首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 We investigated grain growth of calcite aggregates fabricated from crushed natural single crystals with different impurity content. The total trace-element concentration of the starting powders varied from about 170 ppm to more than 930 ppm with Mn as the major component. Samples were produced by hot-isostatic pressing of the different powders at 300 MPa confining pressure at 600 °C for 2 h. The starting material for the anneals was dry and had a uniform microstructure with an average grain size of about 5 μm and a porosity of <2.1%. Three disks with Mn concentrations of 10, 350, and 670 ppm, respectively, were annealed in the same run at a confining pressure of 300 MPa, and temperatures between 700 and 900 °C for up to 20 h. Grain growth was fastest in samples with the highest Mn concentrations. A multivariable fit to the data yields grain-growth exponents of 2.0 ± 0.3 for samples with 10 ppm Mn and 2.3 ± 0.2 for those with 670 ppm Mn. The activation energies for grain growth vary from 99 ± 12 kJ mol−1 to 147 ± 14 kJ mol−1 for the respective calcite compositions. Received: 22 August 2000 / Accepted: 12 March 2001  相似文献   

2.
Thermally-induced grain growth of calcite marbles on Naxos Island,Greece   总被引:1,自引:0,他引:1  
The island of Naxos is composed of an elliptically shaped structural and thermal dome of Miocene age. Peak metamorphic temperatures within the central migmatite complex exceeded 700° C, decreasing to about 300° C at the most distant exposures on the island. Equigranular calcite marbles which outcrop together with metapelites and metabasites over the whole island show a systematic pattern of increasing grain-size towards the central migmatite complex, with a significant discontinuity in the pattern corresponding approximately with the 500° C isotherm. The microstructures and grain-size distributions in the marbles are consistent with normal grain-growth. The variation of grain-size with peak temperature attained can be explained equally well by the assumptions that (a) a maximum grainsize had developed, particularly at higher temperatures, or that (b) the grain-size had been frozen-in by a combination of cooling and coarsening, both of which combine to reduce the rate of grain-growth.The grain-size data do not impose strong constraints on the mechanism of transport of heat responsible for the metamorphism, whether by conduction or by advection, but the 500° C discontinuity indicates that the tectonothermal history of the migmatitic core and its envelope of metasediments were different.  相似文献   

3.
Fast diffusion along mobile grain boundaries in calcite   总被引:1,自引:0,他引:1  
Experimental measurements of grain boundary diffusion are usually conducted on static boundaries, despite the fact that grain boundaries deep in the Earth are frequently mobile. In order to explore the possible effect of boundary mobility on grain boundary diffusion rates we have measured the uptake of 44Ca from a layer of 44Ca-enriched calcite powder during the static recrystallization of a single crystal of calcite at 900°C. A region about 500 μm wide adjacent to the powder layer is heterogeneously enriched in 44Ca, and complex zoning patterns, including sharp steps in composition and continuous increases and decreases in 44Ca content, are developed. In metamorphic rocks, these would normally be interpreted in terms of changes in pressure or temperature, Rayleigh fractionation, or episodic fluid infiltration. These explanations cannot apply to our experiments, and instead the zoning patterns are interpreted as being due to variations in grain boundary migration rate. We have applied an analytical model which allows the product of grain boundary diffusion coefficient and grain boundary width (D GB δ) to be calculated from the grain boundary migration rate and the compositional gradient away from the powder layer. The value of D GB δ in the mobile grain boundaries is at least five orders of magnitude greater than the published value for static boundaries under the same conditions. In order to allow the scale of chemical equilibrium (and hence textural evolution) to be predicted under both experimental and geological conditions, we present quantitative diffusion-regime maps for static and mobile boundaries in calcite, using both published values and our new values for grain boundary diffusion in mobile boundaries. Enhanced diffusion in mobile boundaries has wide implications for the high temperature rheology of Earth materials, for geochronology, and for interpretations of the length- and time-scales of chemical mass-transport. Moreover, zones of anomalously high electrical conductivity in the crust and mantle could be regions undergoing recrystallization such as active shear zones, rather than regions of anomalous mineralogy, water- or melt-content as is generally suggested.  相似文献   

4.
Microstructural modification processes like dynamic recrystallization and grain growth can have a major effect on the transient and (semi-)steady state flow behaviour of deforming materials. Work on metals and ceramics suggests that deformation-enhanced changes in grain topology and the corresponding increase in fraction of non-hexagonal grains, called cellular defect fraction, can promote grain growth during deformation. The present study tests this hypothesis, by investigating the evolution of the cellular defect fraction during deformation, accompanied by grain growth, of aggregates with distributed grain sizes. For this purpose, we made use of the ELLE 2D microstructural modeling package. We simulated and quantified microstructural evolution under conditions where both surface energy driven grain boundary migration (GBM) and homogeneous deformation or grain size sensitive (GSS) straining were allowed to occur. The simulations show that contemporaneous GBM and simple geometrical straining of grain aggregates with distributed grain size and coordination number lead to extra grain neighbor switching, an increase in defect fraction, and enhanced grain growth. An increase in defect fraction was also found in a selected set of natural calcite mylonites that, with increasing temperature, show an increase in grain size and contribution of GSS creep. Analysis of defect fraction thus appears to be a good microstructural tool to establish whether or not a material has experienced normal static (defect fraction  0.7) or dynamic grain growth (defect fraction  0.8).  相似文献   

5.
The kinetics of calcite precipitation in the presence of alginate was investigated using the constant composition technique. In the concentration range investigated (0.0002-0.005 g L−1), alginate inhibits calcite precipitation. The extent of inhibition increased with increased alginate concentration and decreased solution supersaturation. Alginate adsorption, derived from normalized calcite precipitation rates, is described satisfactorily by the Langmuir adsorption model. At lowest supersaturation, alginate adsorption onto calcite probably reaches its maximal uptake of 7.5E-4 g m−2, corresponding to surface coverage of one molecule for each 200-300 nm2, depending on the molecular mass of alginate. This means that one alginate molecule can be bound over 100-150 Ca surface sites. Initially, on the surface of the inhibited calcite, XPS identified alginate but after further time in solution, when the system had recovered, XPS demonstrated that it disappeared from the surface, presumably buried under the newly formed calcite. The alginate affinity constant decreases with increasing supersaturation, evidence for incomplete adsorption. A simple model based on competition between growth and desorption effectively describes the observed change in the adsorption constant.  相似文献   

6.
The rates of grain growth of stoichiometric dolomite [CaMg(CO3)2] and magnesite (MgCO3) have been measured at temperatures T of 700–800°C at a confining pressure P c of 300 MPa, and compared with growth rates of calcite (CaCO3). Dry, fine-grained aggregates of the three carbonates were synthesized from high purity powders by hot isostatic pressing (HIP); initial mean grain sizes of HIP-synthesized carbonates were 1.4, 1.1, and 17 μm, respectively, for CaMg(CO3)2, MgCO3, and CaCO3, with porosities of 2, 28, and 0.04% by volume. Grain sizes of all carbonates coarsened during subsequent isostatic annealing, with mean values reaching 3.9, 5.1, and 27 μm for CaMg(CO3)2, MgCO3, and CaCO3, respectively, in 1 week. Grain growth of dolomite is much slower than the growth rates of magnesite or calcite; assuming normal grain growth and n = 3 for all three carbonates, the rate constant K for dolomite (≃5 × 10−5 μm3/s) at T = 800°C is less than that for magnesite by a factor of ~30 and less than that for calcite by three orders of magnitude. Variations in carbonate grain growth may be affected by differences in cation composition and densities of pores at grain boundaries that decrease grain boundary mobility. However, rates of coarsening correlate best with the extent of solid solution; K is the largest for calcite with extensive Mg substitution for Ca, while K is the smallest for dolomite with negligible solid solution. Secondary phases may nucleate at advancing dolomite grain boundaries, with implications for deformation processes, rheology, and reaction kinetics of carbonates.  相似文献   

7.
The morphologies of calcite grain boundaries were analyzed to provide insight into the evolution of pore networks in unfractured rock. Two synthetic calcite rocks were fabricated by hot isostatically pressing (HIP-ing) dried analytical-grade powders of pure CaCO3 and CaCO3 plus 5% Al2O3 at 600° C and 200 MPa confining pressure for 3 hours (HIP-1). Some samples were HIPed a second time at different temperatures and pressures to investigate the stability of the structures (HIP-2a-c). SEM and TEM were used to image both grain faces and grain boundary cross-sections. Structures on grain faces vary from open shallow basins with peripheral rims, to labyrinths of irregular ridges and channels, to isolated circular depressions. All of these structures are mirrored across the plane between grain faces. The grain size in both the single and two-phase samples increased markedly during HIP-1. Migrating boundaries either dragged pores along or broke away leaving grain interiors dotted with small voids. The structures present after HIP-1 were not stable but evolved considerably in a way dependent on the conditions of the HIP-2. Confining pressure had the most pronounced effect. With low confining pressure, the grain-boundary porosity evolved into isolated circular depressions but the total pore volume did not noticeably decrease. With high confining pressure, the pore volume virtually disappeared. The structures present after HIP-1 are strikingly similar to those that develop in intragranular cracks during healing. We infer that grain boundaries and intragranular cracks heal by similar processes. Decomposition, localized melting, impurities, and anisotropic surface energies played no evident role in forming the grain-boundary structures. The timing of the formation of the porosity and of the subsequent healing processes is more difficult to ascertain. Some structures appear to have evolved gradually throughout the constant, high temperature stage of HIPing. The most obvious structures, however, appear to have evolved on grain boundary cracks that opened during cooling.  相似文献   

8.
 Calcium self-diffusion rates in natural calcite single crystals were experimentally determined at 700 to 900° C and 0.1 MPa in a stream of CO2. Diffusion coefficients (D) were determined from 42Ca concentration profiles measured with an ion microprobe. The Arrhenius parameters yield an activation energy (Q)=382±37 kJ/mol and pre-exponential factor (D0)=0.13 m2/s, and there is no measurable anisotropy. Calcium grain boundary diffusion rates were experimentally determined in natural (Solnhofen) limestone and hot-pressed calcite aggregates at 650° to 850° C and 0.1 to 100 MPa pressure. The Solnhofen limestone was first pre-annealed for 24 h at 700° C and 100 MPa confining pressure under anhydrous conditions to produce an equilibrium microstructure for the diffusion experiments. Values for the product of the grain boundary diffusion coefficient (D′) and the effective grain boundary diffusion width (δ) were determined from 42Ca concentration profiles measured with an ion microprobe. The results show that there is no measurable difference between D′δ values obtained for pre-annealed Solnhofen samples at 0.1 and 100 MPa or between hot-pressed calcite aggregates and pre-annealed Solnhofen samples. The temperature dependence for calcium grain boundary diffusion in Solnhofen samples annealed at 0.1 MPa is described by the Arrhenius parameters D 0δ=1.5×10−9 m3/s and Q=267±47 kJ/mol. Comparison of the results of this study with previously published data show that calcium is the slowest volume diffusing species in calcite. The calcium diffusivities measured in this study place constraints on several geological processes that involve diffusive mass transfer including diffusion-accommodated mechanisms in the deformation of calcite rocks. Received: 19 December 1994/Accepted: 30 June 1995  相似文献   

9.
Assessment of groundwater vulnerability to pollution is an essential pre-requisite for better planning of an area. We present the groundwater vulnerability assessment in parts of the Yamuna Nagar District, Haryana State, India in an area of about \(800 \hbox { km}^{2}\), considered to be a freshwater zone in the foothills of the Siwalik Hill Ranges. Such areas in the Lower Himalayas form good groundwater recharge zones, and should always be free from contamination. But, the administration has been trying to promote industrialization along these foothill zones without actually assessing the environmental consequences such activities may invite in the future. GIS-DRASTIC model has been used with field based data inputs for studying the vulnerability assessment. But, we find that inclusion electrical conductivity (EC) as a model parameter makes it more robust. Therefore, we rename it as GIS-DRASTIC-EC model. The model identifies three vulnerability zones such as low, moderate and high with an areal extent of 5%, 80% and 15%, respectively. On the basis of major chemical parameters alone, the groundwater in the foothill zones apparently looks safe, but analysis with the help of GIS-DRASTIC-EC model gives a better perspective of the groundwater quality in terms of identifying the vulnerable areas.  相似文献   

10.
Software has been designed for forward and inverse modeling of natural self-potential (SP) fields which allows simulating the geoelectric patterns simultaneously for up to 29 sheet-like and prismatic electrostatically polarized conductors. The cross sections for a number of ore fields obtained by inversion with the new SPI-SV code (self-potential inversion, Siberian version) have been corroborated by later drilling and are consistent with reference geologic sections used in algorithm testing. SPI-SV simulation can provide high-quality assessment of mineral deposits and, furthermore, allows approaching global-scale investigation into the natural self potential of crust and mantle.  相似文献   

11.
Intragranular microshear zones within a greenschist facies calcite marble were studied to try to constrain better the processes of dynamic recrystallization as well as the deformation processes that occur within newly recrystallized grains. Intragranular recrystallized grains within large, twinned calcite porphyroclasts can be related to the host from which they have recrystallized and are the focus of an electron backscatter diffraction study. Lattice distortions, low angle boundaries and some high angle boundaries (>15°) in the microshears within a porphyroclast have the same misorientation axes suggesting that deformation occurred by climb-accommodated dislocation creep involving subgrain rotation recrystallization. Changes in the ratio of host and twin domain, as the deformation zone is entered, show that twin boundary migration also occurred. Recrystallized grains have similar sizes (10–60 μm) to subgrains, suggesting that they formed by subgrain rotation. However, within the intragranular microshear zones the misorientations between recrystallized grains and porphyroclasts are considerably larger than 15° and misorientation axes are randomly oriented. Moreover recrystallized grain orientations average around the porphyroclast orientation. We suggest that the recrystallized grains, once formed, are able to deform partly by diffusion accommodated grain boundary sliding, which is consistent with predictions made from lab flow laws.  相似文献   

12.
Seeded calcite growth experiments were conducted at fixed pH (10.2) and two degrees of supersaturation (Ω = 5, 16), while varying the Ca2+ to solution ratio over several orders of magnitude. The calcite growth rate and the incorporation of Sr in the growing crystals strongly depended on the solution stoichiometry. At a constant degree of supersaturation, the growth rate was highest when the solution concentration ratio, r = [Ca2+]/[], equaled one, and decreased symmetrically with increasing or decreasing values of r. This behavior is consistent with the kink growth rate theory for non-Kossel crystals, assuming that the frequency factors for attachment to kink sites are the same for the cation and anion. Measured Sr partition coefficients, DSr, ranged from 0.02 to 0.12, and correlated positively with the calcite growth rate.  相似文献   

13.
Geosynthetic is widely used to reinforce the weak rock mass, mine waste dump, soil slopes road cut slopes, etc. The present paper discusses the effect of geogrids on the stability of mine waste dump. The stability of mine waste dump has been done by Fast Langrage Analysis of Continua (FLAC) slope software, which is based on finite difference method. Reinforcement by geogrids mainly depends on the tensile strength, aperture size of geogrids, and particle size distribution of dump rock mass. Different permutations and combinations of spacing between two geogrid sheets have been taken into consideration to study the stability of mine waste dump. The factor of safety is calculated to quantify the effect of geogrids on waste dump slope. It has been observed from numerical modeling that the maximum slope angle is 45° at a height of 10 m. The scope of increasing slope angle from 45 to 60° is evaluated using geogrids. It has been found from the study that the factor of safety increases as the spacing between geogrids decreases. Maximum strain is also plotted of each case to identify the slip circle. The positions of geogrids modify the probable slip circle or failure plane of mine waste dump. Using ten geogrids at a spacing of 1 m, the slope angle can be increased up to 60° with factor of safety of 1.4.  相似文献   

14.
The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. To determine if and how temperature is kinetically responsible for the amount of Mg incorporated in calcite, we quantified the influence of temperature and specific dissolved components on the complex mechanism of calcite precipitation in seawater. A kinetic study was carried out in artificial seawater and NaCl-CaCl2 solutions, each having a total ionic strength of 0.7 M. The constant addition technique was used to maintain [Ca2+] at 10.5 mmol kg−1 while [] was varied to isolate the role of this variable on the precipitation rate of calcite.Our results show that the overall reaction of calcite precipitation in both seawater and NaCl-CaCl2 solutions is dominated by the following reaction:
  相似文献   

15.
16.
Samples of the calcite-rich Shelburne Marble collected at the Pfizer Quarry in Adams, Massachusetts, show an order of magnitude variation in grain size. Calcite grain size ranges from 94 to 1101  μm. Because these calcite marbles share the same pressure, temperature and strain histories, some other factor must be responsible for the grain size variation.
Grain size appears to be controlled by the concentration of impurity or second-phase particles. Large calcite grain size occurs where the volume fraction of second-phase particles is low and grain size decreases as second-phase volume fraction increases. The relationship between calcite grain size ( D ), second-phase grain size ( d ) and second-phase volume fraction (  f  ) can be described by the power law D / d =1.4/ f   0.36, a result that is consistent with models based upon short-term (hours or days) laboratory experiments with metals and ceramics and computer simulations of grain growth. Grain growth appears to be greatly restricted by as little as a few per cent of second-phase particles, with a transition from highly restricted to almost unrestricted grain growth occurring at ≈5% volume of second-phase particles. These results indicate that second-phase particles exercise an important control on grain size and can effectively inhibit grain growth in metamorphic rocks. The behaviour of second-phases in short-term laboratory experiments may closely approximate the behaviour of second-phases in grain growth lasting several orders of magnitude longer in the metamorphic environment.  相似文献   

17.
The increasing availability of remotely sensed data offers a new opportunity to address landslide hazard assessment at larger spatial scales. A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that may experience landslide activity. This system combines a calculation of static landslide susceptibility with satellite-derived rainfall estimates and uses a threshold approach to generate a set of ‘nowcasts’ that classify potentially hazardous areas. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale near real-time landslide hazard assessment efforts, it requires several modifications before it can be fully realized as an operational tool. This study draws upon a prior work’s recommendations to develop a new approach for considering landslide susceptibility and hazard at the regional scale. This case study calculates a regional susceptibility map using remotely sensed and in situ information and a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America. The susceptibility map is evaluated with a regional rainfall intensity–duration triggering threshold and results are compared with the global algorithm framework for the same event. Evaluation of this regional system suggests that this empirically based approach provides one plausible way to approach some of the data and resolution issues identified in the global assessment. The presented methodology is straightforward to implement, improves upon the global approach, and allows for results to be transferable between regions. The results also highlight several remaining challenges, including the empirical nature of the algorithm framework and adequate information for algorithm validation. Conclusions suggest that integrating additional triggering factors such as soil moisture may help to improve algorithm performance accuracy. The regional algorithm scenario represents an important step forward in advancing regional and global-scale landslide hazard assessment.  相似文献   

18.
We revise the conceptual model of calcite varves and present, for the first time, a dual lake monitoring study in two alkaline lakes providing new insights into the seasonal sedimentation processes forming these varves. The study lakes, Tiefer See in NE Germany and Czechowskie in N Poland, have distinct morphology and bathymetry, and therefore, they are ideal to decipher local effects on seasonal deposition. The monitoring setup in both lakes is largely identical and includes instrumental observation of (i) meteorological parameters, (ii) chemical profiling of the lake water column including water sampling, and (iii) sediment trapping at both bi-weekly and monthly intervals. We then compare our monitoring data with varve micro-facies in the sediment record. One main finding is that calcite varves form complex laminae triplets rather than simple couplets as commonly thought. Sedimentation of varve sub-layers in both lakes is largely dependent on the lake mixing dynamics and results from the same seasonality, commencing with diatom blooms in spring turning into a pulse of calcite precipitation in summer and terminating with a re-suspension layer in autumn and winter, composed of calcite patches, plant fragments and benthic diatoms. Despite the common seasonal cycle, the share of each of these depositional phases in the total annual sediment yield is different between the lakes. In Lake Tiefer See calcite sedimentation has the highest yields, whereas in Lake Czechowskie, the so far underestimated re-suspension sub-layer dominates the sediment accumulation. Even in undisturbed varved sediments, re-suspended material becomes integrated in the sediment fabric and makes up an important share of calcite varves. Thus, while the biogeochemical lake cycle defines the varves’ autochthonous components and micro-facies, the physical setting plays an important role in determining the varve sub-layers’ proportion.  相似文献   

19.
Chemically induced grain boundary migration (CIGM) is a solid-state reaction mechanism which involves grain boundary migration. Initially straight grain boundaries in calcite bicrystals exhibit CIGM when exposed to a SrCO3 or BaCO3-rich melt at temperatures of 680–840° C in a 1-bar CO2 atmosphere. Under these conditions, CIGM is apparently a much more efficient way to form solid-solutions than lattice diffusion. The maximum observed rate of migration, 1×10–9 m/s, occurred at about 760° C. Below that temperature, migration was thermally activated, but above it, the process was thermally inhibited. Some portions of the boundary swept through a given crystal volume more than once. In the (Ca, Sr) CO3 system, the solute concentrations incorporated during a single pass of the boundary were far less than values expected at chemical equilibrium, and departed further from equilibrium at higher temperatures. CIGM may be geologically important when the distances characteristic of grain boundary migration and diffusion are much larger than those characteristic of lattice diffusion. The great similarity between results in ionic calcite and metals systems suggests CIGM is a very general process which may be expected to occur in a large number of geologic systems.  相似文献   

20.
Internal erosion (IE) affects the stability of natural and reinforced materials by causing instability within their granular structure. The dislodgement and transport of eroded particles affect both the particulate concentration of eroding fluid and the pore network of eroded material. In this study, we examined these modifications using a transport model with a finite element code. First, IE tests on chemically reinforced sand columns were performed to obtain information about eroded material loss of mass, particulate concentration of effluent, porosity and permeability modifications, and existing IE stages. Second, based on experimental results, a mathematical one‐dimensional model has been formulated to monitor the evolution and spatial distribution of erodible solids, fluidized particles, porosity, permeability, and seepage stresses. The model consists of a set of coupled nonlinear differential equations solved in sequence. It provides valuable information about the extent and the dynamics of structural changes, which can be used to estimate an IE time for the hydraulic work to reach failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号