漠化初探   总被引:4,自引:0,他引:4  
吴薇 《中国沙漠》1989,9(3):36-43
我国的土地沙漠化已不仅仅在北方干旱、半干旱、包括部分半湿润地区, 而且在我国不少湿润和半湿润地带的东部平原(如黄淮海平原等)、沿海地区以及南方山地区也有发生, 其环境退化过程所包括的内容已不局限于"风沙化", 还包括了"砂石化"的类似砾质荒漠景观和山地丘陵斜坡的流水侵蚀造成的劣地景观, 内容较为丰富, 因此对我国南方山区的环境趋向于类似荒漠条件的退化过程, 我们采用了较广义的土地荒漠化的含义。  相似文献   

5.
荒漠化概念及其实践意义雏议   总被引:12,自引:4,他引:12  
周劲松  濮励杰 《中国沙漠》1996,16(2):191-195
根据近年来有关荒漠化会议的研究成果,并结合我国国情对荒漠化概念进行雏议,认为水土流失(水蚀)是荒漠化(即土地退化)的主要类型之一,是我国东部湿润、半湿润区经济发展的重要制约因子,重视和开展该地区土地退化的研究对于荒漠化理论和社会实践都有重要意义。  相似文献   

6.
Rates of sheet and rill erosion in Germany — A meta-analysis   总被引:2,自引:0,他引:2  
K. Auerswald  P. Fiener  R. Dikau   《Geomorphology》2009,111(3-4):182-193
Knowledge of erosion rates under real conditions is of great concern regarding sustainability of landuse and off-site effects on water bodies and settlements. Experimentally derived rates of sheet and rill erosion are often biased by experimental settings, which deviate considerably from typical landuse, by short measuring periods and by small spatial extensions, which do not account for the pronounced spatio-temporal variability of erosion events. We compiled data from 27 studies covering 1076 plot years to account for this variability. Modelling was used to correct for deficiencies in the experimental settings, which overrepresented arable land and used steeper and shorter slopes as well as higher erosivity than typically found in reality. For example, the average slope gradient was 5.9° for all arable plot experiments while it is only 2.6° on total arable land in Germany. The expected soil loss by sheet and rill erosion in Germany after taking real slopes, landuse and erosivity into account averaged 2.7 t ha− 1 yr− 1. Annual crops contributed the largest proportion (90%) but hops despite its negligible contribution to landuse (0.06%) still contribute 1.0% due to its extraordinary rapid erosion, which was even faster than the measured bare fallow soil loss standardized to otherwise identical conditions. Bare fallow soil loss, which is often used as baseline, was 80 t ha− 1 yr− 1 when standardized to 5.1° slope gradient, 200 m flow path length, and average German erosivity.  相似文献   

7.
On upland Triassic sandstone slopes of the western Blue Mountains, nonswamp, sclerophyllous heath (shrub-dominated vegetation) on shallow soils is commonly found downslope and adjacent to sclerophyllous forest on deeper soils. Some consider heath—and thus shallow soils—as favouring west-facing slopes, which are expected to experience drier microclimates due to insolation, strong and desiccating winds, and severe summer fires. However, our analysis of extensive areas with heath on shallow soils, based on vegetation and topographic maps, and fieldwork of uplands with various degrees of dissection, suggests that aspect is a poor predictor of shallow soils. Rather, shallow soils and heath are found on short slopes and the lower segments of longer slopes with the latter significantly steeper than forested segments.The shallow–deep soil boundary, marked by contrasting modern vegetation structures, does not signify a catchment area threshold, and correspondingly, the vegetation patterns are not in balance with distributary catchment processes, as short slopes are mantled exclusively by shallow soils. Instead, the soil depth boundary represents the propagation of base-level lowering signals, which takes place not only by the headward retreat of knickpoints but also via increased lowering of slope segments adjacent to drainage lines. This leads to steep slopes immediately adjacent to canyons, narrow gorges, and small steep valleys, that are mantled by shallow, discontinuous soils undergoing rapid erosion. These steep slopes persist in the landscape for ≥ 10 My after upland stream rejuvenation until incision of more weatherable Permian sediments, underlying the Triassic cliff-forming sandstones, triggers rapid lateral expansion of gorges. Once shallowly mantled and steeper slopes adjacent to streams are consumed by gorge widening, slopes adjacent to wide gorge clifflines reflect former upland drainage patterns rather than the redirected flow to rapidly widening gorges. Hence, modern vegetation patterns reflect a significant phase of landform development, perhaps combined with enhanced erosion during the Last Glacial Period that is compounded by a humped soil production function on bedrock.  相似文献   

8.
Soil erosion is a global environmental problem, and anthropogenic fallout radionuclides offer a promising tool for describing and quantifying soil redistribution on decadal time scales. To date, applications of radioactive fallout to trace upland sediment transport have been developed primarily on lands disturbed by agriculture, grazing, and logging. Here we use 137Cs to characterize and quantify soil erosion at the Konza Prairie Long-Term Ecological Research (LTER) site, an undisturbed grassland in northeastern Kansas. We report on the small scale (< 10 m) and landscape scale (10 to 1000 m) distribution of fallout 137Cs, and show significant variability in the concentrations and amounts of 137Cs in soils at our site. 137Cs soil concentrations and amounts typically vary by 10% to 30% on small scales, which most likely represents the spatial heterogeneity of the depositional processes. Landscape scale variability of soil 137Cs was significantly higher than small scale variability. Most notably, soils collected on convex (divergent) landforms had 137Cs inventories of 2500 to 3000 Bq m− 2, which is consistent with the expected atmospheric inputs to the study area during the 1950s and 1960s. Concave landforms, however, had statistically lower inventories of 1800 to 2300 Bq m− 2. The distribution of 137Cs on this undisturbed landscape contrasts significantly with distributions observed across disturbed sites, which generally have accumulations of radioactive fallout in valley bottoms. Because the upslope contributing area at each sampling point had a significant negative correlation with the soil inventory of 137Cs, we suggest that overland flow in convergent areas dominates soil erosion at Konza on time scales of decades. Very few points on our landscape had 137Cs inventories significantly above that which would be predicted from direct deposition of 137Cs on the soil surface; we conclude therefore that there is little net sediment storage on this undisturbed landscape.  相似文献   

9.
The world fallout of caesium-137 (137Cs) associated with nuclear weapons testing during the 1950s and 1960s has provided a valuable man-made tracer for studies of soil erosion and sediment delivery. But relatively few researchers have used it to estimate wind erosion. In this paper, the137Cs technique is introduced into the study of wind erosion and its modern processes in the Qinghai-Tibet Plateau. Two137Cs reference inventories of 982·11 and 2376·04 Bq m−2was established preliminarily, which distribute in the south and mid-north parts of the study area respectively. By analysing the patterns of137Cs depth profiles from sampling sites, the aeolian processes of erosion and deposition along nearly 40 years has been revealed, i.e. the shrub coppice dunes(S1) and semi-fixed dunefields (S3) had experienced the alternation of erosion and deposition, while the grasslands (S4, S6 and S7) and dry farmlands (S5) suffered erosion only. By using the137Cs model, the average wind erosion rates for shrub coppice dune (S1), semi-fixed dunefields (S3), dry farmlands (S5) and grasslands (S4, S6 and S7) were estimated to be 84·14, 69·43, 30·68 and 21·84 tha−1a−1respectively, and for the whole Plateau, averaging 47·59 ha−1a−1which can be regarded as the medium erosion standard. These results derived from137Cs for the first time have significant implications for the further research of wind erosion and desertification control in the Qinghai-Tibet Plateau.  相似文献   

10.
Few measurements of the rate of soil erosion from agricultural land in Britain have been published. Loamy soils in England may be particularly vulnerable to erosion. Thus, in a field of strawberries near Albourne at least 181 t ha−1 of fine loamy soil was eroded in a 9-month period; this is almost 100 times greater than a suggested ‘acceptable’ figure. Factors which have induced erosion at Albourne are: the removal of field boundaries; the choice of crop which left the ground bare for a prolonged period ; and the working of the land downslope. Other factors contributing to erosion are the low clay and organic matter content of the soil. The soil slakes and the resultant crust reduces the rate of infiltration of rainfall into the soil and this produces overland flow. Large amounts of rainfall are not necessary to cause erosion. Erosion in the Albourne area is probably a relatively recent phenomenon brought about by changes in land use.  相似文献   

11.
Soil erosion is a major threat to our terrestrial ecosystems and an important global environmental problem. The Loess Plateau in China is one of the regions that suffered more severe soil erosion and undergoing climate warming and drying in the past decades. The vegetation restoration named Grain-to-Green Program has now been operating for more than 10 years. It is necessary to assess the variation of soil erosion and the response of precipita- tion and vegetation restoration to soil erosion on the Loess Plateau. In the study, the Revised Universal Soil Loss Equation (RUSLE) was applied to evaluate annual soil loss caused by water erosion. The results showed as follows. The soil erosion on the Loess Plateau between 2000 and 2010 averaged for 15.2 t hm-2 a 1 and was characterized as light for the value less than 25 t hm-2 a-1. The severe soil erosion higher than 25 t hm-2 a-~ was mainly distributed in the gully and hilly regions in the central, southwestern, and some scattered areas of earth-rocky mountainous areas on the Loess Plateau. The soil erosion on the Loess Plateau showed a deceasing trend in recent decade and reduced more at rates more than 1 t hm 2 a 1 in the areas suffering severe soil loss. Benefited from the improved vegetation cover and ecological construction, the soil erosion on the Loess Plateau was significantly declined, es- pecially in the east of Yulin, most parts of Yah'an prefectures in Shaanxi Province, and the west of Luliang and Linfen prefectures in Shanxi Province in the hilly and gully regions. The variation of vegetation cover responding to soil erosion in these areas showed the relatively higher contribution than the precipitation. However, most areas in Qingyang and Dingxi pre- fectures in Gansu Province and Guyuan in Ningxia Hui Autonomous Region were predomi- nantly related to precipitation.  相似文献   

12.
Temporal patterns in floodplain genesis and alluvial sedimentation in lowlands tropical rain forest zones of Ghana, Sierra Leone and western Kalimantan (Indonesian Borneo) based upon 14C age determinations are described.Alluvial low terraces or buried sediments in West Africa yielded ages of 36-21 ka. In west Kalimantan a widespread episode of alluviation has yielded dates of 54-51 ka. The 20-13 ka interval was characterised by channel incision with valley floor erosion and neither region records sedimentation. Holocene alluvial sedimentation and floodplain construction in West Africa occurred during two temporal intervals: 10-7 ka and 4 ka to present and in western Kalimantan in response to early Holocene sea level rise followed by late Holocene regression and coastal outgrowth.The clustering of 14C dates closely corresponds to regional lake level fluctuations and vegetational changes and to global indications of climatic change. We propose that periods of more frequent episodes of accelerated floodplain erosion and reconstitution, channel morpho-sedimentary activity and alluvial accumulation (1) are responses to interstadial and interglacial periods of higher precipitation following intervening periods of cooler and drier conditions; and (2) may be synchronous during the last 60 ka throughout the African and Asian inner humid lowland tropics.  相似文献   

13.
Major climatic changes and rapid local and regional tectonic movements were common in New Zealand during the late Quaternary and caused a diversity of adjustments in the drainage-basin and piedmont reaches of the Charwell River, which are separated by the Hope Fault. The onset of semi-arid, frigid climates during the latest Pleistocene probably greatly increased hillslope sediment yields in a periglacial environment, and the piedmont reach aggraded as much as 42 m on top of a broad strath. With the return of humid, mesic climates in the Holocene sediment yields decreased as dense forests again mantled the slopes, and the piedmont reach degraded as mush as 81 m. Dating of eleven cut-and-strath terraces by radiocarbon-calibrated weathering rind measurements on greyawake cobbles shows the degradation rates varied greatly during the last 14 ka (1 ka = 1000 yr). Initial degradation rates of < 4 m ka−1 increased to 30 m ka −1 by 6 ka ago during a mid-Holocene climatic optimum. Since 4 ka ago degradation rates have been only 1.2 m ka−1, comparable to uplift rates in the piedmont reach inferred from marine-terrace studies, and the river is again cutting a broad strath. Each broad strath represents equilibrium conditions attained by this powerful stream during interglacial times despite episodes of being overwhelmed by climatically induced sediment-yield increases during full-glacial climates and having to maintain a long-term degradation rate equal to the uplift rate.The 75–81 m of degradation since formation of the latest Pleistocene fill-terrace tread is the sum of the amount of late Pleistocene valley-floor aggradation and the amount of regional uplift that occurred between the estimated times of major strath formation at about 30 and 0 ka. The 39 m of tectonically induced degradation below the pre-aggradation strath is sufficiently large that post-30 ka uplift may have doubled Holocene degradation rates.Each of the eleven degradation terraces represents pauses of a few centuries in Holocene downcutting. Brief equilibrium conditions were attained by streambed armoring and concurrent growth of riparian plants; both processes progressively increased hydraulic roughness and the shear stresses needed to entrain streambed materials. Occasional floods, possibly from rare cyclones derived from tropical moisture sources, destroyed streambed armor and channel downcutting was renewed. Thus the formation of eleven equilibrium terraces can be accounted for without postulating additional tectonic perturbations or secular climatic changes.  相似文献   

14.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   

15.
Application of210Pb in soils   总被引:2,自引:0,他引:2  
The spectroscopic measurement of soil samples is described.210Pb data from a soil survey in western-Europe are briefly reviewed. The average210Pb flux from the atmosphere, as determined from210Pb exc soil inventories, is 90 Bq m–2a–1. A simple one-dimensional box-chain model is described. The model simulates the vertical, post depositional transport of natural and fall-out radionuclides in the soil. Simulation of measured210Pb exc ,134Cs,137Cs, and241Am soil profiles shows that mixing (bioturbation) is a very efficient transport mechanism. Lead seems to be strongly fixed to organic and clay particles. It is transported by the displacement of the organic and clay carrier substances. The mean residence time of lead, caesium, plutonium and americium in organic rich forest soils is in the order of 250–1000 years. An applicability study in investigate the use of210Pb in erosion problems showed erosion rates from 60–180 g m–2a–1 on organic rich forest and meadow sites with 10°–25° slopes.This is the eighth of a series of papers to be published by this journal following the 20 th anniversary of the first application of210Pb dating of lake sediments. Dr P. G. Appleby is guest editing this series.  相似文献   

16.
The evolution of landforms and soils from the Jaldi and Maiskhali anticlines and adjoining areas in a part of the coastal region of the north–south trending fold belt of Bangladesh during the Late Quaternary Period has been investigated. Based on the degree of soil development and luminescence dating, eight soil geomorphic units have been deciphered and grouped into four members (I–IV) of a morphostratigraphic sequence for the study area. Various soil geomorphic units included in different member/sub-members are: Member I—river floodplains and active tidal flats (< 500 years); Member II—distal Piedmont Plains and old tidal flats (0.5–2 ka); Member III—proximal Piedmont Plains (6–10 ka); and Member IV—Mainland Higher and Lower Hillocks and Island Hillocks (> 15 ka). Member IV is further subdivided into Sub-member IVa—Island Hillocks (15–18 ka); Sub-member IVb—Mainland Lower Hillocks (23–25 ka); and Sub-member IVc—Mainland Higher Hillocks (30–35 ka).The youngest and poorly developed soils of Member I show features related to hydromorphism. Moderately developed soils of Members II and III show a fersiallitisation stage of pedogenesis. Member IV includes ‘strongly developed soils’ with a ferrugination stage of pedogenesis. These soils also exhibit degradation and poor birefringence of argillans and ferriargillans, indicating a significant change in conditions of pedogenesis, probably related to a paleoclimatic change from a subhumid to semiarid phase (40 ka to about 16 ka) to a hot humid to subhumid phase (16 ka–present). Parent material composition and physiography also have affected the pedogenesis in the area.Based on ages and heights above the mean sea level for the five terraces recognized in the study area, the overall base-level rise rates calculated are about 3.6 mm/year (18 ka–present) for the Maiskhali Island and 2.86 mm/year (35 ka–present) for the mainland (Jaldi anticline). These base level changes represent combined effects of eustatic sea level and tectonic uplift due to folding.  相似文献   

17.
18.
Isolated, laterally extensive, gently sloping surfaces known as summit flats are present at high elevations in many Laramide ranges, and are particularly well developed in the Uinta Mountains of northeastern Utah. To investigate the spatial distribution of these surfaces, and to consider possible controls on this pattern, a map of summit flats in the Uintas was developed from digital elevation data. Summit flats were identified as unglaciated areas of the landscape above an elevation of 3400 m, having a slope of less than 0.3 m m− 1, and an area greater than 5 × 10− 2 km2. As defined, summit flats comprise 43% of the unglaciated land area above 3400 m in the Uintas, with the largest individual flat covering nearly 34 km2. To quantitatively evaluate the distribution of summit flats in the Uintas, the area of summit flats was normalized to the total unglaciated area above 3400 m in 10-km-wide swaths oriented normal to the range axis. Values of percent summit flats obtained by this method decrease dramatically westward, from a high of more than 60% at the eastern end of the Uintas, to 0% at the western end. Given that individual summit flats can be diminished through lateral erosion by surrounding valley glaciers, and that the summit flats themselves were apparently never glaciated, this result suggests that glacial erosion has been more effective in the western Uintas over the course of the Quaternary. Focused glacial erosion at the upwind end of the range is consistent with the hypothesis that the proximity of Lake Bonneville enhanced precipitation over the western Uintas during the Last Glacial Maximum [Munroe, J.S., and, Mickelson, D.M., 2002. Last Glacial Maximum equilibrium-line altitudes and paleoclimate, northern Uinta Mountains, Utah, U.S.A. Journal of Glaciology, 48, 257–266].  相似文献   

19.
A model to simulate 137Cs profiles in soils during the time in which they are being eroded is proposed. The model uses one parameter to characterize the cesium transference in the soil and another to express the erosion rate. To test the model, 137Cs profiles of stable and eroded soils were collected at sampling sites located on semi-arid and temperate slopes in the Central Ebro basin, Spain. The 137Cs profiles, corresponding to uncultivated soils with natural vegetation cover, were simulated using this model. The 137Cs inventories and profiles calculated with the model are very similar to those measured experimentally, and thus it is possible to calculate soil erosion rates in physiographically diverse Mediterranean environments.  相似文献   

20.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号